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What the solids tell us about the wild years of disk evolution: Part I
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Disk Evolution

* We can think of disk evolution in three rough evolutionary phases
* Newly-forming disks
* Class 0 to Class 1 protostars. Roughly few X 105 yr.
* Established disks
* Your “typical” disk ~ few X 100 yr.
* Debris disks
* Leftovers banging together. Ongoing, but bright for 108 yr.

* Note that these are not necessarily consistent with observational

phases
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A Cimematic Approach




Major Questions for Planet
Formation

* When does planet formation begin?

* When does tqisk=0 correspond to tso1ia=0?

* What are the environments of planet formation?
* What are the phases of planet formation?

* What modes of planet formation are possible?

* For the Solar System, meteorites give us clues
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What Is This Talk About

* Focusing on the early disk early epoch, i.e., the “Newly-Forming
Disks.”

* Mass infall period = Embedded

* Denser, hotter than other stages of disk evolution

What are consequences of this phase of |
| disk evolution for planet formation _
| throughout the disk’s lifetime? _
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Why Worry About Newly-Forming
Disks?

Age Distributions of Chondrules
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(From Villeneuve ef al., 2009, Science, v. 325, p. 985-988.)
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Forming A Star: A Conceptual
lake

* A cloud core collapses:

* Maybe due to diffusion of charged particles, compression from
turbulence, multiple factors at once, etc.

* Low angular momentum gas forms a stellar core
* High angular momentum gas falls onto a disk
* There will be a distribution of disk masses and initial sizes

* Temperatures and densities become very different than in
cloud core

8
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Cloud Core Velocity Gradients
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Mass Accretion

* Consider the mass infall rate during star formation

* Use the basics of a Jeans instability in a uniform cloud as a

starting point

* Aeans= [P/ (GI]?

* Myeans = 0 (471/3) (Ajeans/2)?
* t=[31/(32 G )]1/2

" Q=pmpn

¥ M]eans/tff =54 CiB/G

+ Shu 1977 self-similar collapse = Mjeans/ te ~ i3/ G

10
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Mass Accretion

* Let’s put some values into those equations

* Herschel results find ~1 Msun cores with densities n~10° g/cc and
temperatures as low as 15 K.

* tg~ 100 000 yr
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The Land of Gravitational
Instability

* Toomre Q (1964) stability parameter

* Consider first a patch of a thin, uniformly rotating disk in the
frame of that patch

+ X /ot+V(Xv)=0
= ov/ot + (v'V)v=-VP/ XL -VO -20xv + Q?(xéx+yéy)
* V2O = 4ntGXd(z)
* Now consider a small perturbation
* ¥ =Yo+ eXi(x,yt);, v =vo + evi(x,y,t); @ = g + eDi(x,y,t)
* Keep only linear terms in ¢
+ Take the perturbation to have a form exp(-i(k-x-wt))

* Analysis gives dispersion relation (see Binney & Tremaine)

12
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Instability

* For uniform rotation, the disk becomes unstable when
* 2¢Q/(mGXy<1
* ¢2=0P /0L at Lo => sound speed

* For a differentially rotating disk (see Binney & Tremaine), unstable
when

+ s K[(Tt G Xo) < 1 = ring instability

* k2 =R dQ?/dR+40? at guiding center = epicyclic frequency
# Stability of disk against gravitational perturbations
* Long wavelengths are stabilized by shear (i)

* Short wavelengths are stabilized by the sound speed
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Energy Budgel

* Take scaleheight H = ¢5/ Q)

* Thermal energy ~ ¢

* Gravitational energy ~ ()2H?
* Rotational energy ~ ()?R?

* Thermal to rotational energy and Gravitational to
Rotational energy ~ (H/R)?

* H/R ~ 0.1, so instabilities only need to tap a small amount
of rotational energy =
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How Do Instabilities Manifest
Themselves?
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Driving T'he Instability

* Ways out? Disk becomes much hotter than sound speed of
envelope (definitely possible)

* But! Depending how infall is distributed, instabilities
could still in principle occur even with a very hot disk

* What about magnetic fields? Definitely something to
consider. Simulations show that strong disk instability can
still happen.
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Evolution of the Instability

* Whenever Q = 1.7 = Spiral instability

* Spirals create shocks and drive mass transport
* Under likely conditions, can balance cooling

* Disk just evolves with lots of non-axisymmetric
structure

* Called self-regulation

* Under some conditions, which are STILL being explored,
self-regulation can fail and produce clumps

* Will discuss later
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Shocks Give Locahized Heating

32.5 yr (= 1 orp) log = (g cm™) T, (K)
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Non-Axisymmetry and Torques
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Simple EOS. Includes B fields. 2D. Vorobyov & Basu 2006
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Mass accretion rate (Mg yr'1)
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No. 2, 2010 DISK EMERGENCE AND PLANET FORMATION L59
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JURNAL, 729:42 (17pp). 2011 March 1 Machida et al. 2011 MACHIDA.,

-
100 AU

of protostellar outflow at £ = 843 yr is shown by yellow volume, in which color indicates outflow speed. The den
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THE ASTROPHYSICAL JOURNAL, 746:110 (26pp), 2012 February 10 ZHU ET AL.

3)(10-6 MSun/yr . i 3X10_4 MSun/yr

2D simulations. Variation in accretion rate and infall radius. Form of
radiative cooling
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Summary for Disk Instability

* Star formation process can lead naturally to a period of intense disk
heating on timescales of 100 000 yr

* Mass accretion ultimately drives the instability, and can feed episodic
bursts of activity

# Spiral structure is a natural outcome of disk instability, creating
shocks and can lead to prodigious mass transport

* Fragmentation can happen. Many of resulting fragments are

destroyed

* Period of intense disk instability expected to last for a period of time
that is similar to the age spread in CAls

30
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Boley & Durisen 2008. Fluid element temperature excursions.
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Log X (gcm

[lee et al. 2011. Base simulation.
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Figure 5. Temperature and number density history of a fluid
parcel from the disc. This particular parcel encounters a shock at
about 270 years and again at 350 years.

Ilee et al. 2011

Tuesday, February 12, 13



log N(CO) [em 3' log N(H,CO) [un log N(HCN) [cm :]

23 21
60 60 60
21
30 30 30
0 0 0 ' i 20
){) %
-30 -30 -30
60 60 -60
| Or | Or
-60) -3() ) 30 6() -6() -3() 0 30 ()
. | 2
log N(SO) lun log N(OCS) [em 7] log N(H,0) [em 7]
60 60
21
23
30 30
0 0
20 )
-30 -30
-60 -60
| O 21

-6() -3 30 6() -6(0) -3(0) 0 30 6() -6() =30 0 ) 60)

Ilee et al. 2011. Chemical models based on simulations.

Tuesday, February 12, 13



10 .

[ J L\ — e
: . 81 l' || '." ‘/\'u. ./\/' AV - :_ﬁ- . [ /
= AN\ v \ f & ||
z s U A \ | o
5 . " | | l. v : 3
E 6 J/\'l N M / ' ‘ | ' ] E :
= 2 G v ‘ ' 1 : o =.0F
> ' 1 ’ o, \
T I v =
;é ; ': |.|i' -1 .; - | l
' s b\ ] /
- \i " 2 > L \_\. .'PU W [ .”
,3 B “ . 2 || ' | |
B L] 1 J .
(} = | — - . " . ndh s | —— -~ - = _—— li) - - " =l PO | A . } EEE— y—
0 2% 10° 4% 10° 8x10° 0 2% 10° 1< 10°
time (=) time (s)
C e — m— P — - - T D - 8 - 1 v oy R — Y ——— R —
/
L i
5 F ' 2 - : r"hl n
E J'.' ‘ or ’ " VA
- ] | |
5 | | o ' \ \; = [\ 1 ]| . it G .ul A
=y £ ML = LA B
Ik ' | .: C | "l f. | " [ h l; \ ”
= | & ] , TR o —10 [ |V ! ,'\U.' [ \|
2 “8rilil (1id | W4 ASU T 1 = ' \ ey oty :
— 1 i F : 1 l. ' ;f.
b v 1 - | ‘ S .
£ itk ;' \ l' , Ha ..g \ N = H X \
Py | i - ! - _ 4
R Y Ui e ! :
‘:_. | " s ' ‘ |.. . ll i - - ';.
S Py 'l 'U' V# l' i El‘ 'z
=0 )
o | \I 12 o
. 2
‘!3 1 A A 1 A 1 A 1 ::‘ 1 A A 1 A
O 2x10" 4x 10" 6x10° 0 2x10° 4x10"
time (s) time (=)

Alan P. Boss, Conel M.O'D. Alexander , Morris Podolak 2012

Tuesday, February 12, 13



Consequences of Spiral Shocks

+ Spiral shocks repeatedly create changes in environment

* Heating profiles can have rapid rise, followed by
protracted cooling, or “rapid” rise and “rapid” cooling

* Many near-sonic heating events oley & burisen 2008; Cossins et al. 2009)
* Everything is processed to some degree
* Very strong shocks are rare
+ Spiral pitch angles are ~10° (in WKB tani ~ B h/r ~ B cs/vo)

* But, spirals are not the only thing that can heat

38
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Why Fragments Matter
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Why Should They Be Destroyed?

* Initial clump size will be multiple AU in size
* Ruin = a (Mc/ (3Mstar))!/3
* For qg=Mc/Mstar=103, Ruin ~ 0.07a
* For q = 10%, Ruin~0.15a

# Eccentric orbits, clump-clump interactions, clump-disk
interactions = clump overflow its Hill sphere

40
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Clumps are fragile. Tides can destroy them with ease.
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Consequences of Clump
Destruction

* Each clump is a mini nebula
* Release processed solids into the nebula
* Solid and chemical alteration
* Could in principle form cores before destruction

+ Tidal stripping/tidal downsizing
(Boley et al. 2010; Nayakshin 2010)

43
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Overall and Future Direction

* Multiple mechanisms for heating the disk during very
early times

* Does anything make it through unscathed?
* Very large radii?

* Significant work to be done before the regime of CAI
formation is modeled

* We have only scratched the surface, and the studies are
largely insufficient

+ Other ideas?

* Processing by the protostar itself? (e.g., Gail et al. 2009)

44
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lFood For Thought

Age Distributions of Chondrules

Relative age after CAls formation (Myr)
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(From Villeneuve et al., 2009, Science, v. 325, p. 985-988.)

« CAls 4567 Myr [1]

* [ron meteorite parent body
formation for ~1.5 Myr [2]

* Mars half assembled by
1.8 Myr [3]

* Most chondrules are
younger than CAls, iron
meteorite parent bodies, and
maybe planetoids

[1] Amelin et al. 2002; [2]
Schersten et al. 2006; [3]
Dauphas & Pourmand 2011
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