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Proba-3 mission and ASPIICS
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Proba-3 mission

• In-orbit demonstration of precise Formation Flying

• Two spacecraft flying 144m apart, controlled with a millimeter accuracy

• The Occulter Spacecraft will carry a 1,42m 
diameter occulter disk

• The Coronagraph Spacecraft will fly the 
solar coronagraph
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Proba-3 mission

• The formation will be co-aligned with the Sun during the 6-hours apogee phase
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Solar coronagraph ASPIICS

• Associtation de Satellites Pour l’Imagerie et l’Interférométrie de la Couronne Solaire

• ASPIICS in a nutshell:
- white light [540nm ; 570nm]
- 2,81 arcsec/pixel
- 3 polarizers
- high cadence

• Observation of the K-corona:
- Findings on the heating process
- Alven’s waves, dynamics of the plasma
- Coronal Mass Ejections

12/02/2018 R.Rougeot 6



Solar coronagraph ASPIICS

• Hybrid externally occulted Lyot-style solar coronagraph

A CO’B DO

L1 L2

Lyot stop Focal planePupil

L3

External occulter

Focal plane

Internal Occulter

144,348m

710mm 25mm
1,66mm

24,25mm

330,348mm
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Diffraction by an external occulter
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Diffraction by an external occulter

λ=550nm

…

R=710mm

z=144.348m

Point source at ∞

External occulter
Plane of observation
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Planar wave front

𝑁𝑓 =
𝑅2

𝜆𝑧
≈ 6400

r

Fresnel diffraction



Diffraction by an external occulter

Major point in solar coronagraphy: the Sun is an extended source!

We must:
- know the diffraction pattern over a large extent
- perform a convolution with the solar disk
- what happens in the centre (few λ/D) is not sufficient!

Rsun=16.2’

rsun=671mm
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≠ stellar coronagraphy



We investigated several numerical methods to compute diffraction (solar case):

• Analytical Hankel transformation:
+ Exact calculation
- Axis-symmetry required (only radial apodisation), computational time

• Brute force 2D FFT to compute the two dimension Fresnel integrals:
+ Any type of occulters
- Strong sampling requirements, very large size of arrays (order 105 to 106)

• Vanderbei et al. (2007) approach:
+ Expands the Fresnel integral into a series
- Not suitable for our solar case

• Maggi-Rubinowicz representation, the boundary diffraction integral:
+ Fast and accurate
- Requires a 1-or-0 occulter (no apodization)

Diffraction by an external occulter
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Diffraction by an external occulter

• The sharp-edged occulting disk

Occulting ratio of 1,05 solar radius at z0=144m

R=710mm
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Diffraction by an external occulter

• The sharp-edged occulting disk

The bright spot of Arago (or Poisson… demonstrated by Fresnel)

Geometrical umbra
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Diffraction by an external occulter

• The sharp-edged occulting disk

Bright spot of Arago Transition shadow/light
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Diffraction by an external occulter

• The apodized occulting disk

Variable radial transmission 

R=710mm

Δ
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Diffraction by an external occulter

• The apodized occulting disk
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Diffraction by an external occulter
• The serrated (or petalized) occulter

In stellar coronagraphy, the reasonning starts from the ideal apodized occulter

The petalized occulter is the discrete substitute
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𝜏𝑎𝑝𝑜𝑑 𝑟 = ∫ 𝜏𝑝𝑒𝑡𝑎𝑙 𝑟, 𝜃 𝑑𝜃

Cady, 2006
Vanderbei et al., 2007



Diffraction by an external occulter
• The serrated (or saw-toothed) occulter

In solar coronagraphy, the reasonning is well different!

The diffraction occurs perpendicularly to the edge
A toothed disc rejects the light outside the central region

12/02/2018 R.Rougeot 18

Boivin’s radius

Boivin (1978) predicted the radius of the 
dark inner region of the diffraction pattern 
based on geometrical considerations 

Koutchmy, 1988



• The serrated (or saw-toothed) occulter

Diffraction by an external occulter

R=710mm

Δ

Nt teeth Nt = 1024  ;  Δ=20mm

12/02/2018 R.Rougeot 19



• The serrated (or saw-toothed) occulter

Diffraction by an external occulter

Occulter: 512-teeth, 10mm Modulus Ψ𝑧 𝑥,𝑦 Phase ∠Ψ𝑧 𝑥,𝑦
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• The serrated (or saw-toothed) occulter

Diffraction by an external occulter

Occulter: 1204-teeth, 20mm Modulus Ψ𝑧 𝑥,𝑦 Phase ∠Ψ𝑧 𝑥,𝑦
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• The serrated (or saw-toothed) occulter

Diffraction by an external occulter
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• The serrated (or saw-toothed) occulter

Diffraction by an external occulter

A

A Dark inner region
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• The serrated (or saw-toothed) occulter

Diffraction by an external occulter

A

A Dark inner region

Intermediate regionB
B
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• The serrated (or saw-toothed) occulter

Diffraction by an external occulter

A

A Dark inner region

Intermediate region

Fully illuminated region

B

C

B

C
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Diffraction by an external occulter

• We numerically verified the geometrial predictions of Boivin (1978)

Size of teeth ↗

𝑟𝑠𝑢𝑛
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• The serrated (or saw-toothed) occulter

Diffraction by an external occulter
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Penumbra profiles
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Penumbra profiles

Major point in solar coronagraphy: the Sun is an extended source!

To compute the penumbra, we must:
- know the diffraction pattern over a large extent
- perform a convolution with the solar disk

Rsun=16.2’

rsun=671mm
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Penumbra profiles

Major point in solar coronagraphy: the Sun is an extended source!
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Penumbra:∫ Diffraction x Solar image

Rsun=16.2’

Solar image



Penumbra profiles

• The sharp-edged occulting disk
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Diffraction

Purely geometrical



Penumbra profiles

• The serrated (or saw-toothed ) occulter
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Δ=20mm Nt=464

Δ increasesNt increases



Penumbra profiles

• The serrated (or saw-toothed ) occulter
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Integrated illumination over 
the pupil, normalized to the 
sharp-edged disk case

Boivin radius 𝑁𝑡, Δ > 𝑟𝑠𝑢𝑛 =671mm



Propagation inside the coronagraph
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Propagation inside the coronagraph
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A CO’B DO

L1 L2

Lyot stop Focal planePupil

L3

External occulter

Focal 
plane

Internal Occulter

• The hybrid externally occulted Lyot solar coronagraph



Propagation inside the coronagraph
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• Propagation of the diffracted wave front from one plane to the next one
- Fourier optics formalism, Fresnel free-space propagation
- Ideal optics
- Perfect axis-symetric geometry

• Integration over the solar disk

• Numerical implementation: successive FFT2 with arrays of large size

• Objective: 
- estimate the level and spatial distribution of the residual diffracted sunlight
- address the rejection performance of the coronagraph



Propagation inside the coronagraph

• Intensity in plane O’, with the internal occulter
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With external occulterWithout external occulter



Propagation inside the coronagraph

12/02/2018 R.Rougeot 38

• Intensity in plane O’, with the internal occulter

With external occulter

Without external occulter
Solar disk image (out-of-focused)



Propagation inside the coronagraph
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• Intensity in plane O’, with the internal occulter

With external occulter

Without external occulter
Solar disk image (out-of-focused)

Internal
occulter



Propagation inside the coronagraph

• Intensity in plane C, with the Lyot stop
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With external occulterWithout external occulter



Propagation inside the coronagraph
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• Intensity in plane C, with the Lyot stop

With external occulter

Without external occulter
(Lyot coronagraph)



Propagation inside the coronagraph
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• Intensity in plane C, with the Lyot stop

With external occulter

Without external occulter
(Lyot coronagraph)

Lyot stop



Propagation inside the coronagraph

• Intensity in plane D, final focal plane with the detector
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With external occulter



Propagation inside the coronagraph
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• Intensity in plane D, final focal plane with the detector

With external/internal  occulters
and Lyot stop

Without external occulter
(Lyot coronagraph)

No occulter and stop
Solar disk image

Just the external occulter
No internal occulter
No Lyot stop



Propagation inside the coronagraph
• Impact of sizing the internal occulter and the Lyot stop

Intensity on plane D, the final focal plane

Fixed Lyot stop Fixed internal occulter
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Propagation inside the coronagraph
• Impact of sizing the internal occulter and the Lyot stop
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Residual diffracted sunlight @ 1.3𝑅⊙

Better rejection

Closer to 
solar edge

PSF in the vignetted zone



Conclusion
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Conclusion
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• Headlines of the presentation:
- the different types of external occulter (in solar coronagraphy)
- the penumbra profiles
- propagation of diffracted light to understand rejection performance

• Reference:
- Aime C., 2013, A&A
- Rougeot R., Flamary R., Galano D., Aime C. 2017, A&A
- Rougeot R., Aime C. 2018, A&A



Conclusion

12/02/2018 R.Rougeot 49

• On-going/future works:
- deviation from ideal optics: scattering, optical aberrations…
- end-to-end performance for the serrated occulters



Questions?

12/02/2018 R.Rougeot 50

Thank you for your attention!

Why a 150m long coronagraph?



Annex
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Diffraction by an external occulter

How to model diffraction? We looked at (when applicable):

* Not introduced in this presentation

** Not suitable for the solar case

Radial apodisation No axis-symmetry

Analytical Hankel transformation √ X

Lommel series* X X

Vanderbei et al. (2017) approach** √ √ (periodic)

Brute force 2D FFT √ √

Rubinowicz representation X √
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The Hankel transformation

Fourier wave optics formalism

Fresnel free-space propagation

Axis-symmetric (apodized) occulter

Ψ𝑧 𝑥, 𝑦 = 1 − 𝑓 𝑟 ⊛
1

𝑖𝜆𝑧
exp

𝑖𝜋

𝜆𝑧
𝑥2 + 𝑦2

Ψ𝑧 𝑟 =
𝜑𝑧 𝑟

𝑖𝜆𝑧
න
0

𝑅

2𝜋𝜌 × 𝑓 𝜌 × exp
𝑖𝜋𝜌2

𝜆𝑧
× 𝐽0

2𝜋𝜌𝑟

𝜆𝑧
𝑑𝜌

Lommel series – decomposition into series (Aime, 2013)

Radial apodization
Diffraction at z
Radial function
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…

Ψ𝑧(𝑟)Ψ0(𝑟)1



2D FFT technique

Fourier wave optics formalism

Fresnel free-space propagation

Occulter of any shape and any transmission (ideally)

Ψ𝑧 𝑥, 𝑦 = Ψ0(𝑥, 𝑦) ⊛
1

𝑖𝜆𝑧
exp

𝑖𝜋

𝜆𝑧
𝑥2 + 𝑦2

Occulter
2D shape + apodisation

Fresnel filterDiffraction at z
2D function
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…

Ψ𝑧(𝑥, 𝑦)Ψ0(𝑥, 𝑦)1



2D FFT technique

The occulter Ψ0(𝑥, 𝑦) is padded in an array 𝐾 × 𝐾 with sampling σ
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Size K

Sampling σ

Usually, for FFT routines:

- The bigger K, the better (padding)

- The smaller σ, more accurate 
computation (high-frequency)



2D FFT technique

An additional condition! 

The Fresnel filter exp 𝑖𝜋𝜆𝑧𝑢2 has its phase varying as u2

At the edge of the array, 𝑢𝑐 = 1/2𝜎

We impose that the (maximum) phase variation at the edge of the array is <π

𝜎 >
𝜆𝑧

𝐾

Consequence: 𝜎 ↘⟹ 𝐾 ↗
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2D FFT technique

Very sensitive to numerical sampling: impact of the size of the array
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2D FFT computation

K↗

Reference curve (Hankel) 



2D FFT technique

Very sensitive to numerical sampling: impact of sampling

12/02/2018 R.Rougeot 58

Sampling S meeting the condition

Sampling too small regarding 
Fresnel filter’s condition

Sampling too large to correctly 
sample the occulter



Vanderbei et al.

The use of serrated external occulters in stellar and solar coronagraphy comes from 
very different reasoning, but the diffraction principle is the same

Vanderbei et al. (2007) introduces another method to compute Fresnel diffraction 
For serrated or petal-shaped occulter, i.e. a periodic pattern by rotation

Ψ𝑧 𝑟, 𝜃 = Ψ𝑧
𝑎𝑝𝑜𝑑

𝑟 +෍

𝑗=1

∞

𝑓1 𝑗, 𝑁𝑡 ×න
0

𝑅+Δ

𝑓2 𝑗, 𝜌 × 𝐽𝑗𝑁𝑡
2𝜋𝑟𝜌

𝜆𝑧
𝜌𝑑𝜌

In stellar coronagraphy:
𝑁𝑡 ≈ 20, and very small working angles:  j=1 dominates

In solar coronagraphy:
𝑁𝑡 ≈ 100 − 1000, and large region (671mm): the computation is very heavy
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High-orders Bessel functions (jNt)Sum up to infinityDiffraction from related apodized occulter

…

Ψ𝑧(𝑥, 𝑦)Ψ0(𝑥, 𝑦)1



Rubinowicz representation

Based on Kirchhoff integral theorem (Born & Wolf ; Cady, 2012)

Requires a “1 or 0” occulter: no apodization

The diffraction is written as a boundary integral along the edge of the occulter

Diffraction disturbance 
= boundary diffraction wave integralGeometrical wave
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Ψ𝑧
(𝑑)

= න
𝜕Ω

𝑊𝑑𝑙

Edge of the occulter



Penumbra for serrated occulters

Convolution of the diffraction intensity |Ψ𝑧 𝑥, 𝑦 |2 with the solar stenope image
Includes limb darkening function

Penumbra:∫ Diffraction x Solar image
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Rsun=16.2’
rsun=671mm

Solar image



Penumbra for serrated occulters
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Diffraction pattern
Solar image

𝐼 𝑥 = 0



Penumbra for serrated occulters
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Diffraction pattern
Solar image

𝐼 𝑥1 ≃ 𝐼(0)



Penumbra for serrated occulters
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Diffraction pattern
Solar image

𝐼 𝑥2 > 𝐼(0)



Penumbra for serrated occulters
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Diffraction pattern
Solar image

𝐼 𝑥 = 0 ↘



Penumbra for serrated occulters
We can predict the penumbra depth for serrated occulters:
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The deepest umbra is achieved when:

Boivin radius 𝑁𝑡 , Δ > 𝑟𝑠𝑢𝑛

The second parameter is the intensity 
level of the diffraction pattern

 Large number of teeth preferred!

𝑟𝑠𝑢𝑛


