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Outline

• Motivation: a few mysteries involving mixing

• Dynamics of particle scattering

• Radial mixing during different phases of 
Solar System history
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Mystery 1: origin of Earth’s 
water

• Terrestrial planet-forming region is thought to 
have been very dry (Boss 1998, Podolak 2010, ...)

• Earth’s water is very good match to carbonaceous 
chondrites (C-types) from outer belt.

Morbidelli et al 2012
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Mystery 2: structure of 
the asteroid belt

• Many distinct asteroid 
types on similar orbits

• Large-scale gradient: 
“primitive” in outer 
belt, “differentiated” in 
inner belt
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Mystery 3: color structure 
of Trans-Neptunian objects

• Low-inclination 
“cold” KBOs are 
red

• Range of colors 
among “hot” 
population

• Origin unknown
Doressoundiram et al 2005

Morbidelli & Brown 2005; Doressoundiram et al 2008
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Mystery 4: origin of 
close-in exoplanets

• At least 30-50% of 
Sun-like stars have 
planets with P<100 
days and M<20 Earth 
masses (Mayor et al 2011, 
Howard et al 2010, 2012, Fressin et al 
2013).  

• No disk model has 
that much mass so 
close to star.

Fressin et al 2013
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Mystery 5: the “Vega 
phenomenon”

• Vega has 2 known 
dust sources (e.g., Su et 
al 2013)

• T~50 K (long-
lived)

• T~150 K (very 
short-lived)

• Planets in between? 
(e.g., Bonsor et al 2012)
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Radial mixing: dust to 
~10m

• Inward flow from following pressure 
gradient of gas

• Or net flow toward pressure bumps

• Can get stopped by resonant trapping 
with planets or embryos

• Turbulent mixing
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Radial mixing: planetesimals 
(10m-100km)

• Inward migration via gas drag

• Turbulent mixing

• Shepherding by embryos/giant planets during gas-driven 
migration

• Scattering by:

• Planetary Embryos

• Giant planets 

• During rapid gas accretion

• During gas-driven migration (Grand Tack)

• During planetesimal-driven instability (Nice 
model)
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Radial mixing: planetary 
embryos (>1000km)

• Type 1 migration: usually inward

• Scattering by 

• other embryos

• giant planets.  
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The importance of eccentricity

• For radial mixing to 
occur, particles need 
nonzero eccentricities

• Sources: disk 
turbulence, scattering by 
larger bodies
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Turbulence

• Turbulence in disks create density fluctuations on a range of 
size scales

• Density fluctuations perturb bodies in orbit:

credit: Jake Simon
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Turbulence causes random walk in 
planetesimal (and embryo) semimajor axis, 

increase in eccentricity

Nelson 2005
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Dynamics of scattering 
by a large body

• Inside a planet’s Hill sphere RH, the planet’s 
gravity is stronger than the star’s

• Stability criterion for 2 particle near a large 
body: ~3.5 RH

• Earth: RH~0.01 AU.  Each giant planet has 
RH~1/3 AU

15



Which particles can be 
scattered?

planet-crossing

stable stable
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Which particles can be 
scattered?

Secular forcing
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Which particles can be 
scattered?

Resonances
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Tisserand parameter

• Conserved quantity during 
scattering in restricted 3-
body problem

• Asteroids have TJ >3

• Comets usually have 
2<TJ<3

Mars-crossing

Jup-crossing
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T differentiates 
asteroids and comets

• Asteroids 
have TJ >3

• Comets 
usually have 
2<TJ<3 

• Here, pink is 
TJ ~ 2.8
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Example: a comet scattered 
inward by multiple planets

• Tisserand parameter 
with respect to each 
planet: TN, TU, 
TS, TJ

• T ~ conserved, 
(never decreases 
below initial value)

• Encounters with 
planets usually at T 
just below 3

Levison & Duncan 1997
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Some examples of radial mixing 
from scattering by a large body

• 1000 Planetesimals from 2-4 
AU

• One planet at 3 AU with M = 
0.1, 1, 10 Earth masses

Similar example: Mars-sized embryo in the 
asteroid belt 
(Raymond et al 2009)
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Example 1: Earth-mass embryo
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Example 3: 10 Earth-mass embryo
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Example 1: Mars-mass embryo
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Gas drag

• Headwind from gas 
causes planetesimals’ 
ecc to decrease 
quickly, s.m.a. slowly.

• Inward-scattering 
favored over 
outward during gas 
disk phase
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Radial mixing during 
Solar System history

1. “Standard” terrestrial planet formation

2. Gas-driven (type 2) migration

3. Gas accretion onto giant planets

4. Grand Tack

5. Nice model
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1. “Standard” model of 
terrestrial planet formation

• Jupiter, Saturn on near-current orbits or in 
pre-Nice orbits

• Embryos and planetesimals throughout 
inner Solar System
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Raymond, Quinn & Lunine 2006
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Feeding zones of 
planets widen, move 

outward in time

In this case, large-scale mixing 
through inner Solar System 
takes ~10 Myr.  (This time 

depends on the initial mass and 
mass distribution)

Raymond, Quinn & Lunine 2006
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2. Giant planet (type 2) 
migration

• Gas giant planet carves gap in 
protoplanetary disk

• Linked to gas’ viscous evolution

• Migrates (usually inward) at rate 
of gas’ radial movement

credit: Phil Armitage
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Radial mixing during giant planet migration

Raymond, Mandell & Sigurdsson 2006
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Radial mixing with 
migrating giants

• Shepherding by 3:2 or 
2:1 resonances 

• Scattering creates large-
scale radial mixing: very 
volatile-rich rocky 
planets

Raymond, Mandell & Sigurdsson 2006, Science
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3. Gas giants’ rapid gas 
accretion

• In core accretion model giant 
planets undergo rapid phase of 
gas accretion when core mass 
~ envelope mass (Pollack et al 1996, Hubickyj et al 

2005, ...)

• Stability criterion (via RHill) 
depends on mass

• Particles near stability limit 
destabilized Rice & Armitage 2003
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Radial mixing during Jup and 
Sat’s rapid gas accretion

• Experiment: start 
from Jup and Sat’s 
cores in 3:2 resonance 
and increase their 
masses to their 
current values.

• Jup starts to carve gap 
in disk, then Sat carves 
one too.

Raymond et al, never published
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• Trans-Jovian bodies 
implanted into asteroid 
belt in a size-
dependent way

• Some asteroidal bodies 
scattered out beyond 
Saturn

Raymond et al, never published

J S
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Jovian Early Bombardment 
(Turrini et al 2012)

• Jupiter’s rapid gas accretion 
stirs up planetesimal 
eccentricities

• Increases collision speeds 
in asteroid belt

• May have caused collisional 
destruction of bodies up to 
200-500 km in size.

Turrini et al 2012
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The Grand Tack 
(Walsh et al 2011)
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Walsh et al 2011, Nature

Text

The Grand Tack
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The asteroid belt
• S-types are 

scattered out 
beyond JS then 
back close to where 
they started with an 
efficiency of ~10-3

• C-types are 
implanted from 
beyond JS with an 
efficiency of ~10-2

Walsh et al 2011
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Terrestrial planet formation and 
water delivery in Grand Tack model

A truncated inner disk plus a tail of high-eccentricity C-type planetesimals 

O’Brien et al in prep
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Water delivery to Earth analogs

• Wet (C-type) material is 
mainly accreted late

• Earth typically accretes 
~10 oceans of water
– Earth’s current water budget 

is ~2-10 oceans (Lecuyer et al 1998)

– Much less than in previous 
simulations (Morbidelli et al 2000, Raymond et al 
2004, 2006, 2009)

• Water mainly delivered by 
planetesimals, not embryos 

O’Brien et al in prep.
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5. The Nice model
(Tsiganis et al 2005, Morbidelli et al 2005, Gomes et al 2005, Morbidelli et al 2010, 

Batygin & Brown 2010, Levison et al 2011, Nesvorny & Morbidelli 2012, ........)

• Giant planets formed in 
more compact 
configuration

• Outer belt of planetesimals 
(primordial Kuiper belt) 
survived on larger orbits

• Instability in giant planets 
triggered late heavy 
bombardment

• Primitive KBOs captured 
all over Solar System Gomes et al 2005
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Capture of KBOs in the 
asteroid belt in the Nice model 

(Levison et al 2009)

• red = simulated particles

• green = real asteorids

• black = known D-types

Levison et al 2009
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How are particles 
captured?

planet-crossing

stable stable

• Particles scattered by 
planets

• Enter inner Solar System 
on Jup-crossing orbits

• Some particles end up in 
resonance, where ecc 
can oscillate

• Jup’s orbit changes, 
resonance moves, 
particles stranded on 
stable orbits
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• Planetesimals 
scattered 
from 
primordial 
KB into 
current-day 
KB

Levison et al 2008
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Asteroid belt:
contaminated at least 3 times 

• During Jup’s rapid gas accretion

• During Jup, Sat’s outward migration (Grand 
Tack)

• During LHB instability (Nice model)
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Kuiper belt: 
contaminated 2-3 times

• During Jupiter’s rapid gas accretion 

• During Jup’s inward migration

• Radial mixing during Nice model instability
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Extreme radial mixing!

Raymond et al 2012
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