Chapter 7

Introduction to interferometry

Contents
7.1 What is Interferometry . . . . .. ... ... o000, 115
7.2 wvan Cittert-Zernike theorem . . . . ... ... ... ....... 116
7.2.1 Properties of Fourier Transform . . . . . .. .. ... ... ... 117
7.3 Basic source morphologies . . ... ... ... .0 0000, 117
7.3.1 The point source . . . . . . . . .. ... L 117
7.3.2 Circular symmetric sources : the uniform disk . . .. .. ... 118
7.4 Closurephase . . . . . . . . i i ittt 120
7.4.1 Important relations . . . . . . . ... ... 122
742 Simplecases. . . . . ... e 123
7.5 Interferometer facilities in the world . . . . . . ... ... ... 125

Since RSGs are big or relatively nearby, their disk can be resolved with large telescopes
using adaptive optics and with the speckle interferometry. This presents a unique way to
show how the surface of RSG appears.

In this Chapter I will present some important concepts that will be used in next following.
For further details the reader can refer to Shao & Colavita (1992) and Quirrenbach (2001)

7.1 What is Interferometry

The diffraction pattern resulting from a uniformly illuminated circular aperture has a
bright region in the center, known as the Airy disc. The following relation shows the
angle at which the first minimum occurs

A
0=122— 1
- (71)

where 6 is the angular resolution in radians, A is the observing wavelength and D is the
diameter of the telescope. This means that with a 10-meter class telescope the resolution
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ranges from 20 mas (milli-arcseconds) in the visible (0.8 pm) to 400 mas in the MIR (16
pum). However, the Adaptive Optics is required to correct for the atmospheric turbulence
in the visible and NIR.

Optical and Infrared (IR) interferometers are the ideal tools to study the shape and the
size of objects which are bright but small and thus they require only a limited light
collecting surface, but a high angular resolution and spectral resolution. The science case
on very large single dish (> 30meters) telescope is under study, but the state of the art
is the use of few small telescopes and the combination of the light in such a way as to
obtain a high angular resolution (see Fig. 7.1).

Figure 7.1: The Very Large Telescope Interferometer (VLTI) consists in the coherent combina-
tion of the four VLT Unit Telescopes (8 meters) and of the four moveable 1.8 meters Auxiliary
Telescopes.

The combined light results in the interference pattern: the fringes. The van Cittert-
Zernike theorem states that the complex quantity (including the phase and the amplitude
of the fringes) is the Fourier Transform (FT) of the source intensity distribution on the
sky. The original source image can be reconstructed only if one has a good sampling in
the uv-plane (the Fourier plane), i.e. if one has a large number of visibility measurements.
If one wants to do imaging with interferometric observations, he has to do the inverse F'T
of a large number of measurements of the fringes contrast and phase. The point is to gain
information from different telescope configurations and from a clever way of combining
light beams.

7.2 van Cittert-Zernike theorem

[t states that the contrast and the phase (location) of the interference pattern (the fringes),
i.e. the complex visibility, corresponds to the Fourier Transform of the source intensity
distribution on the sky at the spatial frequencies (the conjugates of the two spatial coor-
dinates) corresponding to the baseline projected on the sky.

The complex visibility is a function of the spatial frequencies defined as B/ (where B is
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the baseline, i.e. the distance between two telescopes, and A is the observing wavelength).
These spatial frequency are :

= — 2

u== (72)
and B
g

V= (7.3)

and they are measured in arcseconds™ or cycles/arcseconds.
The normalized visibility can be written as follow

- [ dadBA (o, B) F (r, B) o—2mi(autBv)
= fdadﬁA (o, B)F (e, B)

where A is the collecting aperture and F the source intensity distribution on the sky, «
and [ the spatial coordinates. In most cases, one denotes the visibility as the fringes
contrast, i.e. | V |, instead of the complex visibility, and the phase (or fringe location, ¢)
is the arg(V). In other words

V (u,v)

(7.4)

V =|V | (cos¢+isin¢) (7.5)

7.2.1 Properties of Fourier Transform

FT L (o, B) + L2 (o, B)] = Vi (0, v) + Va2 (u,v) (7.6)

FT[I (aa, b3)] = %v (u/a, v/b) (7.7)
FT[1(a — ag, 8 — Bo)] = V (u, v) e?riluaotvio) (7.8)
FT I (a,3) * Iy (a, B)] = V1 (u,v) - Vo (u, V) (7.9)

7.3 Basic source morphologies

7.3.1 The point source

The most basic of all intensity profiles is the point source function, i.e. the Dirac function.
If the spatial coordinates are (ay, 5), the brightness distribution is

I(a,3) =6 (a —aq, B — ) (7.10)
and the visibility is

V (u,v) = e 2rilaoutioy) (7.11)

The amplitude of the visibility is one (the source is not spatially resolved) and the
phase is zero if the telescopes are pointed exactly at the source.
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7.3.2 Circular symmetric sources : the uniform disk
When the object has a circular symmetry, one can use the distance to the optical axis
(p = /a2 + (3?). In the uv-plane it is

r=+vu?+v? (7.12)

Eq. 7.4 can be simplified as follow (for a transparent derivation see Perrin & Malbet
2003).

v(r) = 27r/ L(p) Jo (2mpr) pdp (7.13)
0
which can be normalized with the total flux to find the visibility

fooo L(p) Jo (2mpr) pdp
I, L(p) pdp

where r and p are defined above, I (p) is the one-dimensionl intensity profile from the
center of the object out to its edge and Jj is the zeroth-order Bessel function of the first
kind. The Eq. 7.13 is the Hankel transform. It is the integral of a whole set of circular,
infinitesimally thin rings with a visibility of

V(1) = (7.14)

Vv (I') = JO (27’(’[)01“) (715)

with a ring radius of py.
A more useful variable dealing with the intensity profile is:

p=/1- (pjax) (7.16)

where ppax is the outermost emitting point of the intensity profile. u is also the cosine
of the viewing anlge (1 = 1 is the line-of-sight).
Eq. 7.14 becomes

oy Jo (me0y/T= 1)
N Jo L) pdpe

where 6 is the angular diameter of the object.

Vi(r)

(7.17)

Within the circular symmetric sources, there is the uniform disk (UD), which corre-
spond to a uniform brightness distribution. Its visibility is

J1 (m0r)
wOr

where J; is the first-order Bessel function of the first kind (see Fig. 7.14). The UD
intensity profile is only the first-order approximation, since one must at least considered a
slight decrease of intensity with distance from the center. When the observer is not looking

V(r) =2 (7.18)
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perpendicularly to the stellar surface, the most of the light comes from more superficial
layers as optical depth increase more rapidly with depth than for a perpendicular line-
of-sight. As a consequence, we see layer with a lower temperature. The visibility of
limb-darkened disk can be compute with Eq. 7.13.

The limb-darkening influences the visibility curve only close to and beyond the first null,
and the maximum height of the second lobe of the visibility is a good measure for the
amount of limb-darkening. Two examples of analytical approximation of the center-to-
limb variation are

[(p)=1-a;(1—p) (7.19)

or

[(pn) =v™ (7.20)

where [ is the intensity, p is defined in Eq. 7.16, and a; together with ay are the limb
darkening coefficient to be determined with a fit to the observations or to the intensity
profiles from radiative transfer code calculations. A large set of synthetic limb darkening
coefficients from one-dimensional model atmospheres is in Claret (2000). A reinterpreta-
tion of his law adapted to RSG intensity profiles is reported in Sect. 8.3.
Fig. 7.2 reports an example of visibility curve computed from an uniform disk (bottom
panel, solid black line) compared to the visibility obtained from the a limb darkened model
with a law as in Eq. 7.19 (red dashed curve, a;—1.5). The two visibilities don’t show
strong differences in the first lobe. The effect of the center-to-limb variation becomes
more evident at the first null point and on height of the second lobe. The limb-darkening
effect is small and thus it is necessary an high precision on the visibility measurement.
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Figure 7.2: Top left panel: Fourier transform of a uniform disk model. Central top panel:
intensity map of a linear center-to-limb variations (a; = 1.5) with an apparent diameter of 16
mas. Top right panel: intensity map of a uniform disk of 16 mas. Bottom panel: visibility curves
of the uniform disk (black solid line) and of the limb darkened model (red dashed line).

7.4 Closure phase

In Fig. 7.3, an optical interferometer is represented by a Young’s two-slit experiment. Flat
wavefronts from a distant source impinge on the slits and produce interference pattern on
a screen. The spatial frequency of these intensity fringes is determined by the distance
between the slits (in units of the wavelength of the illuminating radiation). However, if the
pathlength above one slit is changed (due, for example, to a pocket of warm air moving
across the aperture), the interference pattern will be shifted by an amount depending
on the difference in pathlength (A®). If the extra pathlength is half the wavelength, the
fringe patter will be shift by half a fringe (7 in radians). The phase, i.e. the fringe location,
is completely independent of the slit separation and only depends on the slit-specific phase
delays.

The loss of this phase information has serious consequences. Imaging can not be done
except for simple objects such as disks or "round" stars.
In order to solve this problem, one uses the closure phase for interferometer with more
than 2 telescopes. Fig. 7.4 shows that above telescope 2 a phase delay is introduces. This
causes a phase shift in the fringe pattern between telescopes 1 and 2. A phase shift is also
induced for fringes between telescopes 2 and 3, but this phase shift is equal but opposite
to the one for telescopes 1 and 2.
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Figure 7.3: Young’s two slit experiment used through analogy with optical telescopes to show
that phase errors causes fringe shifts.

D (1—2) =By (1—2)+[6(2) — 6 (1) (7.21)
D(2—3) =B (2-3)+[6(3) - 6(2) (7.22)
B(B—1)=0(3—1)+[p(1) - 6(3) (7.23)

where ® is the observed phase, @ is the intrinsic phase of the object, and ¢ is the
phase shift induced by the atmosphere. The sum of the three fringe phases, between 1 —2,

2 — 3, and 3 — 1 is insensitive to the phase delay above telescope 2. The closure phase
(CPh) is:

CPh(1-2-3)=P(1-2)+P(2-3)+PB-1)=P(1—-2)+Py(2—3)+Py(3—1)
(7.24)
This argument holds for arbitrary phase delays above any of the three telescopes. The
interferometric observable, the closure phase, is the sum of three phases around a closed
triangle of baselines; that is, as mentioned above, independent of telescope-specific phase
shifts induced by the atmosphere or optics and gives information on the intrinsic phase
of the object. This is indeed very important for complex non-point-symmetric source
intensity distribution such as RSG stars are.
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Another way to derive the invariance of the closure phase for a specific telescope phase
shifts is the bispectrum. It is defined as the triple product of the complex visibilities,
where 27k correspond to the three telescopes

Bijx = Vi Vi Vi (7.25)

The bispectrum is a complex quantity and it’s phase is identical to the closure phase.
The use of the bispectrum for reconstructing diffraction limited images was developed
independently of the closure phase by Weigelt (1977) and linked to it later by Roddier

(1986). Notice that the bispectrum is always real for source with point symmetry because
the closure phases are all 0° or 180° (see Sect. 7.4.2).

[/ ]
(6 1 Observed Intrinsic Atmosphere
D(1-2) = D,(1-2) + [6(2)-6(1)]
3 ©(2-3) = @,(2-3) + [6(3)-0(2)]
2 D(3-1) = @y(3-1) + [6(1)-0(3)]

Figure 7.4: The closure phase give phase information important for complex non-point-
symmetric source intensity distribution such as RSG stars. At least three or more telescopes
are need to correct the atmospheric turbulence.

7.4.1 Important relations

For N telescopes there are

NY _ (N - (N-2)
(3) -5 720

possible closing triangles. However, there are only

@) _ % (7.27)

independent Fourier phases because not all the closure phases can be independent.
The sum of the independent closure phases is

N-1) (N—1)(N-2)
(') -0 (7:28)

which is equivalent to holding one telescopes fixed and forming all possible triangles
with that telescope (Fig. 7.5). The number of independent closure phases is always
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less than the number of phases one would like to determine, but the percent of phase
information belonging to the closure phases improves as the number of telescopes in the
array increases (see Tab. 7.1)

Table 7.1: Phase information recovered by the closure phase

Number of Number of Number of Number of Independent Percentage of
Telescopes | Fourier Phases | Closing Triangles Closure Phases Phase Information

3 3 1 1 33%

7 21 35 15 1%

21 210 1330 190 90%

27 351 2925 325 93%

50 1225 19600 1176 96%

4
1
n

@)

d(-2-3) = D (1-2-9) + D (4-2-3) + D (1-4-3)
In General:

d(1-2-3) = O (1-2-n) + D (n-2-3) + O (1-n-3)

Figure 7.5: The number of combinations for possible closing triangles is not the same as the
independent closure phases in the Fourier plan (see text).

7.4.2 Simple cases

The closure phase can vary values from —180° to 180° degrees and it is independent of
the phase center. In the case of a binary or point — symmetric brightness distribution,
the closure phase must be either 0° or 180°. In fact, placing the origin (phase center) at
the location of point symmetry, the the imaginary part of the Fourier transform disappear
(i.e., all odd basis functions must be zero). Hence, the phase of all Fourier components
must be either 0° or 180°. In the case of a binary system, one can determine the binary
separation (and brightness ratio) from the closure phase information alone, because one
would expect to see abrupt closure phase jumps between 0° and 180° if one of the baselines
traverses a null in the visibility pattern (see Fig. 7.6). Notice that the closure phases, or
bispectrum, are independent of the telescope-specific phase errors.

The interesting case of a hotspot on stellar surface (see Fig. 7.7) can be thought of as
unequal binary with one of the components being resolved. (i) For closing triangles with
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all short baselines (compared to the ones needed to spatially resolve the star), the flux
from the star itself dominates the visibility measurement and the system looks like centro-
symmetric. The resulting closure phase will be small. (ii) for closing triangles containing
long baselines, the star is mostly resolved and the hotspot becomes dominant. Also in
this limiting case the expected closure phase should be zero. (iii) Only for intermediate
baselines, where the star is partially resolved, that non-0° and non-180° values of closure
phases are visible. Hence, the fact to have a variety of combinations of closing triangle
available is very important to recover the information about the source structure. With-
out intermediate baselines, one could detect the hotspot, but would only weakly constrain
its position on the stellar surface.

Phase
Center
Primary Star @ X @ Secondary Star

Separation p

Visibility Amplitude Visibility Phase

20 1 . K .
.o SRR
20 S H S
-40 :
4020 0 20 40 -40 20 0 20 40
u u

Figure 7.6: The closure phase is independent of the phase center. In the case of a binary
system, placing the origin (phase center) at the location of point symmetry, the phase of all
Fourier components must be either 0° or 180°. Notice the abrupt phase jumps when visibility
goes through a null.

Figure 7.7: Simple model of an hotspot on the stellar surface. left panel At low resolution
(for closing triangles with all short baselines), stellar disk dominates and it looks like a point
symmetric : expected closure phase are small. right panel at highest resolution (for closing
triangles with all long baselines), stellar disk is spatially resolved and the hotspot by itself is also
point symmetric : expected visibilities are close to zero. Only for intermediate baselines, where
the star is partially resolved, closure phase have non-0° and non-180° values.
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7.5 Interferometer facilities in the world

The list of interferometer facilities in the world is reported in Tab. 7.2. Interferometers
give a unique solution for the observation of the surface inhomogeneities of stars like
RSG. Today ground interferometers such as, for example, VLTI and CHARA have the
possibility to combine the information of the visibility curves together with the closure
phases using long baselines together with adaptive optics that increase the sensitivity and
angular resolution. This is of extreme importance for the reconstruction of the observed

stars.

In the near-future, a large and more complete coverage of the uv-plane will finally probe an
intensity map really close the observed one. This will be of extreme interest to constrain
the simulations such as CO’BOLD, that can provide detailed intensity maps.

Table 7.2: Interferometer facilities in the world

Facility Operating Location No. of Size of Maximum | Wavelength Starting
Acronym | Institution Aper. | Aper.Jecm] | Baseline [m] Range operating
GI2T Obs. Cote Calern 2 150 70 Vis. 1985 to 2005
d’Azur France
IST UC Berkeley Mt. Wilson 3 165 30+ MIR 1990
USA
COAST Cambridge Cambridge 5 40 22 Vis. & NIR 1991
University United Kindom
SUSI Sydney Narrabri 13 14 640 Vis. 1991
University Australia
I0TA® CfA/U Mass Mt. Hopkins 3 45 38 Vis. & NIR | 1993 to 2006
USA
NPOI | USNO/NRL | Anderson Mesa 6 60 435 Vis. 1995
USA
PTI JPL/Caltech | Mt. Palomar 2 40 110 NIR 1995
USA
MIRA-T | NAO Japan Tokyo 2 25 4 Vis. 1998
Japan
CHARA | Georgia St. Mt. Wilson 6 100 350 Vis. & NIR 1999
University USA
KI CARA Mauna Kea 2 1000 85 NIR & MIR 2001
USA
VLTI ® ESO Cerro Paranal 4(8) | 820 (180) 200 NIR & MIR 2002
Chile

“Interferometric data from this telescope will be used for the comparison with RHD simulations
’T detail the prospects for the detection and characterisation of granulation (contrast, size) on RSG
with this interferometer
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