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Outline 
• Introduction to primitive 

extraterrestrial materials and presolar 
grains 
 

• Tools of presolar grain research 
 

• Overview of stellar evolution and 
nucleosynthesis 
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Meteorites 
• meteorites 

Fireball over Yellow Springs, Ohio 
Credit: John Chumack Meteorite on Antarctic ice (L. Nittler) 

Willamette iron meteorite Orbit trajectories indicate origin in asteroid belt 



Chondrites 
• Meteorites from 

undifferentiated 
planetesimals – 
primitive ‘cosmic 
sediments’ of 
protoplanetary disk 

Full of “Chondrules” <mm-sized 
silicate spheres 



Chondrules 

Calcium, Aluminum-
rich Inclusions,CAIs 
(First Solids in Solar 
System;4.567 Gyr) 

In between is “matrix” (sub-micron dust) 



Interplanetary Dust Particles (IDPs) 
and Antarctic Micrometeorites 

• Collected in stratosphere by 
modified U2 spy planes and 
in Antarctica by 
melting/filtering snow 

• Originate in comets and 
asteroids 
 
 

 



• NASA mission, 
flew through tail of 
comet Wild-2, 
collected dust 
particles and 
returned them to 
Earth (Jan 2006) 

• Dust collected at 
6.1 km/s in 
“aerogel” and as 
impact residues in 
Al foils 



Primitive ET samples 
• Non-biological “fossils,” containing a 

record of: 
– Starting materials of the Solar System 
– What the Solar System was like at 

beginning  
– Earliest stages of planetary processes 
– Timescales for early processes 

 
• Focus here on one rare component 

PRESOLAR STARDUST 
 



• Bona-fide 
stardust from 
ancient dead 
stars 
 

• Survived 
interstellar 
processes and 
solar system 
formation 
 

• Found today 
surviving in 
meteorites and 
interplanetary 
dust particles 
– <~100 ppm 

 
 

Presolar Stardust in the Solar System 
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How do 
we know? 

• Isotopic ratios in 
grains extremely 
unusual and distinct 
from ranges found in 
solar system 
material 

• Too large to explain 
by physical/chemical 
processes 
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How do 
we know? 

• Isotopic 
variations 
require nuclear 
processes.  

• Origin in 
 STARS 
 

SiC 
Stardust 

O-rich 
Stardust 

C-rich 
Stars 



Presolar Stardust 
• Each presolar grain is a solid piece of a single star at a 

given time in its evolution 
– Isotopic/elemental composition is fossil record of nucleosynthesis 

(process by which elements are made) 
 

• Each presolar grain survived processing in interstellar 
medium, early solar system and meteorite/comet parent 
body 
– Abundances, chemical/structural data can constrain such 

processes 
 

• Laboratory measurements of grains provide detailed 
information about stellar/interstellar/ early solar system 
processes 
– Such analyses possible by modern techniques despite small sizes 

of grains (<1µm) 



Presolar Grain Types 

ppb 10 100  ppm 10 100 ppt

Abundances in bulk meteorites or IDPs

Si3N4

Al2O3/CaAl12O19

Graphite

Spinel (MgAl2O4)

SiC

Silicates (IDPs) up to >1 wt%

Silicates (meteorites)

Nanodiamonds (?)



500nm 

Silicon 
Carbide Graphite 

Oxides( Al2O3, 
MgAl2O4, TiO2 …) 

nanodiamond 

Silicates ( Glass, 
MgSiO4 …) 



Stardust tools (“telescopes”) 

Carnegie Inst. NanoSIMS 

 Resonance 
Ionization Mass 
Spectrometry 
(RIMS) 
– Trace-element 

isotopes (>1µm) 

“CHILI” U Chicago 

Electron 
Microscopy 

–Morphology/ 
mineralogy/ 
microstructure 
(>1nm) 

NION Ultra-STEM 
Scanning Transmission Electron Microscope 
Naval Research Lab 

 Secondary Ion 
Mass 
Spectrometry 
(SIMS) 
– Major/minor 

element isotope 
ratios (>100nm) 



Secondary Ion Mass Spectrometry 
(SIMS) 

• Use ion sputtering 
to determine 
major/minor 
element isotope 
ratios 

• Beam can be 
focused to small 
spot for spatially-
resolved 
measurements 

• Highly sensitive 
 



Cameca ims-3f/6f ion probe 
• Used for majority 

of presolar grain 
data 1987-2003 

• 1970’s design 
• 1µm spatial 

resolution, high 
sensitivity 
 

Drawing by Trevor Ireland 

Carnegie ims-6f 

 



Cameca NanoSIMS 50/50L 
• Since ~2000 
• <100nm spatial resolution, 

very high sensitivity 
• Simultaneous collection of 

multiple masses 
• Allows measurements of 

more elements in smaller 
samples; huge advantages 
for presolar grains 

Cs+ Ion Source

O- Ion Source

Primary
Ion Beam

Secondary

Electrostatic
Analyzer

Ion Beam

Sample

Multicollection
6 moveable
detectors,
1 fixed
(EMs/FCs)

Magnet

Carnegie NanoSIMS 



SIMS limitations 
• Destructive technique 
• Even with high sensitivity, limited by # atoms in 

small samples; Poisson uncertainty on N counts= 
sqrt(N) 

• Example: 
– A 1-micron SiC grain contains ~5×1010 atoms 
– Typical presolar SiC has ~0.1%  Al 
– Al efficiency by SIMS is <~10-2 

– Typical inferred 26Al/27Al for presolar SiC  is 10-3 

– Gives 500 measureable radiogenic 26Mg atoms in whole 
grain (4% uncertainty)  

• Some isobaric interferences unresolvable   
– Can correct some (e.g. 50Cr on 50Ti), but not others (e.g. 

Zr/Mo)  



Resonance Ionization Mass Spectrometry (RIMS) 

• Extreme sensitivity to select elements (can 
fully exclude isobaric in interferences) 

• CHILI – unprecedented flexibility and 
sensitivity (Ga+ ion beam + 6 lasers) 



Scanning Electron Microscopy 
• Focus beam of (3-20 keV) 

electrons on sample 
– few nm resolution imaging 

• Detect: 
– secondary e- (topography) 
– backscatter e- 

(composition/ topography) 
– X-rays (compositional info) 

http://www.mse.iastate.edu/microscopy/path2.html 



Secondary e- Backscattered  e- 
Higher Z (FeS) 

CR3 meteorite  QUE 99177 (Nguyen et al 2008) 

Lower Z 
(C) 



Secondary e- Backscattered  e- 
Higher Z (FeS) 

CR3 meteorite  QUE 99177 (Nguyen et al 2008) 

Lower Z 
(C) 

• Can also 
correlate 
with 
NanoSIMS 
images 



Auger Spectroscopy 
• Auger electrons also 

produced upon electron-
irradiation of samples 
– Allows chemical analysis 

with better spatial 
resolution than SEM X-
ray analysis, but less 
sensitive 
 

Stadermann et al 
(2008) 

 



Transmission Electron Microscopy 

• Focus beam of 60-300 keV 
electrons through thin (<100 nm) 
sample 

• High-magnification (atomic-
resolution) imaging/ X-ray 
chemical mapping 

• Electron diffraction (structural 
information) 

• Electron energy-loss 
spectroscopy (EELS, provides 
compositional and chemical 
bonding information) 



TEM of presolar SiC grain 

Bright-field image 

HRTEM lattice 
images 

Electron 
diffraction 
pattern 



500 nm 

STEM EDS Mapping 

Mg K Si K 

Fe K 

Mg Si Fe 

Presolar 
silicate 
grain 



Focused Ion Beam (FIB) 

• SEM with ion gun 
– Technology developed for 

semiconductor industry 
• Use <50 nm Ga+ beam to cut 

slices of samples 
• Lift-out using in situ 

micromanipulator 

Presolar Si3N4 grain 



Other techniques 

• Atom-probe tomography  
– atom-by-atom 3d 

reconstructions 
 

• Noble gas mass 
spectroscopy 
– Laser-heating of 

grains, 
purification and 
MS of gases 

 

• Raman 
spectroscopy 
– Inelastic scatter 

of laser light by 
lattice vibrations 

 



Finding presolar grains 
• Acid dissolution 
   “burning down the haystack” 

SIMS 

 



Automatic particle 
analysis 

• Fully automated 
NanoSIMS 
isotopic 
measurements of 
particles  

• Can scan 100s 
particles per day 

• Used successfully 
for presolar oxides 
and SiC (Nittler et 
al. 2003, 2008; 
Gyngard et al., 
2010;  Hoppe et 
al. 2010) 
 

Step 2: Find Particles 

2µm 

Step 1: Acquire image 

16O Sec e- 

Step 3: Measure Particles 

Step 4: Move Stage and Repeat on 
New Area 

10 
µm 

Step 5: Explore Data 



Finding presolar grains 
• Acid dissolution 
   “burning down the haystack” 

• In situ mapping 

MIL 07687 CR chondrite- J. Davidson 

SIMS 

10 µm 

  16O 



Finding presolar grains 
• Acid dissolution 
   “burning down the haystack” 

• In situ mapping 

MIL 07687 CR chondrite- J. Davidson 

SIMS 

10 µm 

  16O 



Asymptotic Giant 
Branch (AGB) 
stars: 
>90% of SiC, 
Silicates, Oxides 

Type II Supernovae 
<10% of SiC, Silicates, 
Oxides, <50% Graphite, 
100% Si3N4  

Classical Novae (?) 
<1% SiC, Silicates, 
Oxides, Graphite 

Sources of Presolar Stardust Grains 



Stellar Evolution 
• Stars are powered by exothermic nuclear 

fusion reactions. Gravitational collapse 
occurs until hot enough for nuclear fuel to 
burn 
– e.g.,  4 1H -> 4He + 27 MeV 

• Energy release from reactions stabilizes 
star against collapse until fuel exhausted 

• Further collapse until heavier fuel ignites 
• Repeats until “degeneracy pressure” 

supports core or no more exothermic  
reactions possible. 
 



Stellar Evolution 
• Stars lie in 

restricted ranges 
on Hertzprung-
Russell Diagram 
– Diagram reflects 

mass and 
evolutionary history 
of stars 

– Most stars on main 
sequence (powered 
by H-burning) 

– ~1010 M-3 yr 
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Stellar Evolution 
Low-mass stars (<8 M) 

Schematic 
Structure of 
an AGB star 



Stellar Evolution 

Schematic 
structure of a 

pre-supernova 
massive star 

Massive stars (>10 M) burn hotter and faster then lower 
mass stars 



Type II Supernovae 

• Enormous explosions of stars (~1046 J) 

SN 1987A before 
and after 



Type II Supernovae 

• Enormous explosions of stars 
• Nuclear factories (main sources of 

many elements) 

SN 1987A in 1994 



Stellar Evolution – close binaries 
• More massive star 

evolves to WD; 
accretes matter 
from companion 
 

Type Ia SN 
• WD explodes, 

leaving neutron star 
– ~1044 J 

• Produce mostly Fe 

Classical Nova 
• Accreted H explodes 

– ~1037 J  
• Recurrent explosions 

 



Nucleosynthesis 

• Solar abundance pattern: 
• Regularities reflect nuclear properties 
• Several different processes  
• Mixture of material from many, many stars  



Nucleosynthesis 
Big 
Bang 





Nucleosynthesis 
Big 
Bang 

Cosmic-ray 
spallation 



Nucleosynthesis 

• Above Fe, cannot produce energy by 
fusion 

Stars Fusion +exp. 



Nucleosynthesis 

Stars Fusion +exp. 

Neutron capture (s-, r-
processes) 
“p-process” 



Neutron capture 
s-process 

• n-captures “slow” 
relative to β-decay 

• Mostly from AGB 
stars, some from SNe 
 

r-process 
• Many n-captures 

between β-decays 
• Astrophysical site(s) 

unknown but colliding 
neutron stars is 
current favorite 
 p-process 

• Proton-rich nuclei of heavy elements originally thought 
to be made by proton capture, now believed to be both 
γ-process (photodisintegration of heavy elements) and 
ν-process (neutrino inetractions) 
 



r/s deconvolution 

• Many isotopes are made 
by both r and s processes 

• Solar abundances 
deconvolved into r and s 
patterns based on 
theoretical understanding 
of s-process (starting in 
1950s) 

• For decades, s- and r-
process patterns were 
purely mathematical 
constructs  
 



r/s deconvolution 

• Many isotopes are made 
by both r and s processes 

• Solar abundances 
deconvolved into r and s 
patterns based on 
theoretical understanding 
of s-process (starting in 
1950s) 

• For decades, s- and r-
process patterns were 
purely mathematical 
constructs  
 Pure s-process Xe in 

presolar SiC! 

https://ocelotbrewing.com 



Origins of Presolar Grains 
• Iterative approach: 

– Compare compositions with astronomical 
data, theory to try to identify stellar source 
type (e.g. AGB vs supernova) 

– Once source is identified, take advantage of 
unique information obtained from lab 
measurements to test models, etc. 

• Example: Silicon Carbide (SiC) 
 



AGB star origin of most presolar SiC 

Carbon isotopes match 
AGB stars, 13C rich and 
15N-poor from mixing of 
H-burnt ashes into 
envelope 

Infrared emission 
feature from SiC in AGB 
star (Speck et al., 2005) 
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Extinct Radioactivities 
• Recognized by excesses in daughter products 

– Crucial for Early SS chronology (Gounelle lecture) 
• E.g., 26Al: 

– half-life = 720,000 years 
– Produced in variety of stars (including AGB) 
– Observed in Galaxy by γ-ray emission 
– Observed as nuclear “fossil” in meteorites and 

presolar grains (26Mg excess) 
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data 



AGB presolar SiC 

• Heavy elements 
in SiC stardust 
reflect s-process  
– Confirm AGB 

source 
– Confirm existence 

of s-process 
– Constrain models 
– Suggest errors in 

nuclear data 
 Data from Argonne/Chicago group, 

Models from Torino group 



AGB origin of most presolar SiC 

• Heavy elements 
in SiC stardust 
reflect s-process  
– Confirm AGB 

source 
– Confirm existence 

of s-process 
– Constrain models 
– Suggest errors in 

nuclear data 
 Data from Argonne/Chicago group, 

Models from Torino group 
Koehler et al. (2008) 

 



Pristine nature of presolar grains makes 
them useful probes of: 
– Cosmology  
– Stellar nucleosynthesis 
– Stellar evolution and mixing 
– Galactic chemical evolution 
– Dust formation in stellar environments 
– Dust processing in the interstellar 

medium 
– Sources of material for Solar System 
– Early Solar System processes 
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