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Influence of aerosols on climate
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2 Indirect effects related to their role as condensation nuclei in clouds

Influence on cloud droplet size distributions?
Repercussions on the lifecycle of clouds?
Consequences on global circulation?




Multi-physics of warm clouds
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Turbulent fluctuations are ubiquitous!



Planet formation

protostar nebula circumstellar disk
o o ' gravitational
collapse

@

migration toward
the equatorial plane

creation of
medium-size
bodies (mm to m)

Time scales?

Development of
turbulence in the gas

motion + accretion
of dust particles

gravitational
Interactions

collisions between
large bodies
(Tm to moons)




Atmospheric dispersion

7 Fluctuations are important for risk assessments

7 Models/Observations: space and/or time averages



2 Lecture 1: Richardson 2/3 scaling
— Turbulent transport and concentration fluctuations
— Relation with Lagrangian relative motion
— Spontaneous stochasticity and dissipative anomaly
— Richardson law / scaling
— Models for relative dispersion

7 Lecture 2: Anomalous scaling laws
— Intermittency and fronts
— Kraichnan model and zero modes
— Coalescences of droplets
— Breakdown of kinetic models



Length and time scales of turbulence

7 Incompressible Navier-Stokes equation Reynolds number:
1 4
u+u-Vu=——Vp+vViu+f, V-u=0 Re — -~ > 1
by 1 v
transfer between scales  dissipation T incompressibility ~ MEasSUres how weak

injection s viscous dissipation
Re = (L/n)*/3

L scale of injection

1 dissipative scale
(Kolmogorov)

“inertial range”
n << ¢ < L

Energy cascades downscale
with a = constant rate €

7 Kolmogorov 1941 scaling
Sou = |u(x +£) — u(z)| ~ (e0)1/3

Ty = Z/Qu ~ g 1/3¢2/3



Advection-diffusion equation

7 Concentration field: passive scalar

0.0 +u-V0 =rV30 + P

advection by a~

prescribed velocity field diffusion source

> Batchelor scale: (5 =n\/k/v

n = e—1/4,,3/4 Kolmogorov viscous dissipative scale
v fluid kinematic viscosity

¢ kinetic energy dissipation rate

2

ozone inair k~0.14cm*s™t! = fg~0.87n=0.8mm
Tum aerosol k~2.10"‘cm?s ! = (g~ 10"°n~1um



Taylor diffusion

00 +u-V0=rV20 0z 0) =0 (z)

2 Tracers = characteristics of the
advection equation

= 0(zx,t) = (6o(x(0)) | u),

7 Turbulent diffusion (Taylor 1921)

time

t

0o space

Mean-field description for the averaged concentration

/ [t yuiatt)

s dsds' + 2kt ~ 2(Truz, . +rK)t

= 0,(0) = =V - (uh) + kV*(0) = (keg + k) V(0)



Mean vs. meandering plumes

7 Averaged concentration is well described by eddy diffusivity
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» PDFs have tails rather far from Gaussian
7 Spatial correlations relates to relative motion of tracers



Fluctuations and relative dispersion

7 Spatial correlations of the concentration
Oz +1.1) 0. 1)) = //(90(:13(1)) 00 (22)) po(z + 7, 2.t | 20, 20, 0) dardar?

pe(x1,x2,t| 2], x3,0) = joint transition probability density

of two tracers x1(t) and x2(t)

Sawford, Ann. Rev. Fluid Mech. 2001
time

Oo (1) 0o (5) space



Spontaneous stochasticity

7 Diffusion is not the unique source of randomness
(Bernard et al., J. Stat. Phys. 1998; Eyink, Physica D 2008)

da
i u(x,t) o

u(z,t) —u(@', )| ~ |z — 2"

h=1/3 <1 = not Lipschitz = non-uniqueness

k—0, v—0

Pz(wh To,1 | L, LQ, 0) 75 5d($1 — wz)

time

Turbulent mixing is infinitely
more efficient than any
chaotic flow!

1 (t) —2(t)| = |21(0) —22(0)] ™




Dissipative anomaly

Larchevéque & Lesieur, /. Méc. 1981

7 Scalar dissipation |
Nelkin & Kerr, PoF 1981 : Thomson, JFM 1996

eg = —k((VO)?) — const when k,v — 0 with fixed Pr

%(«9(w,t)z> — //<90($?)‘90($g)>x

a1tp2 (CE‘,ZB, t|£l3‘(1), $(2)7 O) d$(1)d£l3‘(2)

Backward motion

2 Relation with the turbulent anomalous
dissipation of kinetic energy?

Burgers equation: Eyink & Drivas, J. Stat. Phys. 2015




Pair dispersion: ballistic regime
> Statistics of the two-point motion R(t) = x1(t) — 2 (t)

( - )ro conditioned on a fixed initial distance |R(0)| = r

7 Batchelor regime

Batchelor, Proc. Camb. Phil. Soc. 1952

2
Short-time expansion: R(t) = R(0) + t du - t2 dDsu + O(t°)

ou = u(x1(0),0) — u(x2(0),0), Diu = 0iu +u-Vu

<\R(t) — R(O)\2>T = t2S55(1¢) + t° (du - 6Du) + O(t*)

0

So(rg) = <\5u|2> ~ (& 7"0)2/3 (0u - Dyu) = %dt <\5u\2>

S2(70)
2€

2 Crossover time tp=

Ballistic separation for ¢ <tg~¢c /“rg



Richardson—Obukhov law

7 Behavior for times larger than ¢ Figure from Scatamacchia

Explosive separation Xl
2 3
(R@®)2), ~get
fOI’ t() SEIR<Y TL
Independent of the initial separation ¢

‘“ et al., PRL 2013
4]

Richardson, Proc. Roy. Soc. Lond. 1926
Obukhov, Izv. Akad. Nauk SSSR 1941

7 Scaling regime?

1 r
1/2 43/2
r~el/2¢3/2 suggests po(r,t|rg,0) ~ 51/2t3/2qj(81/2t3/2> for ¢ > t

Difficult to observe numerically and experimentally because of the large
temporal scale separation that is required: 7, < tp <t < 1T,

Review by Sal & Colli : :
A Rev) Fluid Mech 2000 = sub-leading terms? Mechanisms?




LaTu: MPI pseudo-spectral solver (Homann et al. 2007)
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Transition Ballistic/Explosive

— 6 O o — 277
N 10 [ + rn = 3

o 0 i : : :
N < To=dn Explosive regime + corrections

a\ O o =
% < 1o =81 (R(t) = R(0)*)r, = g2 t’[1+C (to/1)]
NO 0 1o = 127 v
= 10°H - ro = 167 -
\o vV Ty — 2477

~ > o = 3277 .
< * 1o = 48n

| 445
= rd :

\ . . . .
= # Ballistic regime + corrections
el (IR(t) — R(0)]")r, = S2(ro) 1" — 2 t"
—6 ”
10 e ! I T T B A I I T B A I N A ! Lo ol ! N A
107 10~ 10" 10" 10" 10°
t/to

Bitane et al., PRE 2013



Richardson diffusion

Assumption: velocity differences uncorrelated = separation diffuses
Transition probability p2(r,t|ro,0)

S e
/ Otp2 =V - (K(r)Vp2)

+ K41(Obukhov) K (r) ~ c1/3,4/3

7“2

' 2/3
= pQ(T‘,t‘T‘Q,O) X t9/2 e C /(e t) and <‘R(t)‘2>r0 Ng€t3

Formalized for Kraichnan model: Gaussian velocity with correlation

<Ui(wa t) Uj(w/7 tl)> = 0(t — ?f/) [2D05ij —d" (w—wl)] see Falkovich,
g g - Gawedzki, Vergassola,
d(r) = Dy r8[(d— 1+4€) 6% — Er'rd /1?] Rev. Mod. Phys. 2001

Shortcoming: velocity difference get uncorrelated on times O(t)

S 2/3
Phenomenology = correlation time 7, ~ r /

+7“2Nt3 = T, ~1 ...



Distribution of distances

2
: : C : r _C 2/3
Comparison to Richardson’s distribution  py(r, t|rg,0) 773 © Crett/(et)

2 | | | | | | | |r0=2n

10" & N broader tails due - r=3n
N\ to “trapping” at " < T'0 =4
0 \ Rast & Pinton 2011 ro=6m

107 1 . Scatamacchia et al. 2012 r=8n
N < ry=12m

10—2_ r0:16n i
r0:24n

Such a

10~} Straight line = | representation
Richardson’s distribution emphasizes the

N collapse of the
10~} \‘ __—_ core of the
N\ distribution...

t = olo deﬁ)endence on o

-8| still visible So
10 L Ll e oS
memory on the initial velocity distribution? *
0 0.5 1 1.5 2 2.5 3 3.5 4

r/(IR(E)[2) 2]/



Markov models

Assumption: acceleration differences are short correlated

dV

— = A =0/D,u - components correlated over a time O(7,))

dt

law

Central-Limit Theorem: A = VT AR, V)on(t) when t> 7,

with A'A = (6Dyu ® 6D,u | Ju) correlations of acceleration
differences conditioned on du

dR =V df Kurbanmuradov &

IV — a(R7 V. t)dt . (R, V. t) AW Sabelfeld (1995);
Sawford (2001)

General form: {

= Fokker—Planck equation for p(r,v,t|rg, vg,0)
1
atp + a’l“z' (U'IZ p) + avf,; (ai p) — 582)@ a’Uj [sz:Bjk p]
Admissibility condition: “well-mixing”
Consistency with Eulerian statistics pe(r,v) is a stationary solution
associated to an initial uniform distribution in space (Thomson 1991)



Time-correlation of acceleration

i
8 0.8 ] <179 = 87
\c_cs/ 5— 179 = 127
= A = 16
~— ()6_ il = g =— 1
\Q v o — 2477
<
= 04r - — 1T = 3217
-
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Bitane et al., JoT 2013



Limits of Markov modeling

7 Is acceleration really short-time correlated?

= OK for components but not amplitude (Mordant et al., PRL 2004)
= Stretched exponential correlations (non-mixing process)

Most models lead to an asymptotic diffusion of velocities.
Is this the mechanism explaining Richardson’s scaling R ~ ¢3/22

= s it compatible with the observed intermittent behaviors?
e.g. exit times (Boffetta et al., PRE 1999; Boffetta & Sokolov, PRL 2002)

= Are finite-Re effects solely responsible for lack of scaling?
(Scatamacchia et al., PRL 2012)

s turbulent relative motion really a Markov process?

= Relation to Lévy walks / waiting times approaches
(Shlesinger et al., PRL 1987; Faller, JFM 1996; Rast & Pinton, PRL 2011)

= Some deviations might be due to memory effects
(Ilyin et al., PRE 2010, Eyink & Benveniste, PRE 2013)



A piecewise-ballistic scenario

7 Ballistic regime is key in the convergence to the explosive behavior
7 Build a simple model that reproduces some essential mechanisms

Continuous-Time 7n ™ Tnt1 = Ty + Aty 0uUy,
Random Walk tn > tha1 =ty + Aty,

{5un and At,, depend on r,
the du,,’s are independent from each other

non-Markovian w.r.t. to the continuous time

Sy, ~ (e79)1/3

Aty ~ /Uy ~ e~ /323

K41 version: {

Intl =Ty + Xnrn = In(r,/ro) Zln (1+ Xi) x

ln(t/to)

DO | OO

} = In(r¢/rg) =

tn+1 2tn_I‘}/fn,fr‘r,ij/g = t, NZY 7"2/3 oce?>

7 Is In(|R(t)|/ro) a self-averagmg quantity?
Law of large numbers? Central-limit theorem? Large deviations?



Are distances a multiplicative process?

7 The ballistic scenario suggests p = In(|R(t)|/ro) as a relevant quantity
Richardson’s distribution: (p(t)) = (3/2)In(t/to) + (1/2)Ing — 0.46

([p(t) — (p(1))]*)'/? = 0.748

Average y .

()

Thalabard et al. JFM 2014



Further modeling

Time increment: dissipation time At,, = |§i,|* /s

Ny = 5u|¢|z/‘5ﬁn‘ WI(’;h Stat(iftiis £ 'n4+1 = T'n \/1 T QOéan T 672?/
. N naen n
B, = |5in |3/ (e7) ;K4(1%|;)e ent o toit =ty & 5_1/363/371,%/3

Change of variables: v, = In(r,/ro) — (3/2)In(t/to)  to =& /31

Bounded|

L3, (L4 2008, + B2V
n — "In — 11
Tn+1 Y 9 1 —|—/672L/36(2/3),7n

Recurrence point 7,

/ : . 1D random walk
= the 7,'s are becoming stationary D L T with positive drift
_150 100 200 300 400 SOOn 600 700 800 900 1000

This suggests for p = In(|R(t)|/r0)
(p) ~ (3/2)In(t/to) + (y)  Var|p| ~ Var [y] = const PDF (p) =~ ¥ (p — (p))



Distribution of the log-separation

Scale invariance for the distribution of p = In(|R(%)| /7o)

10" &

o—'0= 12|n
10_1 __ 7‘0 =161 _
: r0=241r
10_2:_ I’O =32 M ]
g T =487
—~| r =64
A 10 =¥ 0 -
A ;
10k -
107} piecewise-ballistic model .
, Richardson \
10_6 V4 | | | | | .
_8 -6 —4 -2 0 2 4

p — ()11 [{p”) = (p)1"

The collapsing distribution can be reproduced by properly choosing the
distribution of a,, = dul /|6@,| and B, = [6@,|2/(eTy)



Open questions

I'm+1 = Tn \/1 + zanﬁn + 6721, Uy = 5“%/‘5?2”‘
tpt1 =t + 5_1/357%,/3772/3 On = |5ﬁn‘3/(5rn)

7 Effect of the fluid velocity intermittency
How is the scaling behavior affected when K41 is not fulfilled?
= Studying extensions of the model assuming multifractal statistics

e.g. [, x beh”_lwith p(hy) o fri_D(h”)

= Is the long-time behavior still following a scaling regime?

7 Time irreversibility
Relative dispersion is faster backward in time than forward
What are the underlying mechanisms? How to quantify?
= In the model, the only symmetry-breaking quantity is «,,

How is the “Richardson constant” altered when o, — —a.¢

The model might not be enough to address this issue:
in real flows, cand pare correlated



Lecture 2: Anomalous scaling

7 Summary of lecture 1
2-point motion / 2nd-order statistics in the “explosive regime”
pretty well described by Richardson—-Obukhov scaling:

1 r
1/2 ,3/2
r o~ el/2 43/ p2(r,t|ro,0) ~ c1/243/2 \P(gl/Q t3/2>

= Possible intermittent corrections?

1 - r r - T \& r
pQ(Tvt‘T()?O) ™ c1/243/2 \Ij(gl/zt3/2’ L) -5 V= (E> m(51/2t3/2>

Origin? Not turbulent transport itself but maybe fluid velocity
anomalous scaling

2 Second lecture:

= n-point motion / higher-order statistics is intrinsically
intermittent (Kraichnan flow)

= A concrete example where this matters



0,0 +u - VO =V + ¢

Passive scalar intermittency

Structure functions of a passive scalar

Anomalous scaling

3.5
00 =0(x + r,t) — 0(x, 1)

q\ Gq
(607 ~ 1 55

Exact relation (Yaglom 1949):
<5”u[59]2>
ol =

= ——=E97T N
3

Ep — K <(V(9)2>

L 2
L 4

L 4
L 4
’Q
x®
n

Dimensional scaling (K41):
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from Watanabe & Gotoh, NJP (2004)
see also Gotoh & Watanabe, PRL (2015); Bec, Krstulovic & Homann, PRL (2014)
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Geometric structure of intermittency

Strong intermittency related to the presence of “multifractal fronts”

- o~ - - -
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Lagrangian interpretation

Lagrangian viewpoint

%X(t) — w(X (1), 1) + V2R (1)

007 +— X4,..., X,

_ 1 . : :
X = p X, single-particle motion

X,=X,—X

Time evolution of both size and shape
of the cloud of tracers

1 ~
R*==) [X,[
d q

X, = X,/R = shape



Lessons from Kraichnan model

Gaussian velocity field, 8-correlated in time, self-similar in space
(u"(z,t) W (2, 1)) = 6(t — ') [2Dd" —d” (x—x)]
d” (r) = Dy ro[(d— 1+4&) 8% — Erird Jr?] £ =4/3 +— turbulence

~o

g-point motion: pq(Xl, X t|l®, .., 2, 0)

Backward Kolmogorov (= Fokker-Planck): 0y;p, = M, p,
M, = Z d7 (X — @) + 2k0Y | Ozi 05

n<m

There exists zero modes M, f, = 0 with non-trivial scaling properties:

fo( ATy, ..., Ax,) = )\Cqu(azl, ey Tg)

Falkovich, Gawedzki, Vergassola, Rev. Mod. Phys. 2001



Lagrangian statistical conservation law

Zero modes are preserved by the dynamics

d . Bernard, Gawedzki, Kupiai Stat. Ph
¢ o ernard, Gawedzki, Kupiainen, J. Stat. Pnys.
<R "9q Xl’ Co XQ)> =0 (1997); Pumir, Shraiman, Chertkov, PRL (2000)

7N

size factor shape function

tSCq/Q

q=3

2D Inverse cascade
Celani & Vergassola, PRL (2001)

R2+R2\ 7
pS(RbRQ?t‘Tl?rQ’O) ™ ( T2 > 5?\1!(51/2753/2’ 81/2t3/2)

/ N

Intermittent correction Richardson scaling



An application: Growth by coalescences

Planet formation - W%, Raininitiation

In both cases: very dilute solid particles suspended in a turbulent gas

. @ o ®
Initially: almost mono- ® e L%
- o dictriht *® * " e How fast are large
disperse size distribution o o ® ® . &
® T~ aggregates/drops
monomers with mass = my @
°° ® created?

Time-evolution of the number n;(t) of particles with mass i x m4?



Kinetic approach

R, j

7 Smoluchowski coagulation equation imj + jm; — (1 + j) my

1 1—1 OO
ni =g > KiojjMiejng = ) Kijnin;
j=1 j=1

ki, i : collision rate between particles with masses i and j

How is this global picture influenced by turbulent fluctuations?

7 Short-time asymptotics

n1(t) =~ n1(0) and creations are dominant

. 1 > 1 2

Nog = 5/%31)17“ — ng(t) — 5%1)17“ t

' 1 342
ng = Ki2N1 Ny = ng(t) — ZIiLl K1,2 nlt

ni(t) ~ n t o The exponents do not
T depend on the kernel



Short-time growth of large particles

Numerics: incompressible Navier—Stokes
pseudo-spectral 20483 (R ~ 460) initially n1(0) = 10” particles a; =~ n/10

1 =1
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Data show

nz(t) ~ t0.73(i—2)—|—1

at short times |
instead of n;(t) oc t**

JB, Ray, Saw, Homann, PRE 2016



Kinetics not valid

Measured collision rates depend on time

0.2 |
0.15F _
S
A oo
<: '0000000. 0 o0
;IQ/ 0.1_ ...............H_._.f.__
o
N
ﬁ 000000000000 00 00 00 o000 0 0
005F ©P 22 0920 09 20 00009
O : ' | l
0.5 | 2 4 Q

t/TL
Smoluchowski kinetics is not valid at short times / large sizes



Time evolution of the size distribution

2 Back to basics:

1—1 o0
1
Population balance 7;(?) = ) E Qi—ji(t) — E Q;.;(t)
j=1 j=1

Q;.;(t)dt average number of coalescences () + ()in [t ¢ + di]

7 Expression for the collision rate: n;(0) =0

ni(s)ds n;(t)
t . @) @ )\i,j(t_S‘S) >8@
Qus(1)= [ Mgt = slo)ny(Diu(s)ds o0 g
0 T % ¢
neglects possible correlations S s+ ds t  time

» X ;(7|s)=rate at which a particle (4), created at time s, coalesce
with a particle () at time s+ 7



Inter-collision times

7 The collisions define a non-homogeneous Poisson process with rate:
Aij(T]s) = Aij(T)

7 Time to next collision: exponential distribution with non-constant rate

p;i ;(T) = Nij(1) e Jo Ais(T)dT

2 Smoluchowski kinetics:

Successive coalescences are uncorrelated events
Memoryless process: p; ;(7) exponential = A; ;(7) = const = k;_;

t coagulation kernels
Qi,;(t) = /O Aiyj(t = s)n;(t) ni(s) ds = k4, ni(t) n;(t)

1 1—1 o0
ni =5 D Kisjj iy — Y KMy



Long-range correlated collisions

Probability distribution of particles mean-free times (inter-collision times)

= 0 ope

< 1071 \02
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Time 7 to next collision (in units of )

10

1

p;i i (T) = Nij() e Jo Aea(r)dr

with )\i,j o 7027

Weibull
distribution with
shape parameter

k~0.73



Contribution from turbulent transport

7 Dilute settings: coalescing particles come from far apart
Two contributions to the coalescence rate:

>\7L,j (7’) — )\tu.rb (7‘) X )\micrO(T)

(2¥] (3¥]

rate at which particles approach probability they coalesce
to a distance < 7 once they are at r S n

For |x1 —x2| > 7 (inertial range)

Coalescing particles are almost tracers

d
aa’:(t) = u(xz(t),t) |u(®1) —u(x2)| ~ X1 — X2

1 — x5| ~ t3/? (Richardson law)

1/3

For |z, — x2| < ndetails of the microphysics matters
finite size, inertia, hydrodynamical interactions, repulsive forces...



Dimensional estimates

Naive phenomenology:

© Two contributions to the turbulent rate:

Density of particles (3 at distance
n(r) =r*/L"

@s, Probability that a particle @ initially at distance 7
O approaches at a distance 7) from the newly

created )+2):

(m* 1 7
p(n,7|r,0) ~ (;) 73/2\11 (7-3/2)

f f
solid angle Richardson scaling

Approaching rate:

2
. N u r dr
A‘Z?’jb(T) X /unp(n,ﬂfr, 0) n(r)dr ~ L3n / \j (73/2) Y i const

Wrong! We are actually dealing with the 3-point motion



Actual turbulent rates

Collision rate: )\Efb(f) ~ /un ps(n,7|r, R,0)n(r)drdR @r/,@
Again two contributions: O o
n(r) =r?/L"

@0@
(unch}e;nged) . P2 sy Geml ] . P . n{
p3(R,n,TIn,r,0) = (;) (f) +3 +3/27 23/2

(enhanced for small 7

1 r 1 R r r\ 2D
turb
Aig (1) o 73 / (f) ¢ (73/2’ 73/2> dr dft o (E> T TL

Consequences on population dynamics:

t
~ Qi) x / = 536D (1) na(s) ds
0

ni(t) #l1=5(Ca—1)](i-2)+1 (3~ 0.82 = ny(t) oc 073 (=241

Short-time growth is much faster than
the kinetic prediction oc t*~"!



Conclusions

7 Kinetic approach for coagulation fails at short times

+ Number of large particles grows as  n;(t) oc t°-™
and not ¢

. . . . T L TL 4
+“Rapid” successive collisions are correlated (mean- f g\
field breaks), when they involve inertial-range

physics. ‘
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This is a purely turbulent-mixing effect.
+ New kinetic models (with e.g. multiple collisions) ?

7 Turbulent transport intermittency gives here the leading behavior



