The origin of short-lived radionuclides

Matthieu Gounelle

Université Paris 11-CSNSM Orsay, France

&

Department of Mineralogy The Natural History Museum London, UK

Why are extinct short-lived radionuclides important?

OFact

• Extinct short-lived radionuclides were present in the protoplanetary disk

Questions

- Constraints on the astrophysical environment of the protoSun
- Constraints on the irradiation conditions in the protoplanetary disk
- Possibility to build a chronology for the radionuclides whose initial distribution is well known
- <u>Is our Solar System typical ?</u>

Extinct short-lived

radioactivities within meteorites

La décroissance radioactive: rappels

- Découverte par Becquerel en 1896
- Radioactivité α : ${}^{A}{}_{Z}P \Diamond {}^{A-4}{}_{Z-2}F + {}^{4}He$
- Radioactivité β : $A_{Z}P \Diamond A_{Z-1}F + e^{-} + v_{e}^{-}$ (n \Diamond p+e⁻+v)
- Radioactivité β^+ : $A_{Z}P \Diamond A_{Z+1}F + e^+ + v_e$ (n $\Diamond p + e^- + v$)

F (t) = F(0) x exp[$-\lambda$. t] ou F (t) = F(0) x (1/2)^{- t/T}

- λ Décroissance radioactive caracterisée par **la constante de** décroissance radioactive (λ) ou la période (T_{1/2})
- λ Exemples:
 - λ ¹⁴C \langle ¹⁴N + e⁻+ ν_{e} (β^{-})
 - λ Utilisé pour les datations en archéologie (T_{1/2} = 5730 ans)

•
$${}^{26}AI \diamond {}^{26}Mg^{*} + e^{+} + v_{e}^{-}(\beta^{+})(T_{1/2} = 0.73 \text{ Ma})$$

 λ Mg* se désexcite en émettant un rayon γ (1.809 MeV)

Extinct short-lived radioactivities (ESRs)

 Because their half-life (52 days - 103 Ma) is short compared to the age of the Solar System (~4.6 Ma), they are now decayed

• What is detected in meteorite are the daughter isotopes

- Evidence for extinct short-lived radionuclides has been found in
 - Primitive objects (CAIs, chondrules...)
 - Presumed to be young
 - Formed in the accretion disk
 - Differentiated objects (achondrites)
 - Older than CAIs and chondrules
 - Made of the agglomeration of primitive objects ?

Differentiated meteorite: Esquel (pallasite)

Fe-Ni

1 cm

Mélilite Anorthite Spinel Pyroxène

Isochrone révélant la présence passée d'²⁶Al (Lee et al. 1976) au moment de la cristallisation de l'inclusion réfractaire

Radioactive Isotope (R)	T (Ma)	Daughter Isotope	Stable Isotope (S)	Objects
⁷ Be	52 days	⁷ Li	⁹ Be	CAIs
⁴¹ Ca	0.1	⁴¹ K	⁴⁰ Ca	CAIs
²⁶ AI	0.74	²⁶ Mg	²⁷ AI	CAIS, CHS, DIFF
¹⁰ Be	1.5	¹⁰ B	⁹ Be	CAIs
⁶⁰ Fe	1.5	⁶⁰ Ni	⁵⁶ Fe	CAIs, DIFF
⁵³ Mn	3.7	⁵³ Cr	⁵⁵ Mn	CAIS, CHS, DIFF
¹⁰⁷ Pd	6.5	¹⁰⁷ Ag	¹⁰⁸ Pd	DIFF
¹⁸² Hf	9	¹⁸² W	¹⁸⁰ Hf	CHs, DIFF
¹²⁹ I	16	¹²⁹ Xe	¹²⁷ I	CAIS, CHS, DIFF
⁹² Nb	36	⁹² Zr	⁹³ Nb	CHs, DIFF
²⁴⁴ Pu	81	Fission products	²³⁸ U	CAIs, DIFF
¹⁴⁶ Sm	103	¹⁴² Nd	¹⁴⁴ Sm	DIFF

• The origin of the elements in the Galaxy

Évolution chimique de la galaxie

Prantzos 2000

Nébuleuse du sablier (MyCn18)

L'Évolution chimique de la Galaxie WOOSLEY & WEAVER

TABLE 19

THE ORIGIN OF THE LIGHT AND INTERMEDIATE-MASS ELEMENTS

Species	Origin	Species	Origin	Species	. Origin
¹ H	BB	29Si	Ne,xNe	⁵⁰ Ti	nse-Ia-MCh
2H	BB	³⁰ Si	Ne,xNe	⁵⁰ V	Ne,xNe,xO
³ He	BB.L*	³¹ P	Ne,xNe	51V	α ,Ia-det,xSi,xO, ν
⁴ He	BB,L*,H	³² S	x0,0	50Cr	xSi,xO, a, la-det
⁶ Li	CR	33S	xO,xNe	⁵² Cr	xSi, a, Ia-det
LI	BB.v.L*,CR	³⁴ S	x0,0	⁵³ Cr	xO,xSi
⁹ Be	CR	³⁶ S	Ne,xNe	⁵⁴ Cr	nse-Ia-MCh
1012	CP	35Cl	xO,xNe,v	55 Mr	5 , x ⁶ i,
11B	ν	37Cl	xO,xNe	Ae	A A
12C	L*.He	³⁶ Ar	x0,0	⁵⁶ Fe	xSi,Ia
13C	L*.H	³⁸ Ar	x0,0	57 Te	SIL
14N	L*.H	40 Ar	C,Ne		He(s),nse-I
15 M	Nous	³⁹ K	x0,0.v	51 Co	$He(s), \alpha, a, \nu$
160	He	40 K	Ċ,Ne	58Ni	α,Ia
170	H	41 K	xO	⁶⁰ Ni	a, He(s)
180	He	40Ca	x0,0	⁶¹ Ni	α, Ia-det, He(s)
19F	v.He	⁴² Ca	xO	62 Ni	$\alpha, He(s)$
20 Ne	C	⁴³ Ca	C,Ne	64 Ni	He(s)
21Ne	C.He(s)	⁴⁴ Ca	α,Ia-det	⁶³ Cu	He(s), α
22Ne	He	⁴⁶ Ca	C.Ne	65Cu	He(s)
23 Na	C.He(s),H	⁴⁸ Ca	nse-Ia-MCh	⁶⁴ Zn	$He(s), \alpha$
24 Mg	C.Ne	45Sc	a,C,Ne,v	⁶⁶ Zn	He(s), a, nse-Ia-MCh
25 Mg	C.Ne.He(s)	46Ti	xO, Ia-det	⁶⁷ Zn	He(s)
26 Mg	C.Ne.He(s)	47Ti	xO, xSi, Ia-det	⁶⁸ Zn	He(s)
27 A1	C.Ne	48Ti	xSi,Ia-det		NELY LEASTING
28Si	x0.0	⁴⁹ Ti	xSi,He(s)		

²⁶Al and ⁶⁰Fe are gamma ray emitters

- ^{26}Al $T_{1/2} = 0.73 \text{ Ma}; \gamma = 1.809 \text{ MeV}$
- ⁶⁰Fe $T_{1/2} = 1.5 \text{ Ma}; \gamma = 1.332 \text{ MeV}$
- ⁶⁰Fe not seen yet by a gamma-ray satellite
- M_{26AI} = 3.1 ± 0.9 Mo (COMPTEL)
- $M_{26AI} = [2.6 \pm 0.4 4.5 \pm 0.7] \text{ Mo} (GRIS)$
- Most important sources for ²⁶Al are massive stars (Knodleseder 1999)
 SNII
 - Wolf-Rayet stars
- Minor contribution of AGB stars (Busso et al. 1999) and novae

Distribution de l'²⁶Al dans la Galaxie

2.2 Masses solaires d'²⁶Al dans le milieu interstellaire essentiellement produit par des supernovae

Origin of the extinct short-lived radionuclides

- Short-lived radionuclies are indeed produced within stars belonging to the Galaxy
- <u>The question</u>: is the abundance of short-lived radionuclides observed in the early Solar System compatible with expectations of Galactic evolution?

• Two important exceptions: ⁷Be, ¹⁰Be

- ⁷Be has too short a half-life (compared to the timescale of star formation of 1 Ma) to have been introduced alive within the Solar System
- ¹⁰Be as all Be isotopes is destroyed in stars, and is formed via spallation reactions

• Two steps

- Identify the initial abundance in early Solar System (CAIs?)
- Compare this initial abundance to the Galactic evolution models

Early Solar System abundances of ESRs

• ${}^{26}AI/{}^{27}AI = 5 \times 10^{-5}$

Lee, Papanastassiou and Wasserburg (1976)
Decades of measurements leading to a canonical value

\circ ⁴¹Ca/⁴⁰Ca = 1.5 x 10⁻⁸

Srinivasan, Ulyanov and Goswami (1994)
 Found in CAIs from CV3 and CM2 chondrites

\circ ⁵³Mn/⁵⁵Mn = 4.4 × 10⁻⁵

O Birck & Allègre (1984)

○ Confirmed by Nyquist et al (⁵³Mn/⁵⁵Mn = 3 ± 0.5 x 10⁻⁵) in 1999

 \bigcirc Confirmed by Papanastassiou et al. (³³Mn/³³Mn = 1-10 x 10⁻³) in 2002

NEW

○ Found only in CV3 chondrites

• Variable initial abundance ?

Early Solar System abundances of ESRs 2

$O^{10}Be/^{9}Be = 0.87 \times 10^{-3}$

McKeegan, Chausidon & Robert (2000)
Now found in CAIs from CV3 and CM2 chondrites
Average value from 17 CAIs

VERY NEW

\circ ³⁶Cl/³⁵Cl = (5-11) × 10⁻⁶

• Lin et al. (2004 - LPSC)

• Alteration phases in Ningqiang (CV-an) CAIs

• True initial Solar System ratio unknown yet

Discovery of ⁷Be (Chaussidon et al. 2004)

$O^7Be/^9Be = 6.1 \times 10^{-3}$

Chausidon, Robert and McKeegan (2004)
Allende CAI USNM 3529-41

NEW

OPreviously $^{7}Be/^{9}Be = [0-220\pm130] \times 10^{-3}$

Chaussidon, Robert & McKeegan (2002)Allende CAI USNM 3515

The ⁶⁰Fe/⁵⁶Fe ratio of ordinary chondrites

• $(1.08 \pm 0.23) \times 10^{-7}$

🛠 Krymka LL3.1

☆ Tachibana & Huss 2003

(7.5 ± 2.6) × 10⁻⁷
 ☆ Semarkona LL3.0
 ☆ Mostefaoui et al. 2003

The previous ⁶⁰Fe/⁵⁶Fe data

CAIs

☆ < 1.6 × 10⁻⁶ (Birck & Lugmair 1988)
☆ < 1.7 × 10⁻⁶ (Choi et al 1999)

Chondrules

☆ < 1.4 × 10⁻⁷ (Kita et al 2000)

Planetary differentiates (eucrites) \$\forall (3.9 ± 0.6) × 10⁻⁹ (Chervony Kut, Shokolyukov & Lugmair 1993) \$\forall (4.3 ± 1.5) × 10⁻¹⁰ (Juvinas, Shokolyukov & Lugmair 1993)

- ☆ The initial ⁶⁰Fe/⁵⁶Fe was poorly constrained
- Estimates were marginally compatible with continuous galactic nucleosynthesis
- * New data are incompatible with continuous galactic nucleosynthesis

A model of Galactic evolution for ESRs

The abundance of ESRs in the ISM is a balance between stellar production and decay

For example, in Clayton chemical model of the Galaxy, the

Galactic evolution for ESRs

☆Some ESRs are underabundant in the Solar System compared to the continuous galactic production (¹⁰⁷Pd,¹²⁹I)

☆Some ESRs have an early Solar System abundance compatible with the continuous galactic production (¹⁸²Hf)

3 Some ESRs are overabundant in the Solar System compared to the continuous galactic production (²⁶Al, ⁴¹Ca)

☆Some cases are unclear (⁵³Mn)

Two observations

☆Granularity of nucleosynthesis: the stellar production sites of ¹⁰⁷Pd and ¹²⁹I are rarer and different than the stellar production sites of ¹⁸²Hf (2 r-processes ? Wasserburg et al. 1996)

Radioactive Isotope (R)	Τ (Μα)	Daughter Isotope	Stable Isotope (S)	Initial Abundance (R/S)	Continuous Galactic Production
⁷ Be	52 days	⁷ Li	⁹ Be	6×10^{-3}	no
⁴¹ Ca	0.1	⁴¹ K	⁴⁰ Ca	1.5 × 10 ⁻⁸	no
²⁶ AI	0.74	²⁶ Mg	²⁷ AI	5 × 10 ⁻⁵	no
¹⁰ Be	1.5	¹⁰ B	⁹ Be	4-14 × 10 ⁻³	no
⁶⁰ Fe	1.5	⁶⁰ Ni	⁵⁶ Fe	0.1-1.6 × 10 ⁻⁶	no
⁵³ Mn	3.7	⁵³ Cr	⁵⁵ Mn	1.2 × 10 ⁻⁴	?
¹⁰⁷ Pd	6.5	¹⁰⁷ Ag	¹⁰⁸ Pd	> 4.5 × 10 ⁻⁵	yes
¹⁸² Hf	9	¹⁸² W	¹⁸⁰ Hf	> 1.0 × 10 ⁻⁴	yes
¹²⁹ I	16	¹²⁹ Xe	¹²⁷ I	1.0 × 10 ⁻⁴	yes
⁹² Nb	36	⁹² Zr	⁹³ Nb	10 ⁻⁵ - 10 ⁻³	yes
²⁴⁴ Pu	81	Fission products	²³⁸ U	$4-7 \times 10^{-3}$	yes
¹⁴⁶ Sm	103	¹⁴² Nd	¹⁴⁴ Sm	4-15 × 10 ⁻³	yes

Galactic production from Meyer and Clayton (2000) and Busso, Gallino and Wasserburg (1999)

The last minute origin of some ESRs

- ⁷Be, ¹⁰Be, ²⁶Al, ⁴¹Ca, ⁶⁰Fe and possibly ⁵³Mn are overabundant compared to expected galactic nucleosynthesis
- They have a specific origin
- This is a last minute origin (to counteract decay)
 External stellar origin (all but Be isotopes)
 In situ irradiation origin (all but ⁶⁰Fe)
 GCR trapping (¹⁰Be only)
- Is it possible to build a coherent astrophysical and cosmochemical scenario to account for ALL ESRs ?

• The origin of ESRs

additional constraints

Coupling of short-lived radionuclides 1: ²⁶Al and ⁴¹Ca

Sahjipal et al. 1998

Decoupling of short-lived radionuclides 2: ²⁶Al and ¹⁰Be

- ²⁶Al and ⁴¹Ca coupled
- ²⁶Al and ¹⁰Be decoupled

From these observations, Marhas et al. suggest that:

¹⁰Be is produced via irradiation
²⁶Al, ⁴¹Ca have a stellar source

Mahras et al. 2002

(De)coupling of short-lived radionuclides 3: ²⁶Al and ¹⁰Be

- BUT the hibonites are not "typical" CAIs: linked to FUN inclusions (⁴⁸Ca, ⁵⁰Ti anomalies) ?
- Type A and B CAIs have both ²⁶Al & ¹⁰Be (within the disturbance of the Al-Mg system)

McKeegan et al. 2001 McPherson & Huss 2001

The FUN CAIs

• CAIs having large isotopic anomalies

- F: Fractionated isotopic anomalies
 - Oxygen
 - Silicium
- UN: Unidentified Nuclear isotopic anomalies (mass independant)
 - ⁵⁰Ti
 - ⁴⁸Ca
 - ⁵⁴Cr
 - Ni, Ba, Fe...
- Most FUN CAIs did not contain ²⁶Al
- Petrographically, FUN inclusions are similar to normal inclusions (but HAL...)

The external stellar models

External stellar origin for ESRs, possible sources

- Late-type stars because you need to inject the nucleosynthesis products in the Interstellar Medium (ISM)
 - Wolf-Rayet stars
 - AGB stars
 - Type II Supernovae (SNII)
- For SNII, the injection of ESRs is closely linked to the trigger of the gravitational collapse (Cameron & Truran 1977)

• Stars cannot produce ⁷Be and ¹⁰Be

Évolution des étoiles en fonction de la masse

Prantzos 2001

ESR enrichment of the Solar System by a nearby star

$(\mathsf{R/S})_{\mathsf{ESS}} = \alpha_{\mathsf{w}} \times (\mathsf{R/S})_{\mathsf{w}} \times f_0 \times \exp(-\Delta_1/\tau)$

• Parameters of the model

- \Rightarrow a_w = enrichment factor (relative to ISM) of the stable isotope in the wind
- \Rightarrow (R/S)_w = abundance ratio (radioactive to stable) in the wind
- \Rightarrow f₀ = mixing ratio between the wind and the progenitor ISM
- A1 = time between the nucleosynthesis in the star and the cristallisation
- $rac{1}{\tau}$ = mean life of the ESR

• Adopted parameters

- ☆ a_w depends on nucleosynthetic models [very complicated]
- * (R/S)_w depends on nucleosynthetic models [very complicated]
- $rac{1}{2}$ f₀ = free parameter (within certain limits)
- A1 = free parameter (within certain limits ?)

Wolf-Rayet stars Arnould et al. 1997

- Late stage for very massive stars
- Huge mass loss through winds of ~10⁻⁵ Mo/yr
 A lot of nucleosynthesis products injected on the interstellar medium
- Simple stars compared to Supernovae and AGB stars
 Nucleosynthesis calculations better constrained
- O Range of parameters explored by Arnould et al. (1997)
 ☆ 25 < M <120 Mo
 ☆ 0.001 < Z < 0.04

• Can synthetise the right abundances of ²⁶Al and ⁴¹Ca

O Cannot synthetise the right abundances of ⁵³Mn, ⁶⁰Fe

Radioactivités éteintes dans les supernovae Wasserburg et al. (1998)

- Basé sur les taux de production des SNII de masse comprise entre 10 et 40 masses solaires (Timmes 1995)
- ²⁶Al et ⁶⁰Fe produits dans la même zone (O/Ne) de la SN
- ²⁶Al/⁶⁰Fe = [0.6-23], valeur moyenne ²⁶Al/⁶⁰Fe = 8.5
- Ce rapport dépend de la masse du progéniteur, peu de la métallicité (Z/Z₀)
- Variations faibles autour de la valeur moyenne (sauf pour M= 13 Mo)

Structure de l'étoile progénitrice d'une Supernova

Wasserburg, Gallino & Busso (1998)

On attend, pour ${}^{26}A|/{}^{27}A| = 5 \times 10^{-5}$, une valeur moyenne ${}^{60}Fe/{}^{56}Fe = 1.4 \times 10^{-6}$

☆Compatible with the upper limits for CAIs

☆Overproduction of ⁴¹Ca & ⁵³Mn
☆⁴¹Ca/⁴⁰Ca ~ 10⁻⁶
☆ ⁵³Mn/⁵⁵Mn ~ 10⁻³

Updated supernova model

Busso, Gallino, Wasserburg (2003)

		? ₁ = 1.09 Myr		
	mean life	15 Mo	25Mo	
		fo=3 x 10 ⁻⁴	fo=1.3 x 10 ⁻⁴	
26AI	1.05	5.00E-05	5.00E-05	
41Ca	0.15	1.50E-08	1.50E-08	
53Mn	5.3	3.50E-03	3.00E-03	
60Fe	2.2	4.70E-05	9.00E-06	

- Mo = Sun Mass determines the isotopic abundance (R/S) and the elemental abundance $\alpha_{\rm w}$
- New nucleosynthetic data of Rauscher et al. 2000
 - Up-to-date set of reaction rates
 - Upgrades in the evolutionary code
- $\Delta 1$ = free decay interval calculated by Busso et al. (2003) to have ²⁶Al and ⁴¹Ca at the meteoritic level
- Overproduction of ⁵³Mn and ⁶⁰Fe

AGB stars

Busso, Gallino & Wasserburg 2003

- Extreme AGB star models can reproduce the abundance of ²⁶Al, ⁴¹Ca, ⁶⁰Fe
 - M = 1.5Mo,
 - Metallicity = 1/6 solar

				1 1	40 m			
	$M = 1.5 M_{\odot}, Z = 0.02$							
	$f_0 = 5.1 \times 10^{-3}, \Delta_1 = 0.76 \; \mathrm{Myr}$							
	Rad.	Ref.	α_w	$(N_{ m R}/N_{ m S}(w)$	$(N_{ m R}/N_{ m S})_{\Delta_1}$			
	²⁶ A1	²⁷ Al	1.02	$2.0 imes 10^{-2}$	5.0×10^{-5}			
	⁴¹ Ca	⁴⁰ Ca	0.99	$4.5 imes 10^{-4}$	1.4×10^{-8}			
	⁶⁰ Fe	56 Fe	0.99	1.6×10^{-5}	5.7×10^{-8}			
	¹⁰⁷ Pd	$^{108}\mathrm{Pd}$	1.02	$9.9 imes 10^{-3}$	4.6×10^{-5}			

FUN-like inclusions in external stellar models

• Remember: they did contain ¹⁰Be but no ²⁶Al

 The formed before ²⁶Al and other stellar radionuclides entered the molecular cloud core

 This explanation is compatible with the isotopic anomalies observed in FUN CAIs (mixing less efficient)

Stellar models: Summary

- Wolf-Rayet stars cannot reproduce the relative abundance of ESRs
- Latest supernovae models fail to reproduce the relative abundance of ESRs
- Extreme AGB star models can reproduce the abundance of ²⁶Al, ⁴¹Ca, ⁶⁰Fe
 - ⁵³Mn could result from the continuous Galactic production
 - Impossible to account for the ⁷Be presence in early Solar System
 - Impossible to account for the ¹⁰Be presence in early Solar System
- Is an **external source** for ¹⁰Be possible?

• A possible GCR origin for ¹⁰Be

A possible GCR origin for ¹⁰Be Desch, Connolly and Srinivasan (ApJ 2004 to appear)

• Trapping of 1-100 MeV ¹⁰Be GCR in the protostellar core

• Claim they can make the meteoritic value, modelindependently

GCR ¹⁰Be Prestellar core

• All the ¹⁰Be GCR below a certain energy (E_c) will be stopped in the prestellar core

¹⁰Be trapping in the prestellar core

Ignoring the magnetic focusing and mirroring which does not change the final result by more than 10 % (Desch et al. 2004).

$$F_{trap} = 4\pi \int_{0}^{E_{c}(\Sigma(t))} F_{toge}(E) dE$$
(1)

 F_{trap} is the number of ¹⁰Be nuclei stopped per unit of time and surface (s⁻¹ cm⁻²) F_{10Be} is the number flux of ¹⁰Be nuclei in the GCR

All the nuclei between E=0 MeV and E=Ec (MeV) are trapped

Desch et al. 2004

¹⁰Be GCR flux

2 The GCR flux

 $F_{10Be}(E)$ is the number flux of 10Be GCR, it reads (equation 12 of DCS):

$$F_{10Be}(E) = \psi_{10Be} \times \psi_H \times 4.6 \times 10^{-9} \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1} (\text{MeV/A})^{-1}$$
 (2)

where ψ_{10Be} and ψ_{H} quantify the increase of $^{10}\mathrm{Be}$ and proton GCR respectively 4.5 Ga.

The ¹⁰Be GCR flux 4.5 Ga ago is estimated from contemporary observations of the GCR flux

Desch et al. 2004

Trapping ¹⁰Be nuclei: the Bethe formula

$$E_c = E_{10} \left(\frac{\Sigma(t)}{\Sigma(E_{10})} \right)^{\frac{1}{q+1}}$$

The maximum trapping energy (Ec) depends on the surface density of the cloud $\Sigma(t)$ (in g.cm⁻²)

Desch et al. 2004 - MODIFIED

The final F_{trap} expression

Combining equations (1), (2) and (4), one gets:

$$F_{trap} = 4\pi \times \psi_{10Be} \times \psi_H \times 4.6 \times 10^{-9} \times E_{10} \times \left(\frac{\Sigma(t)}{\Sigma(E_{10})}\right)^{\frac{1}{q+1}}$$
(5)

Desch et al. 2004 - MODIFIED

The ¹⁰Be/⁹Be ratio (R) in the core

$$\frac{dR}{dt} = F_{trap} \left(\frac{x_{9Be}\Sigma(t)}{1.4m_H}\right)^{-1} - \frac{R}{\tau}$$
(6)

$$R(t) = R(0)e^{-\frac{1}{\tau}} + e^{-\frac{1}{\tau}} \int_0^t f(t')e^{+\frac{t'}{\tau}}dt'$$
(7)

$$\begin{split} f(t) &= 4\pi \times \psi_{10Be} \times \psi_H \times 4.6 \times 10^{-9} \times E_{10} \times \left(\frac{\Sigma(t)}{\Sigma(E_{10})}\right)^{\frac{1}{q+1}} \left(\frac{x_{9Be} \Sigma(t)}{1.4m_H}\right)^{-1} \ (8) \\ & \text{The parameters given by DCS are: } E_{10} = 10 MeV, \Sigma(E_{10}) = 0.003 \text{ g.cm}^2 \text{s}^{-1}, \\ & \psi_H = 2, \psi_{10Be} = 0.83, \text{ R}(0) = 1 \times 10^{-4}. \end{split}$$

I adopt $q \sim 0.8$ from Clayton & Jin (1995).

 τ is the mean life of ^{10}Be , m_{H} the mass of the hydrogen atom, and x_{9Be} the abundance fraction of ^{9}Be

Desch et al. 2004 - MODIFIED

Toy "Surface density" with a 1 Ma timescale -See P. Andre's talk More realistic (¹⁰Be/⁹Be)_i = 1 × 10⁻⁴ -McKeegan et al (2000)

A possible GCR origin for ¹⁰Be Desch et al. 2004

• The model depends on

• The increase of the GCR flux 4.5 Ga ago * Factor 2 increase compared to now

Why are extinct short-lived radionuclides important?

OFact

• Extinct short-lived radionuclides were present in the protoplanetary disk

Questions

- Constraints on the astrophysical environment of the protoSun
- Constraints on the irradiation conditions in the protoplanetary disk
- Possibility to build a chronology for the radionuclides whose initial distribution is well known
- <u>Is our Solar System typical ?</u>

ESRs in stellar models - Summary again

¹⁰Be trapped from the GCR ? - No solution for ⁷Be

Irradiation models:

the basics

Irradiation model: the basics O

Short-lived radionuclides are produced via nuclear reactions

Target (T) + Cosmic Ray (CR) \rightarrow Radionuclide (R)

e.g. ${}^{16}O + p \rightarrow {}^{10}Be$

 Because projectiles are p, ³He, ⁴He, irradiation fail to produce ⁶⁰Fe, a neutron-rich isotope by orders of magnitude (e.g. Lee et al. 1998)

 Irradiation has long been known to be the source of Be isotopes

Irradiation model: the basic equation

For a nuclear reaction $Target(T) + Cosmic Ray(CR) \rightarrow Radionuclide (R)$

$$\frac{N_R}{N_S} = F_0 \Delta t \sum_i y^i CR \sum_j \frac{x^T_j}{x_S} \int \sigma(E) N(E) dE$$

• N_R is the number of radionuclides (e.g. ¹⁰Be)

- N_s is the number of stable isotopes (e.g. ⁹Be)
- F_0 is the proton flux (in cm⁻².s⁻¹)
- y_{CR}^{i} is the abundance relative to proton of the CR i (⁴He, ³He)
- x_i is the abundance of the target T
- x_s^T is the abundance of the reference stable isotope (e.g. ⁹Be)
- \circ σ is the nuclear cross section
- N(E)dE is the differential number of accelerated protons
- Δt is the irradiation time

Irradiation model: the astrophysical context

 Location of the irradiated matter relatively to the source of Cosmic Rays (the SUN) and to nebular gas

- Asteroidal distances (~3 AU) shielding ?
- Edge of the accretion disk (~0.06 AU)

• Physical state of the irradiated matter

- Gas phase shielding ?
- Solid phase (n (r) = $r^{-\alpha}$)

• Chemistry of the target

- CI (cosmic) composition
- CAI composition
- Core-mantle structure

The recent irradiation models

• Clayton & Jin (1995)

- In the molecular cloud
- Undeproduces ²⁶Al

Goswami et al. (1997, 2001), Marhas, Goswami & Davis (2002)

- At asteroidal distances (2-4 AU) -ignoring the nebular gas
- Solid targets
- CI chemistry
- Proton and ⁴He reactions only
- Undeproduces ²⁶Al, ⁴¹Ca, ⁵³Mn, produces ¹⁰Be at the meteoritic level

The recent irradiation models

• Lee, Shu et al. (1998)

- Close to the Sun (0.06 AU) in the context of the x-wind theory
- In a gas-free region
- Solid targets
- CI chemistry
- Takes into account the ³He reactions (in addition to proton and alphas)
- Produces ²⁶Al and ⁵³Mn at the right level but overproduces ⁴¹Ca

• Gounelle, Shu et al. (2001) and Shu, Shang et al. (2001)

- Similar to Lee et al. (1998)
- Introduces self-shielding CI chemistry with a core-mantle structure
- Produces ¹⁰Be, ²⁶Al, ⁴¹Ca, ⁵³Mn at the right level (within a factor of 2)

The recent irradiation models

Irradiation model in the context of the x-wind theory MG F. Shu S.Shang A.E. Glassgold E.Rehm T. Lee

Irradiation model in the context of the x-wind theory: parameters

Irradiation close to the Sun (~0.06 AU) of a solid target

• Similar to Lee et al. (1998)

ProtoCAIs have a core-mantle structure

• The total population has a chondritic composition

- Mantle (R_m) size is fixed (Shu et al. 2001)
- Core size (R_c) varies between 50 μ m and 2.5 cm

•
$$N(R_c)dR_c = R_c^{-2.5} dR_c$$

\bigcirc Irradiation time (Δ t) proportional to protoCAIs' size (R)

$$\Delta t = 2 \times R \times \frac{t_{10}}{L} \qquad \begin{array}{c} t_{10} = 10 \text{ y} \\ t_{10} = 1 \text{ cm} \end{array}$$

4 Cross sections σ (E)

- Experimental measurements
- Numerical simulations

2-The core-mantle chemistry

○ Justification provided by Shu et al. (2001)

Condensation, evaporation and agglomeration in the reconnection ring

3-Timescales in steady-state

O <u>Step 1</u>

Formation and irradiation of protoCAIs

☆ Timescale ~ 2-20 yr

Periodic volatilization due to large flares (Lx = 10³⁴ erg.s⁻¹, e.g. Grosso et al. 1997) assures homogeneisation of the irradiation products (short-lived radionuclides)

☆ Timescale << 2 yr

O <u>Step 2</u>

- Fluctuation of the x-point
- Transport of protoCAIs in the wind to asteroidal distances
- Volatilisation of the mantle exposed to sunlight

3- Year variability of jets structure

4-The measure of $\sigma^{24}Mg(^{3}He,p)^{26}Al$

Tandem Orsay -irradiation

Tandetron Orsay -²⁶Al counting

²⁴Mg(³He,p)²⁶Al : Comparison of code (Rehm) & experiment (Fitoussi, Duprat et al. 2004)

Irradiation model: the cosmic-ray parameters

Scaling of protostars to the contemporary sun

• Cosmic Rays accelerated in the irradiation region

• For the Sun, L_p (E>10 MeV) ~ 0.09 L_X^{hard} • For protostars, $L_x^{hard} = 5 \times 10^{30} \text{ erg.s}^{-1}$ • Scaling protostars to the Sun, L_p (E>10 MeV) ~ 4.5 $\times 10^{29} \text{ erg.s}^{-1}$ • $F_p \sim L_p/A \sim 2 \times 10^{10} \text{ cm}^{-2}.\text{s}^{-1}$

• Proton energy spectra : N(E) = E^{-p}

• p varies between 2 and 5

• CR abundances

- ⁴He/alpha = 0.1
- ³He/p varies between 0 and 1

The proton energy spectrum

• Proton energy spectra : N(E) = E^{-p}

Leya et al. 2003

Irradiation model: the cosmic-ray parameters 2

In the contemporary Sun, there are <u>2 types of flares</u>

Impulsive flares ³He-rich (³He/p up to 3) Steep energy spectra (p ~ 4) Electron-rich Hard X-rays Frequent

Oradual flares

³He-poor Shallower energy spectra (p ~ 3) Electron-poor Soft X-rays Rare

New results in the context of

the x-wind model

Irradiation model: the novelties

Use of a new EXPERIMENTALLY measured ²⁴Mg(³He,p)²⁶Al cross section

- TANDEM and AMS at Orsay
- Duprat, Tatischeff et al. (2004)
- Other measurements ?

Calculations made for ⁷Be

- Taking into account its short half-life (53 days) compared to the irradiation time (20 yr for a cm-sized protoCAI)
- What matters is the ⁷Be produced over the last mean-life (0.21 yr)

B Possibility of using a chondritic chemistry

- Comparison with previous version of the model (Lee et al. 1998)
- Comparison with other models (Mahras et al. 2002. Leya et al. 2003)

The irradiation model: Summary 1

• ⁷Be can only be produced by in situ irradiation

Impulsive flares can reproduce the observed abundance of ⁷Be in CAIs, as well as ¹⁰Be, ²⁶Al, ⁴¹Ca, ⁵³Mn

This is with the same parameters as in our 2001 work

Note: The measured ⁷Be value (⁷Be/⁹Be = 0.0061 ± 0.0013) is within a factor of two of what we calculated in 2003 (⁷Be/⁹Be ~ 0.003 LPSC abstract)

Decoupling of ¹⁰Be and ²⁶Al: a possible solution

- Gradual flares can produce ¹⁰Be without producing ²⁶Al nor ⁴¹Ca
- We propose that: Isotopically anomalous hibonites produced during gradual flares

 Gradual flares in the contemporary sun are rarer than impulsive flares (factor of 100, Reames 1995): coherent with the fact that hibonites (and FUN inclusions) are rarer than normal inclusions

Decoupling of ¹⁰Be and ²⁶Al: a possible solution

- Does it work quantitatively?
 - HAL is the only FUN CAI for which we have ²⁶Al and ¹⁰Be data - no ⁵³Mn or ⁴¹Ca data
 - Note that what is observed for other FUN CAIs are upper limits not zero

• $({}^{10}Be/{}^{9}Be)/({}^{26}AI/{}^{27}AI) = 8.1 \pm 4 \times 10^{3}$ for HAL

• $({}^{10}\text{Be}/{}^{9}\text{Be})/({}^{26}\text{Al}/{}^{27}\text{Al}) = 4.7 \times 10^3$ calculated in gradual flares

The ⁶⁰Fe/⁵⁶Fe "problem" 1

The Solar System initial ratio not known (~ 1-16 × 10⁻⁷)

Expected abundance of Galactic nucleosynthesis ~ 2.6 x 10⁻⁸
 * Busso, Gallino & Wasserburg 1999
 At best the early "Solar System value" is a factor of 4 lower
 * ⁶⁰Fe not a product of the Galactic evolution

⁶⁰Fe is not made by irradiation

🖈 Lee, Shu et al. 1998

 \Rightarrow Too neutron-rich a radionuclide to be made with p, ³He, ⁴He

⁶⁰Fe has a "last minute" stellar origin

The ⁶⁰Fe/⁵⁶Fe "problem" 2

Output of the Busso, Gallino, Wasserburg (2003) SN model

		? ₁ = 1.09 Myr		? ₂ = 8 Myr	? ₂ = 4 Myr
	mean life	15 Mo	25Mo	15 Mo	25Mo
		fo=3 x 10 ⁻⁴	fo=1.3 x 10 ⁻⁴	fo=3 x 10 ⁻⁴	fo=1.3 x 10 ⁻⁴
26AI	1.05	5.00E-05	5.00E-05	2.5E-08	1.1E-06
41Ca	0.15	1.50E-08	1.50E-08	1.0E-31	3.9E-20
53Mn	5.3	3.50E-03	3.00E-03	7.7E-04	1.4E-03
60Fe	2.2	4.70E-05	9.00E-06	1.2E-06	1.5E-06

- Mo = Sun Mass determines the isotopic abundance (R, S)
- f_0 = dilution of the SN ejecta with ISM
- $\Delta 1$ = free decay interval calculated by Busso et al. (2003) to have ²⁶Al and ⁴¹Ca at the meteoritic level
- $\Delta 2$ = additional free decay interval calculated by us to have ⁶⁰Fe at the meteoritic level

The ⁶⁰Fe/⁵⁶Fe solution

• If ⁶⁰Fe is produced at the meteoritic level

- ²⁶Al and ⁴¹Ca are far below the early Solar System abundance,
- ⁵³Mn is slightly overproduced using Busso et al. (2003) parameters
- The ⁵³Mn production in supernovae models can be decreased by changing the mass cut (Meyer & Clayton 2000)
- We can change f_0 to get ⁵³Mn right

 A supernova can deliver ⁶⁰Fe without delivering the other short-lived radionuclides

- * Not surprising since SN produce copious amounts of ⁶⁰Fe
- This supernova exploded ~ 8 Myr ago: no collateral effects

The irradiation model – summary

- Can reproduce the observed abundance of ⁷Be together with ¹⁰Be, ²⁶Al, ⁵³Mn
- Can account for the rare CAIs having ¹⁰Be and no ²⁶Al
- A "late" minute supernova can account for the abundance of ⁶⁰Fe

• Problems

- There is no evidence for any ferromagnesian mantle in meteorites
- Need of a high ³He abundance to make ²⁶Al

The astrophysical context of

the Sun's birth

The birth of a star

• Stars are born in Molecular Clouds (MC)

• They can be born

In isolation (single or binary stars)
In groups (N < N*)
In clusters (N > N*)

 N* is difficult to estimate, but N* ~ 100 (Adams & Myers 2001)

• Most stars (90 %) are born in isolation or in groups (N<100) (Adams & Myers 2001)

What about our SUN ?

• It is a low-mass star (1Mo = 10³⁰ kg)

• Low-mass stars are observed to be born

In small molecular clouds (~few 100 stars, e.g. Taurus)
 In giant molecular clouds (~2300 stars, e.g. Trapezium in Orion)

• The Sun has drifted in position since its birth 4.5 Ga

- Analysis based on the Sun's metallicity (Z = [Fe/H])
- From 6.6 ± 0.9 kpc to 8.5 kpc to the Galactic Center
- Wieden et al. 1996

We do not know where and in which environment our Sun was born

Has triggered stellar formation been observed?

Excitation and disruption of a GMC by the Supernova Remnant 3C 391 Reach and Rho ApJ 511 836-846

- Shocked clump v ~ 20 km.s⁻¹
- Post shock T>100 K, $n \sim 3 \times 10^5 \text{ cm}^{-3}$
- Supernova was estimated to be 3 pc away from the core
- High mass core

Likehood and occurrence of such encounters

 Only very few known cases of interaction between a Molecular Cloud core and a Supernova Remnant

- 3C 391 (Reach and Rho 1999)
- IC 443 (van Dishoeck et al 1993)

If the Sun was born in a molecular cloud as Taurus, the chance to be associated with a Supernova is low, because Initial Mass Function (IMF) "favours" low-mass stars
 dN/dM ~ M^{-2.4}

No known case of encounter between an AGB and a MC

• The probability of encounter for an AGB star is low (~1% Kastner & Myers 1994)

Constraints on the birth aggregate of the Solar System

Adams & Laughlin Icarus 150 151-162 (2000)

• Enhanced UV flux leading to photoevaporation of the disk

- From 5 AU outwards, the UV flux of the environment is larger than that of the Sun
- Photoevaporation at a rate dM/dt = 10⁻⁷ Mo/y
- If a minimum solar nebula (0.01 Mo) is lost in 10⁵ yr, problems with giant planet and chondrule formation

• Gravitational interaction leading to orbit disruption

- Orbit stability of the outer planet ?
- Survival of the Kuiper belt?

Summary of "astrophysical" arguments

Orion environment is not the rule

☆ Stars are rather born in clusters

• Orion environment is agressive for a protoplanetary System

- ☆ Disruption of the disk ?
- ☆ Stability of orbits ?

SN-MC encounters observed but rare

• AGB-MC encounters not observed, estimated to be rare

Improbable event does not mean impossible event Is our Solar System typical?

X-Rays in protostars

& Cosmic Rays

Flares in protostars and the Sun

Observations of Protostars with X-Ray satellites

- Ubiquitous activity
- Variable activity
- Hard X-rays (up to 12 KeV)
- Impulsive flares ?

X-Ray luminosity in protostars

- CHANDRA Survey (Feigelson et al. 2002)
- 43 stars with masses 0.7 -1.4 Mo

X-Ray luminosity in protostars

 In the Sun, acceleration of proton, 3He and 4He is seen in flares together with X-rays

Ubiquity of hard X-Rays in protostars = Ubiquity of irradiation processes

³He in the contemporary Sun

<u>Note:</u> the present SUN is teh best analog we have of the protoSun, but the actual physics might have been quite different

³He in the contemporary Sun

The origin of short-lived radionuclides: Summary

Summary 1

- ⁷Be, ¹⁰Be, ²⁶Al, ⁴¹Ca, ⁶⁰Fe, (⁵³Mn) need a last minute origin
- Latest SN models fail to account for the ESR abundance
- Some AGB stars can account for ²⁶Al, ⁴¹Ca and ⁶⁰Fe (Busso et al 2003) while GCR trapping might account for ¹⁰Be (Desch et al 2004)
 - A MC-AGB encounter is an unlikely event
 - ☆Parameters for GCR trapping might not be adapted to our Sun
 - ☆Cannot make ⁷Be

• If ⁷Be was present in the early Solar System, there was some irradiation

- The irradiation model in the context of the x-wind theory can account for ¹⁰Be, ²⁶Al, ⁴¹Ca, ⁵³Mn abundances
- It reproduces the ⁷Be abundance without parameters tuning
- It gives a straightforward explanation for FUN-like CAIs
- The presence of ⁶⁰Fe is **not** a problem
- The ferromagnesian mantle is still a problem

• Let us await for some more data and be patient!

Energy levels of ²⁶Al

Beware: not the gamma ray seen in space

The 1809 keV γ ray comes from the ²⁶Mg^{*} desintegration