

Diffraction model for the external occulter of the solar coronagraph ASPIICS

Raphaël Rougeot

OCA, Nice - 14/05/2018

Outline

- 1) Proba-3 mission and ASPIICS
- 2) Diffraction from external occulters
 a) How to compute diffraction
 b) Diffraction patterns for several occulters
- 3) Penumbra profile
- 4) Conclusion

Proba-3 mission and ASPIICS

ESA Proba-3 mission

- In-orbit demonstration of precise Formation Flying
- Two spacecraft flying **150m** apart, controlled with a millimeter accuracy

Occulter Spacecraft

Coronagraph Spacecraft

ESA Proba-3 mission

- In-orbit demonstration of precise Formation Flying
- Two spacecraft flying **150m** apart, controlled with a millimeter accuracy
- The formation will be **co-aligned with the Sun** during the **6-hours** apogee phase

Solar coronagraph ASPIICS

- Associtation de Satellites Pour l'Imagerie et l'Interférométrie de la Couronne Solaire
- A 1,42m diameter occulting disk carried by the Occulter Spacecraft
 A 5cm Lyot-style coronagraph on the Coronagraph Spacecraft
- Observation of the K-corona
 - Findings on the heating process
 - Alven's waves, dynamics of the plasma
 - Coronal Mass Ejections

Lamy, 2010 Renotte, 2015

White light [540nm ; 570nm] 2,8 arcsec/pixel High cadence

The corona of the sun is much fainter than the solar disk itself
 Observation in white light requires perfect eclipse conditions

• Major issue in solar coronagraphy: the Sun is an extended light source

 The diffraction pattern must be known over a large spatial extent *≠* stellar coronagraphy

How to compute diffraction?

	Apodisation	No Axis-symmetry	
Brute force 2D FFT	V	V	Rougeot & Aime, 2018
Analytical Hankel transform	٧	X	Aime, 2013
Vanderbei et al. Approach	٧	O (periodicity)	Vanderbei, 2003
Lommel series	X	X	Aime, 2013
Maggi-Rubinowicz representation Boundary diffraction integral	X	V	Cady, 2012 Born & Wolf

How to compute diffraction

• Brute force 2D FFT

The occulter is padded in a 2D arrays

$$\Psi_{z}(x, y) = \mathcal{F}^{-1} \left[\mathcal{F} \left[\Psi_{0}(x, y) \right] \times \exp(-i\pi\lambda z(u^{2} + v^{2})) \right]$$

Occulter Fresnel filter

Condition from the Fresnel filter: $\sigma > \sqrt{\frac{Kz}{\lambda}}$

Consequence: K of very large size

In Rougeot & Aime 2018, we tried 156000 x 156000, not sufficient for petalized shape

Sampling σ

Size K

How to compute diffraction

Maggi-Rubinowicz representation

Requires a binary mask (1 or 0)

$$\Psi_z(x, y) = -\Psi_z^{(d)}(x, y)$$
 in the geometrical shadow
 $\Psi_z(x, y) = \Psi_0(x, y) - \Psi_z^{(d)}(x, y)$ otherwise

Sampling of the occulter edge must be carefully chosen

Cady, 2012 Born & Wolf Rougeot & Aime, 2018

• The **sharp-edged** occulting disk

Occulting ratio of 1,05 solar radius at z=144m

• The **sharp-edged** occulting disk

The bright spot of Arago (or Poisson... demonstrated by Fresnel)

• The **sharp-edged** occulting disk

• The **apodized** occulting disk Variable radial transmission

• The **apodized** occulting disk

• The serrated (or petalized) occulter

In stellar coronagraphy, the reasonning starts from the ideal apodized occulter

The petalized occulter is the **discrete substitute**

Cady, 2006 Vanderbei et al., 2007

• The serrated (or saw-toothed) occulter

In **solar coronagraphy**, the reasonning is well different!

The diffraction occurs perpendicularly to the edge A toothed disc rejects the light outside the central region

Boivin (1978) predicted the radius of the dark inner region of the diffraction pattern based on geometrical considerations

• We numerically verified the geometrial predictions of Boivin (1978)

Rougeot & Aime, 2018

• The serrated (or saw-toothed) occulter

Penumbra profile

• Convolution of the diffraction pattern $|\Psi_z(x, y)|^2$ with the solar disk Centre-to-limb darkening function

Penumbra profiles

• The **sharp-edged** occulting disk

R.Rougeot

Penumbra profiles

Penumbra profiles

Conclusion

Conclusion

- Model of diffraction for external occulters in solar coronagraphy
 - Limits of Fresnel diffraction integrals using 2D FFT
 - Maggi-Rubinowicz representation
- Assessement of the theoretical performance of serrated occulters
- References
 - Aime C. 2013, A&A, 558, A138
 - Rougeot R., Flamary R., Galano D., Aime C. 2017, A&A, 599, A2
 - Rougeot R., Aime C. 2018, A&A, 612, A80

Other works

- Propagation of the diffracted wavefronts inside the Lyot-style coronagraph
 - end-to-end performance in straylight rejection
 - impacts of the size of the internal occulter and the Lyot stop
 - PSF in the vignetting zone
- On-going/future works:
 - optical aberrations of the optics
 - effects of surface roughness scattering

Questions?

Thank you for your attention!

- **Propagation of the diffracted wavefront** from one plane to the next one:
 - Fourier optics formalism
 - ideal optics
 - perfect axis-symetric geometry
- Numerical implementation: successive FFT with arrays of large size

• Objective:

- estimate the level and spatial distribution of the residual diffracted sunlight
- address the rejection performance of the coronagraph

• Intensity in plane O', where the internal occulter is set

• Intensity in plane O', where the internal occulter is set

• Intensity in plane O', where the internal occulter is set

• Intensity in plane C, where the Lyot stop is set

• Intensity in plane C, where the Lyot stop is set

• Intensity in plane C, where the Lyot stop is set

• Intensity in plane D, final focal plane with the detector

R.Rougeot

• Intensity in plane D, final focal plane with the detector

• Impact of sizing the internal occulter and the Lyot stop Intensity on plane D, the final focal plane

Impact of sizing the internal occulter and the Lyot stop

• PSF in the vignetted zone

Annex on diffraction formulations

2D FFT technique

The Fresnel filter $\exp(i\pi\lambda zu^2)$ has its phase varying as u^2 At the edge of the array, $u_c = 1/2\sigma$

We impose that the (maximum) phase variation at the edge of the array is $<\pi$

$$\sigma > \sqrt{\frac{\lambda z}{K}}$$

Consequence: $\sigma \searrow \Longrightarrow K \nearrow$

2D FFT technique

Very sensitive to numerical sampling: impact of the size of the array

2D FFT technique

Very sensitive to numerical sampling: impact of sampling

The Hankel transformation

Fourier wave optics formalism

Fresnel free-space propagation

Axis-symmetric (apodized) occulter

$$\Psi_{z}(x,y) = \left(1 - f(r)\right) \circledast \frac{1}{i\lambda z} \exp\left(\frac{i\pi}{\lambda z}(x^{2} + y^{2})\right)$$

$$(\Psi_{z}(r)) = \frac{\varphi_{z}(r)}{i\lambda z} \int_{0}^{R} 2\pi\rho \times f(\rho) \times \exp\left(\frac{i\pi\rho^{2}}{\lambda z}\right) \times J_{0}\left(\frac{2\pi\rho r}{\lambda z}\right) d\rho$$
Radial apodization

Diffraction at z **Radial function**

Lommel series – decomposition into series (Aime, 2013)

The Hankel transformation

Fresnel free-space propagation

Axis-symmetric (apodized) occulter

$$\Psi_{z}(x,y) = \left(1 - f(r)\right) \circledast \frac{1}{i\lambda z} \exp\left(\frac{i\pi}{\lambda z}(x^{2} + y^{2})\right)$$

Radial apodization

$$\Psi_{z}(r) = \frac{\varphi_{z}(r)}{i\lambda z} \int_{0}^{R} 2\pi\rho \times f(\rho) \times \exp\left(\frac{i\pi\rho^{2}}{\lambda z}\right) \times J_{0}\left(\frac{2\pi\rho r}{\lambda z}\right) d\rho$$

Lommel series: decomposition into series (Aime, 2013)

Vanderbei et al. approah

Based on Fresnel diffraction theory For serrated or petal-shaped occulter, i.e. a periodic pattern by rotation

$$\Psi_{z}(r,\theta) = \Psi_{z}^{apod}(r) + \sum_{j=1}^{\infty} f_{1}(j,N_{t}) \times \int_{0}^{R+\Delta} f_{2}(j,\rho) \times J_{jN_{t}}\left(\frac{2\pi r\rho}{\lambda z}\right) \rho d\rho$$

In stellar coronagraphy:

 $N_t \approx 20$, and very small working angles: j=1 dominates

In solar coronagraphy:

 $N_t \approx 100 - 1000$, and large region (671mm): the computation is very heavy

Penumbra and Boivin radii

Convolution of the diffraction intensity $|\Psi_z(x, y)|^2$ with the solar stenope image Includes limb darkening function

We can predict the penumbra depth for serrated occulters:

The deepest umbra is achieved when:

Boivin radius(N_t , Δ) > r_{sun}

The second parameter is the intensity level of the diffraction pattern

→ Large number of teeth preferred!

