VOSA: A short introduction.

SEDs in the Virtual Observatory

Enrique Solano

Why SEDs (Spectral Energy Distributions)?

Wavelength $(\dot{A}) \xrightarrow{2,500 \mathrm{~K}}$

Why SEDs (Spectral Energy Distributions)?

Why SEDs (Spectral Energy Distributions)?

Building SEDs

How to build a Spectral Energy Distribution?

Ingredients

- Multiwavelength photometry (observational and theoretical)

Data discovery, gathering and manipulation.

Building SEDs: Difficulties

- Data Manipulation: From magnitudes to fluxes

I/337/gaia Gaia DR1 (Gaia Collaboration, 2016
Post annotation GaiaSource data (Download Gaia Sc

A EUROPEAN SPACE AGENCY [' SCIENCE \& TECHNOLOGY © ${ }^{\top}$
 GAIA DATA RELEASE DOCUMENTATION

Search

Cesa

```
Gaia Data Release 1 Documentation release D. 0
```

[-] Gaia Data Release 1
Documentation release D.
I Introduction to Gaia DR1
r.1 II תsis noto Drnnoesinn

5 Photometry
5.2 Properties of the input data
5.3 Calibration models

$$
m_{x}=-2.5 \log _{10}\left(\frac{F_{x}}{F_{x, 0}}\right)
$$

Building SEDs: Difficulties

- Data Manipulation: From theoretical spectra to synthetic photometry

VOSA to the rescue

- Available since 2008.
- More than 1000 users.
- More than 1.600.000 objects.
http://svo2.cab.inta-csic.es/theory/vosa/ .

- 84 refereed papers.

Science case

THE ASTRONOMICALJOURNAL

Accurate Empirical Radii and Masses of Planets and Their Host Stars with Gaia Parallaxes

Keivan G. Stassun ${ }^{1,2}$ (D), Karen A. Collins ${ }^{1,2}$ (iD), and B. Scott Gaudi ${ }^{3,4}$
Published 2017 March 2 • © 2017. The American Astronomical Society. All rights reserved.
The Astronomical Journal, Volume 153, Number 3

Science case

- Masses and radii of planets are necessary to:

- Shed light on inflated hot-Jupiters.
- 0.2-2.1MJup. Radii larger than predicted by models.
- Internal heating.
\rightarrow Planet radius as a function of irradiation, age, magnetic fields, winds,...

$$
\Delta \mathrm{F}=\left(\frac{R_{\text {planet }}}{R_{\text {star }}}\right)^{2}
$$

$$
M_{p}=\frac{K_{\mathrm{RV}} \sqrt{1-e^{2}}}{\sin i}\left(\frac{P}{2 \pi G}\right)^{1 / 3} M_{\star}^{2 / 3}
$$

Science case

- Empirical determination (model independent) of the radii and masses of stars hosting planets.
- Fbol \rightarrow empirical
- Lbol=4 $=\mathrm{D}^{2}$ Fbol (D from TGAS parallaxes)
- $\mathrm{R}=\mathrm{sqrt}\left(\mathrm{Lbol} /\left(4 \pi \sigma\right.\right.$ eff $\left.\left.^{4}\right)\right)$
- $g=G M / R^{2}$

