

Différenciation des objets de taille moyenne

Plan de la présentation

- Données
 - surface (imagerie, rayon, spectroscopie)
 - Intérieur (champ de gravité → masse, degré de différentiation; champ magnétique (degré de différentiation)

Objets

- Cérès (Dawn)
- Les petits satellites de Saturne (Cassini) Japet, Encelade et les autres
- Europe (Galileo EJSM)
- Callisto Titan Ganymède (Galileo Cassini/Huygens EJSM)
- Pluton-Charon et KBOs (New Horizons)

Modèles

- Densité (composition chimique, porosité)
- Evolution thermique (conduction convection [timing])
- Séparation glace/silicates

Les satellites de Saturne

	Mimas	Enceladus	Tethys	Dione	Rhea	Iapetus
Density (kg/m3)	1153,6	1607,1	955,5	1469	1233,2	1087,8
Radius (km)	198,8	252,31	536,3	562,5	764	734,5

Forme des satellites de Saturne

Shapes of the Saturnian icy satellites (Thomas et al., LPSC 2006)

L'aplatissement de Japet correspond à une rotation de 16h Son excentricité est de 2.43%

Montagne équatoriale

La 'ride' équatoriale de Japet fait 18 km de haut et s'étend sur au moins 1600 km au niveau de l'équateur. Elle est très cratérisée. Comment expliquer cette ride?

- Pli équatorial
- Accrétion de matière au niveau de l'équateur
- L'autre solution

La surface de Japet est constituée de glace avec des zones riches en CO2

Les deux observations (ride équatoriale et forme correspondant à une rotation de 16h) peuvent-elles s'expliquer par un seul modèle?

Evolution thermique et orbitale

Evolution thermique classique 1D sphérique: LLRI, porosité, paramètres dépendent de T, accretion produit une augmentation de température de 40 K

Evolution thermique et orbitale

Evolution thermique et orbitale

Convection in mid-sized icy moons

Convection in Iapetus (Robuchon et al., 2008)

- Convection starts before viscosity is low enough for despinning to occur (Iapetus)
- Necessary to have a transient viscosity (Burgers rheology)

Conclusion pour Japet

Lors du changement rapide de rotation, la forme a change et a produit une diminution de surface pour un même volume → pourrait expliquer la montagne équatoriale
Dans la gamme de paramètres possibles, il existe un jeu de paramètres qui permet d'expliquer la forme d'équilibre a 16 h (cœur suffisamment chaud pour permettre la dissipation ET lithosphère suffisamment épaisse pour conserver la forme.

- La convection thermique semble se mette en place avant que la viscosité soit suffisamment faible pour permettre le passage à une rotation synchrone. Nécessité d'un modèle un peu plus complexe (mais plus réaliste) de viscosité.
- Sur la base de la quantité de chauffage nécessaire au départ, il faudrait que Japet soit formé entre **3.4 et 5.4 Ma / CAIs**.

Conclusion pour Japet

Plan de la présentation

- Données
 - surface (imagerie, rayon, spectroscopie)
 - Intérieur (champ de gravité → masse, degré de différentiation; champ magnétique (degré de différentiation)

Objets

- Cérès (Dawn)
- Les petits satellites de Saturne (Cassini) Japet, Encelade et les autres
- Europe (Galileo EJSM)
- Callisto Titan Ganymède (Galileo Cassini/Huygens EJSM)
- Pluton-Charon et KBOs (New Horizons)

Modèles

- Densité (composition chimique, porosité)
- Evolution thermique (conduction convection [timing])
- Séparation glace/silicates

Encelade

- Rayon : 252.31 Masse: 1.08 10^{20} kg Masse volumique: 1607.1 Fraction de silicates: 0.57 1348.87 P_{rad}: 0.37 GW P_{PoleSud}: 3-7 GW g = 0.113 m/s² Rotation: 32.885 h Excentricité: 0.0045
- Friction le long des failles (Nimmo et al, 2007)
- Energie de marée dissipée a l intérieur du satellite (Tobie et al., 2008)

Encelade: observations

Instrument VIMS: Encelade est couvert de glace d'H2O et la taille des grain est plus grande au niveau des failles

Instrument INMS: ⁴⁰Ar est éjecté avec un flux de 5 10⁻⁵ kg/s.

→ Observations plus compatibles avec une origine interne.

Chauffage interne de quelques objets

6371 km	1822 km	2575 km	252.3 km	
6 10 ²⁴ kg	0.0894 10 ²⁴ kg	0.1345 10 ²⁴ kg	0.000108 10 ²⁴ kg	
5525 kg/m³	3528 kg/m ³	1881 kg/m³	1608 kg/m³	
2/3 Silicates and 1/3 iron	Silicates	Ice and silicates	Ice and silicates	
42 TW	80 TW (2 W/m²)	Model: 750 GW	6 GW in the South Pole area	

Radiogenic power is proportional to mass – cooling – tidal heating

Encelade: chauffage de marée

$$\frac{\partial D}{\partial t} - \frac{\partial}{\partial t} \left[\mu \left(\nabla u + \nabla^{\mathsf{T}} u \right) \right] = -\frac{\mu}{\eta} D$$

$$\nabla \cdot \left(-pI + D \right) + f = 0$$

$$\Phi(r, \theta, \phi) = \omega^2 r^2 e \left[-\frac{3}{2} P_2^0 (\cos \theta) \cos(wt) + \frac{1}{4} P_2^2 (\cos \theta) \left\{ 3 \cos(wt) \cos 2\phi + 4 \sin(wt) \sin 2\phi \right\} \right]$$

$$h(r, \theta, \phi) = \frac{1}{T} \int_t^{t+T} \frac{D : D}{2\eta} dt$$

$$\eta = \eta (Temp)$$

$$P_{glob} = \int_V h dV$$
Global dissipation
No liquid water
With liquid water
With liquid water
U
Global dissipation
No liquid water
U
Global di

Encelade: conclusions

- tidal heating in a low viscous region → internal melting of the ice shell.
- Melt percolation and accumulation at the base of the ice shell could explain the apparent subsidence.
- Melt percolation replenishes the liquid layer.

Convergence of warm materials heated over a relatively broad dissipative region toward the narrower tectonic active region at the SouthPole is expected. The release of internal heat to the surface would occur along localized tectonic features ("tiger stripes") during episodic resurfacing events associated with lithospheric expansion and small-scale convection. Upwellings of warm ice below the ridges would finally promote sublimation of near-surface ice and destabilization of clathrate reservoir, or possibly melting of water ice, resulting in the formation of jets as observed by Cassini (Kieffer et al., 2006; Porco et al., 2006)..

Plan de la présentation

- Données
 - surface (imagerie, rayon, spectroscopie)
 - Intérieur (champ de gravité → masse, degré de différentiation; champ magnétique (degré de différentiation)

Objets

- Cérès (Dawn)
- Les petits satellites de Saturne (Cassini) Japet, Encelade et les autres
- Europe (Galileo EJSM)
- Callisto Titan Ganymède (Galileo Cassini/Huygens EJSM)
- Pluton-Charon et KBOs (New Horizons)

• Modèles

- Densité (composition chimique, porosité)
- Evolution thermique (conduction convection [timing])
- Séparation glace/silicates

Les satellites de Jupiter

Ganymède – Titan - Callisto

 R
 2403 km

 ρ
 1851 kg .m⁻³

 MoI
 0.358

2575 km 1881 kg .m⁻³ 0.340 2634 km 1940 kg .m⁻³ 0.311

L

MoI f.=0.4 : homogeneous sphere

Sources de chaleur

Deux sources de chaleur : Radioactivité et chaleur de marée Chaleur radioactive 3 fois plus forte il y a 4,5 Ga

Titan: satellite de Saturne

Titan: camera infrarouge

Titan: images radar et infrarouge

Titan: Site Huygens

Titan: Site Huygens

CIRS – surface temperature

Jennings et al; 2009 - CIRS data at $19 \mu m$. Inversion de ce profil avec le passage à l'été. Circulation de nuages d'éthane au dessus du pole Nord.

Lacs principalement au pole Nord (radar) Mission étendue 2010-2017.

Titan est différencié

Spherical geometry

- Heat flux at the lower interface is higher and can favor hot upwelling plumes
- No internal heating In this case

Oedipus code – Choblet (2005) and Choblet & al (2007)

Moresi, L.-N. and Solomatov, V.S., 1995. Numerical investigation of 2D convection with extremely large viscosity variations, *Phys. Fluids*, 7, 2154-2162 Deschamps F., Sotin C., 2000, Inversion of 2D numerical convection experiments for a strongly temperature-dependent viscosity fluid, Geophys. J. Int., 143, 204-218

Convection within the outer ice I shell

Temperature profile strongly depends on the viscosity law. Most dramatic effect is the temperature dependence. But other parameters such as grain size and stress dependence are also important

Convection within the outer ice I shell

For numerical reasons, a more simple law is used. But most of the differences occur in the conductive lid where heat is transferred by conduction.

Convection in the ice crust

Thermal evolution

Cf presentation by Tobie.

Stationary convection

- Heat transferred by conduction depends only on the thickness of the crust.
- Heat transferred by convection depends mostly on the viscosity.
- If convective heat transferred by convection is larger than internal heat production, then the satellite cools down.
- A liquid layer can be maintained over geological time scales if "convective heat transfer" equals internal heat

- Convection is a process that can transport material from the interior to the subsurface.
- On Earth, convection leads to plate tectonics, a process that breaks the lithosphere and melt produced at depth can migrate to the surface.
- Convection is possible in the ice layer with hot plumes. Convection does not lead to plate tectonics (Europa ?)
- A liquid layer can be maintained over geological time scales if "convective heat transfer" equals internal heat
- Viscosity profile can be used to calculate amount of dissipation They must agree with the eccentricity and other observables.
- Convection can occur even in small satellites and can prevent differentiation in the case of pure water ice.
- In the case of Iapetus, a complex viscosity (different viscosities for different forcing periods) is necessary to explain despinning.

volcanism on Io 2 < ϕ_{surf} < 12 W/m²

If silicate volcanism exists within icy satellites, there may be conditions similar to those existing at mid-ocean ridges ...only for Europa (HP ices for the two others)

Orbital and physical data

$$C = \int_{M} x^{2} dm = \iiint r^{4} \rho(r,\theta,\psi) \sin^{3}(\theta) dr d\theta d\psi = \frac{8\pi}{15} \left(\rho_{M} \left(R^{5} - R_{c}^{5} \right) + \rho_{c} R_{c}^{5} \right)$$

		ρ (kg/m3	Radius (k	m)C/MR2	е	Prot (days
	Ю	3528	1822	0,377	0,004	1,77
	EUROPA	2970	1569	0,347	0,010	3,55
	GANYMEI	1940	2634	0,311	0,0015	7,15
	CALLISTO	1851	2403	0,358	0,007	16,70
	TITAN	1881	2575	?	0,029	15,95

 $M = \int_{M} dm = \frac{4\pi}{3} \left(\rho_{M} \left(R^{3} - R_{c}^{3} \right) + \rho_{c} R_{c}^{3} \right)$ C/MR²=2/5 if the satellite is not differentiated

Case of Ganymede (Schubert et al., 1999)

Trajectoire	Date	Altitude (km)	Latitude /Ganymede	Longitude /Ganymede
G1	27/06/1996	838	30	247
G2	06/09/1996	264	79	236
G7	05/04/1997	3105	56	270
G8	07/05/1997	1606	28	85
G28	20/05/2000	900	-13	269

Dissipation in the ice I layer

One example of numerical experiment

Europe-Titan: similarities and differences

