

centre de recherches pétrographiques et géochimiques Washington University in St.Louis.

Sources cosmochimiques des éléments atmosphériques : origines et processus

Yves Marrocchi

Laboratoire de Minéralogie et de Cosmochimie du Muséum - Paris Les Houches - 24/02/09

Atmosphère terrestre

- atmosphère très fine
- différente de celles des planètes géantes

Origine de l'atmosphère...

.. indissociable de la composition du manteau

Von Weizäcker (1931) :

- (⁴⁰K)_{man} => (⁴⁰Ar)_{atm}
- dégazage du manteau

Rubey (1951) propose atmosphère produit par :

- altération des roches
- gaz volcaniques

Atmosphère secondaire

Origine de l'atmosphère - MORB & OIB

Dégazage catastrophique => 500 premiers Ma (Ozima *et al.*, 1975; Sarda *et al.*, 1985; Marty, 1989; Moreira *et al.*, 1998)

Dégazage précoce du manteau?

Confirmé par présence d'excès de ¹²⁹Xe dans le manteau (Buttler *et al.,* 1963; Staudacher & Allègre, 1982)

Formation par dégazage du manteau?

Filiation directe manteau-atmosphère impossible

Quel(s) précurseur(s)/processus pour les atmosphères planétaires?

Quel(s) précurseur(s) pour les atmosphères planétaires?

Capture de gaz de la NPS

comment avoir accès à la composition de la NPS?

NPS vs. Soleil

- 99 % masse du système solaire
- composition originelle de la nébuleuse protosolaire (NPS)
- comparaison avec les météorites, IDP's, atmosphères, comètes...

comment avoir accès à la composition du soleil?

- flux continue de plasma ionisé (ions, e⁻) émis par le soleil
- provient de la haute atmosphère : couronne solaire
- échantillonnage la zone externe de convection (ZEC)

Est-ce que la ZEC est représentative de la composition de la NPS?

- destruction d'isotopes légers (D, facteur 140 pour Li, 2 pour Be)
- sédimentation gravitaire => fractionnement (33‰ He, 3‰/uma O)

ZEC relativement proche de NPS

[Frick & Pepin, 1982, Wieler, 1998]

[Eberhardt et al., 1972]

pas d'accès aux différents régimes de vent solaire

[Saul et al., 2002, 2006]

Mission Genesis

cibles	description	exposition (jours)
B/C	bulk solar wind	852.83
H coronal holes	high-speed (500- 800 km/s)	313.01
L interstream	low-speed (<500 km/s)	333.67
E	coronal mass ejection (CME)	193.25

régimes vents solaires - néon [Meshik et al., 2007]

SW Regime	²⁰ Ne/ ²² Ne	
Bulk (BC)	13.984 ± 0.025	
Coronal hole (CH)	13.976 ± 0.041	
СМЕ	13.986 ± 0.031	
Interstream (IS)	13.992 ± 0.031	
Average	13.984 ± 0.016	

- Très bonne précision
- Accès aux différents régimes
- Pas de différence statistique

Comparaison soleil/manteau/atmosphère

Comparaison soleil/manteau/atmosphère

D'autres précurseurs?

Les chondrites

Mazor *et al.*, 1970

HF - HCI [Lewis *et al.*, 1975]

Matière organique insoluble : 1 wt% 90 % des gaz rares

Météorites :

- ± homogène
- différences de concentration
- très forte concentrations

[Mazor *et al*., 1970; Marty & Ozima, 1986]

chromite, spinelle, troilite (FeS), pentlandite [(Fe, Ni)₉S₈], kamacite (Fe_{0.94}Ni_{0.06}), awaruite (Fe_{0.32}Ni_{0.68}), SiC, diamants, graphite, carbone amorphe

 $- \approx 4$ % perte de masse

HNO₃

(oxydation)

résidu

- He & Ne : ≈ 10-15%

- Ar, Kr & Xe : ≈ 90 %

Phase Q [Lewis et al., 1975]

Où sont piégés les gaz rares P1?

résidu \longrightarrow chromite, spinelle, troilite (FeS), pentlandite [(Fe, Ni)₉S₈], kamacite (Fe_{0.94}Ni_{0.06}), awaruite (Fe_{0.32}Ni_{0.68}), SiC, diamants, graphite, carbone amorphe

nanodiamants

 $({}^{i}Xe/{}^{132}Xe)_{E_{ch}}/({}^{i}Xe/{}^{132}Xe)_{S_{W}}$

SiC

Gaz rares de la matière organique des météorites primitives

Composant	Porteur	Gaz rares	Synonymes ¹
P1	phase Q	He-P1	gaz planétaire ²
		Ne-P1	$\operatorname{gaz} \operatorname{Q}^{3,4,5}$
		Ar-P1	gaz planétaire normal ⁶
		Kr-P1	
		Xe-P1	
HL	Diamant	He-HL	He-A ^{7,8}
		Ne-HL	$Ne-A^{7,8,9}$, $Ne-A2^{4,10}$
		Ar-HL	
		Kr-HL	$CCFKr^4$, $Kr-H^{11}$
		Xe-HL	$CCFXe^{4,12,13}, Xe-X^{14,15}$
Р3	Diamant	He-P3	
		Ne-P3	Ne-A1 ^{4,10}
		Ar-P3	
		Kr-P3	
		Xe-P3	
P6	Diamant	He-P6	
		Ne-P6	
		Ar-P6	
		Kr-P6	
		Xe-P6	H-C δ Xe ¹⁶
Ne-E(H), Kr-S, Xe-S	SiC	Ne-E(H)	
		Kr-S	
		Xe-S	
Ne-E(L)	Graphite	Ne-E(L)	

Comment analyser les gaz rares P1 directement?

closed-system stepped etching (CSSE; Wieler et al., 1991, 1992)

Attaque acide (HNO₃) en ligne par paliers de température

Composition élémentaire

 patrons élémentaires identiques

différence de concentrations importante

météorites primitives
 <u>ET</u> différenciées
 [Goebel *et al.*, 1978]

1- réservoir homogène [Huss et al., 1996]

2- processus unique [Busemann et al., 2000]

Comparaison manteau/atmosphère/chondrites

Comparaison manteau/atmosphère/chondrites

Les comètes : stardust

Comet 81P/Wild 2

Ca 4 km

Xénon appauvri

Xe AIR enrichi en lourds

Théorie gaz-poor

Accrétion de l'atmosphère à partir de matériel météoritique ou cométaire riche en gaz

Adsorption (Wacker *et al.*, 1985; Marrocchi *et al.*, 2005)

Théorie gaz-poor

Couplés avec phénomènes d'irradiation ou implantation (Bernatowicz & Hagey, 1987) (Marrocchi *et al.*, 2005b) Adsorption n'induit pas de fractionnement isotopique (Marrocchi & Marty, 2004)

Théorie gaz-poor

Expérience de piégeage de gaz rares dans de la glace (Notesco *et al.*, 2007)

Absence de données isotopiques

$$Ne)_{AIR} \neq Ne)_{Manteau}$$

 $(Xe)_{AIR} \approx Xe)_{Manteau}$

Source du Xénon unique?

Théorie gaz-rich

Atmosphère dérivée du gaz de la nébuleuse par fractionnement de masse

gaz lourds moins appauvris et fractionnés

Xe : 3.8 %/uma Kr : 0.76 %/uma

Théorie gaz-rich

Accrétion de l'atmosphère du gaz de la nébuleuse (Ozima & Nakasawa, 1980)

Fractionnement isotopique OK

Ne rend pas compte de l'appauvrissement élémentaire en Xe

Théorie gaz-rich

Fuite atmosphérique d'une atmosphère primtive (Pepin, 1991)

Test :

composition isotopique du Xe)_{Air} et Xe)_{Manteau}
 -Xénon manquant?
 ubiquité avec Mars et Vénus

Théorie gaz-rich-poor

(Dauphas, 2003)

Atmosphère nébulaire fractionnée

- Xe/Kr élevé

- Isotopes Xe plus fractionné que Kr

Atmosphère : Xe/Kr solaire + fractionnement isotopique

Conclusions

Filiation directe manteau/atmosphère impossible

Précurseurs :

-gaz NPS - Gaz NPS fractionné - gaz phase Q - gaz cométaire Processus :

-adsorption
- irradiation

régolite poreuxfuite hydrodynamique

est-ce que le SW est représentatif de la composition de la ZEC?

potentiel de première ionisation => fractionnement élémentaire SW/ZEC :

faible pour vent rapide (CH) => facteur 1-2

• important pour vent lent (IS) => facteur 2.5-5

inconnu pour CME => variable

est-ce que le SW est représentatif de la composition de la ZEC?

FIP n'affecte pas les isotopes

Fractionnement isotopiques possible par :

- effet de Drag Coulomb
- interactions waves/particules

⇒ mesure des compositions élémentaires & isotopiques des différents régimes SW

Origine de l'atmosphère

Brown (1952) : (gaz rares atmosphériques) << (gaz rares solaires)

4 gaz rares utilisables :

He perdu dans l'espace + Rn radiogénique et radioactif

Composition élémentaire vs. isotopes du krypton

Quel(s) précurseur(s) pour les atmosphères planétaires?

régimes vents solaires - hélium

SW Regime	³ He/ ⁴ He × 10 ⁴	
Bulk (BC)	4.42 ± 0.03	
Coronal hole (CH)	4.23 ± 0.03	
CME	4.39 ± 0.03	
Interstream (IS)	4.33 ± 0.03	
Average	4.34 ± 0.02	

• différences entre régimes < 4%

régimes vents solaires - argon

SW	³⁶ Ar/ ³⁸ Ar	
Regime		
Bulk (BC)	5.495 ± 0.011	
Coronal hole (CH)	5.536 ± 0.025	
CME	5.478 ± 0.039	
Interstream (IS)	5.486 ± 0.02	
Average	5.497± 0.009	

en accord avec valeurs de la littérature
pas de différences statistiques entre régimes