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GoalGoal

Lecture 1:
! Model equations for inertial particles & introductory overview of

dynamical systems ideas and tools

Lecture 2:
! Application of dynamical systems ideas and tools (lecture 1) to

inertial particles for characterizing clustering

OutlineOutline

Understanding general properties of inertial particles Understanding general properties of inertial particles 
advected by fluid flowsadvected by fluid flows from a dynamical systems point of view  from a dynamical systems point of view 



Two kinds of particlesTwo kinds of particles
•• same density of the fluid same density of the fluid
•• point-like point-like
•• same velocity of the underlying same velocity of the underlying
  fluid velocity  fluid velocity

Tracers= same as fluid elementsTracers= same as fluid elements

•• density different from that of the fluid  density different from that of the fluid 
•• finite size finite size
•• friction (Stokes) and other forces should be included friction (Stokes) and other forces should be included
•• shape may be important (we assume spherical shape) shape may be important (we assume spherical shape)
•• velocity mismatch with that of the  velocity mismatch with that of the fluid fluid 

Simplified dynamics under Simplified dynamics under 
some assumptionssome assumptions

Inertial particles= mass impurities of finite sizeInertial particles= mass impurities of finite size



Relevance of inertial particlesRelevance of inertial particles

Rain dropletsRain droplets

SpraysSprays

PlanetesimalsPlanetesimalsMarine Marine SnowSnow

AerosolsAerosols: : sandsand, , pollution etcpollution etc

Finite-size & mass impurities in fluid flows

BubblesBubbles



……and and PyroclastsPyroclasts



Particle DynamicsParticle Dynamics

bouyancybouyancy

Maxey Maxey & & Riley Riley (1983)(1983)
Auton et al (1988)Auton et al (1988)

 Stokes drag Faxen correction Stokes drag Faxen correction

Added mass Added mass 

Basset memory termBasset memory term

Single particleSingle particle
Particle: Particle: rigid sphere, radius a, rigid sphere, radius a, mass mass mmpp;;
passive => no feedback on the passive => no feedback on the fluidfluid

Fluid around Fluid around the the particleparticle::  Stokes flowStokes flow



Simplified dynamicsSimplified dynamics
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 prescibed fluid velocity field
(e.g. from Navier Stokes or random)

two adimensional 
control parameters  St & !

As a further simplification we will ignore gravityAs a further simplification we will ignore gravity



Starting point of this lectureStarting point of this lecture

Let’s forget that we are studying particles moving
in a fluid! What do we know about a generic system
of nonlinear ordinary differential equations?

Tracers                          Inertial particlesTracers                          Inertial particles



Dynamical systemsDynamical systems

Autonomous ODEAutonomous ODE

non-autnonomous ODE non-autnonomous ODE 

x(t+1)=f(x(t))x(t+1)=f(x(t)) Maps  (discrete time)Maps  (discrete time)    

d+1d+1

PDEsPDEs d->d->""



Examples of  ODEsExamples of  ODEs

Lorenz modelLorenz model

From MechanicsFrom Mechanics
(Hamiltonian systems)(Hamiltonian systems)

i=1,N  => d=2Ni=1,N  => d=2N

d=3d=3

withwith



Some nomenclatureSome nomenclature
The space spanned by the system variables is called phase space

Exs: N particles  Exs: N particles  (2xd)xN (2xd)xN dimensionsdimensions

Lorenz modelLorenz model 3 dimensions3 dimensions

A point in the phase spaceA point in the phase space
 identifies  identifies the the system statesystem state
A A trajectorytrajectory is the time is the time
succession of points in the succession of points in the 
phase spacephase space

For For tracerstracers the phase space coincides with the real space the phase space coincides with the real space
For For inertial particlesinertial particles the phase space accounts for both  the phase space accounts for both 
particleparticle’’s position and velocitys position and velocity  

We can distinguish two type of dynamics in phase-spaceWe can distinguish two type of dynamics in phase-space



Conservative & dissipativeConservative & dissipative
Given a set of initial conditions Given a set of initial conditions distributed with a given densitydistributed with a given density

Given           how does           evolve?Given           how does           evolve?

Continuity equation ensuringContinuity equation ensuring

withwith

Density is conserved along the flow as in incompressible Density is conserved along the flow as in incompressible 
fluids ==>phase space volumes fluids ==>phase space volumes are conservedare conserved

Conservative dynamical systems   (Liouville theorem)Conservative dynamical systems   (Liouville theorem)

Volumes are exponentially contracted as the integral of Volumes are exponentially contracted as the integral of 
the density the density is constant => density has to grow somewhereis constant => density has to grow somewhere

Dissipative dynamical systemsDissipative dynamical systems



 Examples of dissipative systems Examples of dissipative systems
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The harmonic pendulum with frictionThe harmonic pendulum with friction

vv

xx

vv

xx

timetime

Phase-space volumes Phase-space volumes are are 
exponentially contractedexponentially contracted
to the point (x,v)=(0,0) to the point (x,v)=(0,0) 
which is an which is an attractorattractor
for the dynamicsfor the dynamics  

The existence of an attractor (set of dimension smaller than thatThe existence of an attractor (set of dimension smaller than that
of the phase space where the motions take place)of the phase space where the motions take place) is a generic  is a generic 

feature of dissipative feature of dissipative dynamical systemsdynamical systems



Lorenz modelLorenz model

Stability MatrixStability Matrix

positivepositive

attractorsattractors can be strange objects can be strange objects



Inertial particles have a dissipative dynamicsInertial particles have a dissipative dynamics

Uniform contraction in phase spaceUniform contraction in phase space
as in Lorenz modelas in Lorenz model



Examples of conservative systemsExamples of conservative systems
Hamiltonian systems are conservative, butHamiltonian systems are conservative, but

the reverse is not truethe reverse is not true

Nonlinear pendulumNonlinear pendulum

L
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##

##

Phase spacePhase space

In conservative systems there are no attractorsIn conservative systems there are no attractors



TracersTracers
Incompressible flows: conservativeIncompressible flows: conservative

Compressible flows: dissipativeCompressible flows: dissipative

E.g. tracers on the surface of a E.g. tracers on the surface of a 
3d incompressible flows3d incompressible flows

visualization of an attractorvisualization of an attractor



Basic questionsBasic questions

! Given the initial condition x(0),  when does exists
a solution? I.e. which properties f(x) must
satisfy?

! When solutions exist, which type of solutions are
possible and what are their properties?



Theorem of existence and uniquenessTheorem of existence and uniqueness

if f is continuous with the if f is continuous with the Lipschitz condition 
(essentially if f is differentiable)

The solution exists and is uniqueThe solution exists and is unique

with x(0) givenwith x(0) given

CounterexampleCounterexample

with x(0)=0with x(0)=0 two solutionstwo solutions &&

Non-Lipschitz in x=0Non-Lipschitz in x=0



Which kind of solutions?Which kind of solutions?
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Limit cycle Limit cycle 
(asymptotically periodic)(asymptotically periodic)

(pendulum with friction)(pendulum with friction)

(Van der Pool oscillator)(Van der Pool oscillator)
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Strange AttractorsStrange Attractors
(Lorenz model)(Lorenz model)

Different kind of motion can be present in the same systemDifferent kind of motion can be present in the same system
changing the parameterschanging the parameters

In In dissipative systemsdissipative systems motions converge onto an attractor motions converge onto an attractor
and can be regular or irregularand can be regular or irregular



Strange attractorsStrange attractors

Typically, the dynamics on the strange attractorTypically, the dynamics on the strange attractor is  is ergodicergodic
 averages of observables do not depend on  averages of observables do not depend on the initial conditions the initial conditions 
(difficult to prove!)(difficult to prove!)



Strange attractorsStrange attractors
Have complex geometriesHave complex geometries

XX

YY

Non-Smooth geometriesNon-Smooth geometries
Self-similaritySelf-similarity
The points of the trajectory distribute inThe points of the trajectory distribute in
a very singular way a very singular way   

These geometries can be analyzedThese geometries can be analyzed
using tools and concepts from using tools and concepts from 

(multi-)fractal objects (multi-)fractal objects 



Fractality is a generic featureFractality is a generic feature

Hénon mapHénon map

a=1.4 a=1.4 b=0.3b=0.3

Of the strange attractorsOf the strange attractors



Which kind of solutions?Which kind of solutions?
In In conservative systemsconservative systems motions can take place in all the motions can take place in all the
avalaible phase spaceavalaible phase space  and can be regular or irregular. and can be regular or irregular. 
OftenOften coexistence of regular and irregular motions in  coexistence of regular and irregular motions in 
different regions depending on the initial condition (non-ergodic)different regions depending on the initial condition (non-ergodic)

Regular Regular IrregularIrregular

The onset of the mixed regime can be The onset of the mixed regime can be 
understood understood through KAM theoremthrough KAM theorem

In tIn turbulence, tracers, which are urbulence, tracers, which are 
conservative, have irregular motionsconservative, have irregular motions
for essentially all initial conditionsfor essentially all initial conditions
and they visit all the avalaible and they visit all the avalaible 
space filling it uniformly space filling it uniformly 
                ((ergodicity & mixing holdergodicity & mixing hold))



Sensitive dependence on initial conditionsSensitive dependence on initial conditions
In both dissipative and In both dissipative and conservative systemsconservative systems, irregular , irregular 
trajectories display trajectories display sensitive dependence on initial conditionssensitive dependence on initial conditions  
which is the which is the most most distinguishing feature of chaosdistinguishing feature of chaos

Exponential separation of genericExponential separation of generic
infinitesimally close trajectoriesinfinitesimally close trajectories



How to make these observationsHow to make these observations
quantitative?quantitative?

We focus on dissipative systems
which are relevant to inertial particles

We need:We need:

1  To characterize the geometry of strange attactors:1  To characterize the geometry of strange attactors:
        fractal and generalized dimensionsfractal and generalized dimensions

2  To characterize quantitatively the sensitive on initial 2  To characterize quantitatively the sensitive on initial 
    conditions:     conditions: Characteristic Lyapunov exponentsCharacteristic Lyapunov exponents



How to characterize fractals?How to characterize fractals?
Simple objects can be characterized in terms of Simple objects can be characterized in terms of 

the the topological dimension dtopological dimension dTT

PointPoint

CurveCurve

SurfaceSurface

ddTT=0=0

ddTT=1=1

ddTT=2=2

Cantor setCantor set
ddTT=0=0

But dBut dTT seems to be unsatisfatory for more complex geometries seems to be unsatisfatory for more complex geometries

Koch curveKoch curve
ddTT=1=1

{x}{x}$$  RR11

{x,y}{x,y}$$  RR22

(disjoined points)(disjoined points)



Box counting dimensionBox counting dimension
Another way to define the dimension of an objectAnother way to define the dimension of an object

Grey boxesGrey boxes
Contains at least 1 pointContains at least 1 point

# grey boxes# grey boxes

Mathematically more rigorous is to use the Hausdorff dimension equivalent Mathematically more rigorous is to use the Hausdorff dimension equivalent 
to box counting to box counting in most cases.in most cases.



Box counting dimensionBox counting dimension
LL AA

For regular objects the box counting dimension coincides with For regular objects the box counting dimension coincides with the topological onethe topological one
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For fractal object the box counting dimension is larger thanFor fractal object the box counting dimension is larger than
the topological one and is typically a non-integer numberthe topological one and is typically a non-integer number

for more complex objects?for more complex objects?



Hénon attractorHénon attractor

=10=1055 points points

Slope
Slope%%1.26 

1.26 

Effect of finite extensionEffect of finite extension

Bending due to lack of pointsBending due to lack of points

DDFF=1.26=1.26

For the LorenzFor the Lorenz
attractorattractor
DDFF=2.05=2.05



MultifractalsMultifractals: : Generalized dimensionsGeneralized dimensions
The fractal dimension does not account for The fractal dimension does not account for fluctuations, fluctuations, 
characterizes the support of the object but does not characterizes the support of the object but does not 
give give information on the measure properties information on the measure properties i.e. the way i.e. the way 
points distribute on it. points distribute on it. 

Local fractal dimensionLocal fractal dimension

Sum over all occupied boxesSum over all occupied boxes

D(q) characterize the fluctuations of the measure on the attractorD(q) characterize the fluctuations of the measure on the attractor



Generalized dimensionsGeneralized dimensions

n integer: controls the probability to find n particles n integer: controls the probability to find n particles in a ball of size rin a ball of size r

Fractal dimensionFractal dimension

Information dimensionInformation dimension

Correlation dimensionCorrelation dimension

In the absence of fluctuations (pure fractals) D(q)=D(0)=DIn the absence of fluctuations (pure fractals) D(q)=D(0)=DFF  

the smaller D(2) the larger the probabilitythe smaller D(2) the larger the probability

xx(t)(t)



Characteristic Lyapunov exponentsCharacteristic Lyapunov exponents
Infinitesimally close trajectories separate exponentiallyInfinitesimally close trajectories separate exponentially

Linearized dynamicsLinearized dynamics

d=1d=1

Finite timeFinite time
Lyapunov exponentLyapunov exponent

Lyapunov exponentLyapunov exponent

d>1d>1

Evolution matrix (time ordered exponential) Evolution matrix (time ordered exponential) 
We need to generalize the d=1 treatment to matricesWe need to generalize the d=1 treatment to matrices

(Oseledec theorem (1968))(Oseledec theorem (1968))

Law large numbersLaw large numbers ergodicityergodicity



Characteristic Lyapunov exponentsCharacteristic Lyapunov exponents

Positive & symmetricPositive & symmetric

Finite time Lyapunov exponentsFinite time Lyapunov exponents

Oseledec-->Oseledec--> if ergodicif ergodic

Lyapunov exponentsLyapunov exponents

What is their physical meaning?What is their physical meaning?



Characteristic Lyapunov exponentsCharacteristic Lyapunov exponents
&&1              1              => => growth rate of infinitesimal segmentsgrowth rate of infinitesimal segments
&&11++&&22     =>      => growth rate of infinitesimal surfacesgrowth rate of infinitesimal surfaces
&&11++&&22++&&3 3 => => growth rate of infinitesimal volumesgrowth rate of infinitesimal volumes
            ::                        ::                                      ::
&&11++&&22++&&33++……++&&d d => => growth rate of infinitesimal phase-space volumesgrowth rate of infinitesimal phase-space volumes

Chaotic systems have at least Chaotic systems have at least &&11>0>0
Conservative systems Conservative systems &&11++&&22++&&33++……++&&dd=0=0  
Dissipative systems    Dissipative systems    &&11++&&22++&&33++……++&&dd<0<0

JJ J+1J+1
DDLL

nn11

% %

22

Lyapunov dimensionLyapunov dimension
(Kaplan & Yorke 1979)(Kaplan & Yorke 1979)

One typically hasOne typically has D(1) D(1)''DDLL
The equality holding for specific systemsThe equality holding for specific systems



Lyapunov dimensionLyapunov dimension

If we want to cover the ellipse with boxes of sizeIf we want to cover the ellipse with boxes of size

Number of boxesNumber of boxes

ExampleExample
&&11>0 >0 &&22<0<0

|| ||



Finite time Fluctuations of LEFinite time Fluctuations of LE

For finite t For finite t ((’’s are fluctuating quantities, which can be s are fluctuating quantities, which can be 
characterized in terms of Large Deviation Theorycharacterized in terms of Large Deviation Theory

In generalIn general

The rate function S can be linked to the generalized dimensionsThe rate function S can be linked to the generalized dimensions
(see e.g. (see e.g. Bec, Horvai, Bec, Horvai, Gawedzki PRL 2004) PRL 2004)



SummarySummary
•• Inertial particles & tracers in incompressible flows are examples Inertial particles & tracers in incompressible flows are examples
of dissipative & conservative nonlinear dynamical systemsof dissipative & conservative nonlinear dynamical systems

•• Nonlinear dynamical systems are typically chaotic (at least one Nonlinear dynamical systems are typically chaotic (at least one
positive Lyapunov exponent)positive Lyapunov exponent)

•• While chaotic and mixing conservative systems spread their While chaotic and mixing conservative systems spread their
trajectories uniformly distributing in phase space,  dissipativetrajectories uniformly distributing in phase space,  dissipative
systems evolve onto an attractor (set of zero volume in phase space)systems evolve onto an attractor (set of zero volume in phase space)
developing singular measures characterized by multifractaldeveloping singular measures characterized by multifractal
propertiesproperties

Next lecture we focus on inertial particles their dynamicsNext lecture we focus on inertial particles their dynamics
in phase space & clustering in position spacein phase space & clustering in position space



Reading listReading list
Dynamical systems:Dynamical systems:

•• J.P. Eckmann & D. Ruelle  J.P. Eckmann & D. Ruelle ““Ergodic theory of chaos and strange attractors””
    RMP 57, 617 (1985)    [Very good review on dynamical systems]RMP 57, 617 (1985)    [Very good review on dynamical systems]

Books (many introductory books e.g.):Books (many introductory books e.g.):
• M. Cencini, F. Cecconi and A. Vulpiani
Chaos: from simple models to complex systems
World Scientific, Singapore, 2009
ISBN 978-981-4277-65-5 

• E. Ott 
  Chaos in dynamical systems
  Cambridge Universtity Press, II edition, 2002
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GoalGoal
Dynamical and statistical properties of particles evolving in turbulenceDynamical and statistical properties of particles evolving in turbulence

focus on clustering observed in experimentsfocus on clustering observed in experiments

Clustering important forClustering important for  
• particle interaction rates by enhancing contact probability

(collisions, chemical reactions, etc...) 
• the fluctuations in the concentration of a pollutant 
• the possible feedback of the particles on the fluid

We consider both turbulent &We consider both turbulent & stochastic flows stochastic flows
Main interest dissipative range (very small scales)Main interest dissipative range (very small scales)

St=0.57St=0.57 St=1.33St=1.33

Wood, Hwang & Eaton (2005)



Turbulent flowsTurbulent flows
In most natural and engeenering settings one is interested in particles
evolving in turbulent flows i.e. solutions of the Navier-Stokes equation

With large Reynolds number

Basic properties
• K41 energy cascade with constant flux ! from large ("L) scale to the
small dissipative scales ("# = Kolmogorov length scale)

• inertial range  ##<< r << L<< r << L “almost” self-similar (rough) velocity field

• dissipative range r < r < ##  smooth (differentiable) velocity field

Fast evolving scale:  characteristic time    --->Fast evolving scale:  characteristic time    --->
(see Biferale lectures)(see Biferale lectures)



Simplified particle dynamicsSimplified particle dynamics

Stokes
time

Fast fluid 
time scale

00!"!"<1<1 heavy heavy
""=1=1 neutral  neutral 
1<1<"!"!33 light light  

Stokes numberStokes number

Density contrastDensity contrast

Assumptions:Assumptions:
Small particles a<<Small particles a<<##
Small local Re  a|u-V|/Small local Re  a|u-V|/$$<<1<<1
No feedback on the fluid (passive particles)No feedback on the fluid (passive particles)
No collisions (dilute suspensions)No collisions (dilute suspensions)  

Very heavy particle Very heavy particle ""=0 =0 
(e.g. water droplets in air (e.g. water droplets in air ""=10=10-3-3))

Minimal interesting modelMinimal interesting model



Inertial Particles as dynamical systemsInertial Particles as dynamical systems

Differentiable at Differentiable at 
small scales (r<small scales (r<!!))

Particle in d-dimensional spaceParticle in d-dimensional space

Well defined dissipative dynamical system in 2d-dimensional phase-spaceWell defined dissipative dynamical system in 2d-dimensional phase-space

Jacobian (stability matrix)Jacobian (stability matrix)

Strain matrixStrain matrix

 constant phase-space contraction rate, i.e. phase-space constant phase-space contraction rate, i.e. phase-space
Volumes contract exponentially with rate -d/St (similarly to Lorenz model)Volumes contract exponentially with rate -d/St (similarly to Lorenz model)



Consequences of dissipative dynamicsConsequences of dissipative dynamics
•• Motion must be studied in 2d-dimensional phase space Motion must be studied in 2d-dimensional phase space
         (kinetic theory vs hydrodynamics)         (kinetic theory vs hydrodynamics)

•• At large times particle trajectories will evolve onto an attractor  At large times particle trajectories will evolve onto an attractor 
  (now dynamically evolving as F(Z,t) depends on time)   (now dynamically evolving as F(Z,t) depends on time) 

••  On the attractor particles distribute according to a singularOn the attractor particles distribute according to a singular
  (statistically stationary) density   (statistically stationary) density !!(X,V,t) whose properties are(X,V,t) whose properties are
  determined by the velocity field  determined by the velocity field and parametrically depends on St &  and parametrically depends on St & ""

••  Such singular density is expected to display multifractal Such singular density is expected to display multifractal 
  properties; in particular, the fractal dimension of the attractor  properties; in particular, the fractal dimension of the attractor
    is expected to be smaller than the phase-space dimension Dis expected to be smaller than the phase-space dimension DFF<2d<2d

•• The motion will be chaotic, i.e. at least one positive Lyapunov  The motion will be chaotic, i.e. at least one positive Lyapunov 
  exponent  exponent



Two asymptoticsTwo asymptotics

Phase-space collapse to real spacePhase-space collapse to real space
where particles distribute uniformlywhere particles distribute uniformly
               D               DFF=d=d

 Particle velocity relax to fluid one Particle velocity relax to fluid one
Becomes a tracerBecomes a tracer

Particle velocity never relaxesParticle velocity never relaxes
Ballistic limit, conservative dynamicsBallistic limit, conservative dynamics
In 2d-dimensional phase spaceIn 2d-dimensional phase space
Uniformly distributed in phase spaceUniformly distributed in phase space
               D               DFF=2d=2d

DDFF

2d2d

dd
StSt

Possible scenariosPossible scenarios



Which scenario for DWhich scenario for DFF? (St<<1 limit)? (St<<1 limit)
St<<1St<<1  !!

(Maxey 1987; (Maxey 1987; Balkovsky, Falkovich, FouxonBalkovsky, Falkovich, Fouxon 2001) 2001)  

strainstrain
vorticityvorticity

""<1 <1  heavy heavy
"">1 >1  light light

d=2 exampled=2 example

Preferential concentrationPreferential concentration



Local analysisLocal analysis

Strain regions    Rotation regions

!<0 !>0
d=3 exampled=3 example

The eigenvalues of the stability The eigenvalues of the stability matrix connect to those of the strainmatrix connect to those of the strain
matrix matrix from which one can see that from which one can see that rotatingrotating regions expell (attract) regions expell (attract)
heavy (ligth) particles heavy (ligth) particles           (Bec JFM 2005)        (Bec JFM 2005)



 Tracers in Incompressible & Tracers in Incompressible &
compressible flowscompressible flows

DissipativeDissipative
 fractal attractor with fractal attractor with

DDFF<d<d
DDFF

2d2d

dd

StSt

Thus for St-->0 particles behave approximatively Thus for St-->0 particles behave approximatively 
as tracers in compressible as tracers in compressible flows in dimension dflows in dimension d

expected scenarioexpected scenario
DDFF<d implies clustering in <d implies clustering in 
real space, i.e. the projectionreal space, i.e. the projection
of the attractor in real spaceof the attractor in real space
will be also (multi-)fractalwill be also (multi-)fractal



Clustering in real & phase spaceClustering in real & phase space

(Sauer & Yorke 1997, Hunt & Kaloshin 1997)(Sauer & Yorke 1997, Hunt & Kaloshin 1997)

Fractal with Fractal with DDFF<d embedded in <d embedded in a D=2d-dimensional (X,V)-phase space, a D=2d-dimensional (X,V)-phase space, 
looking at positions only looking at positions only amounts to project it onto a d-dimensional space.amounts to project it onto a d-dimensional space.

Which will be the observed fractal dimension dWhich will be the observed fractal dimension dFF in position space? in position space?

For For ““isotropicisotropic”” fractals and  fractals and ““genericgeneric”” projections  projections 

So we expect:So we expect:
•• fractal clustering in physical space fractal clustering in physical space
  with   with ddFF==DDF F when Dwhen DF F <d and<d and d dFF=d when =d when DDFF>d>d

••    existence of critical existence of critical StSt!!  above above whichwhich
   no clustering is observed   no clustering is observed StSt!! StSt

DDFF((StSt))

ddFF((StSt))
dd

2d2d



Phase space dynamicsPhase space dynamics
St<<1St<<1 St>1St>1

Enhanced relative velocity
by caustics

Enhanced encounters
by clustering

r=a1+a2

(Falkovich lectures)(Falkovich lectures)

CollisionCollision
raterate



Next slidesNext slides
•• Verification of  the above picture  Verification of  the above picture 
  mainly numerical studies, see Toschi lecture for details on the methods  mainly numerical studies, see Toschi lecture for details on the methods

•• How generic ? How generic ?
  comparison between turbulent and simplified flows  comparison between turbulent and simplified flows
    dissipative range physics <->dissipative range physics <-> smooth  smooth stochastic stochastic velocity fieldsvelocity fields

••   Study of simplified models for systematic numerical Study of simplified models for systematic numerical
  and/or analytical investigations  and/or analytical investigations
    uncorrelated stochasticuncorrelated stochastic velocity fields  velocity fields Kraichnan model Kraichnan model 
      (Kraichnan 1968, Falkovich, Gawedzki & Vergassola RMP 2001(Kraichnan 1968, Falkovich, Gawedzki & Vergassola RMP 2001))



Model velocity fieldsModel velocity fields
  Time correlated, random, smooth  flows:
    Ornstein-Uhlenbeck dynamics for a few Fourier modes chosen so to have
    a statistically homogeneous and isotropic velocity field

    it can be though as a fair approximation of a Stokesian velocity field

As few modes are considered particles can be evolved As few modes are considered particles can be evolved without building without building 
the whole velocity field, but just computing the whole velocity field, but just computing it where the particles areit where the particles are

AdvantageAdvantage



Kraichnan modelKraichnan model
Gaussian, random velocity with zero mean and correlationGaussian, random velocity with zero mean and correlation

Spatial correlationSpatial correlation
(smooth to mimick dissipative range)(smooth to mimick dissipative range)

We focus on 2 particle motion allowing for Lagrangian numerical
schemes so to avoid to build the whole velocity field 

pp
••  good approximation for particles with very large Stokes time !p>>TL=L/U
   (TL=integral time scale in turbulence)
• time uncorrelation => no persistent eulerian structures
  only dissipative dynamics is acting (no preferential concentration)
• reduced two particle dynamics amenable of analytical approaches
• can be easily generalized to mimick inertial range physics

 non smooth generalization non smooth generalization
to  to  mimick inertial rangemimick inertial range0<h<10<h<1



Kraichnan modelKraichnan model
Thanks to time uncorrelation we can write a Fokker-Planck equation forThanks to time uncorrelation we can write a Fokker-Planck equation for
The joint pdf of separation and velocity differenceThe joint pdf of separation and velocity difference

By rescaling By rescaling The statistics only depends onThe statistics only depends on
The Stokes number The Stokes number 

Non-smooth generalizationNon-smooth generalization

Scale dependent Scale dependent 
Stokes numberStokes number

Tracer limitTracer limit
Ballistic limitBallistic limit

pp pp

(Falkovich et al 2003)(Falkovich et al 2003)



 clustering in Kraichnan model clustering in Kraichnan model

DD22(St)(St)
dd22(St)(St)

d=2d=2

From long time averages of two particles motionFrom long time averages of two particles motion Different projectionsDifferent projections
X,VX,Vxx V Vxx,V,Vyy…… give  give 
equivalent resultsequivalent results

Evidence of subleadingEvidence of subleading
terms, fits must be doneterms, fits must be done

with carewith care

Bec, MC, Hillerbrandt & Turitsyn 2008Bec, MC, Hillerbrandt & Turitsyn 2008

<-Phase-space<-Phase-space
<-Position space<-Position space



St<<1 KraichnanSt<<1 Kraichnan

2424StSt

4040StSt
Deviation from dDeviation from d
is linear in Stis linear in St

Bec, MC, Hillerbrand & Turitsyn, (2008)Bec, MC, Hillerbrand & Turitsyn, (2008)
Results agree with Results agree with 
Wilkinson, Mehlig & Gustavsson (2010)
and Olla (2010)and Olla (2010)

IDEA:IDEA:  for St<<1 velocity dynamics isfor St<<1 velocity dynamics is faster than that  faster than that of the separationof the separation
Stochastic averaging methodStochastic averaging method
(Majda, Timofeyev & Vanden Eijnden 2001)(Majda, Timofeyev & Vanden Eijnden 2001)

•• Stationary solution Stationary solution
   for the velocity   for the velocity
•• Perturbative Expansion  Perturbative Expansion 
   in the slow    in the slow variable variable 
   (the separation)   (the separation)



Clustering in random smooth flowsClustering in random smooth flows
(time correlated)(time correlated)

(Bec 2004,2005)(Bec 2004,2005)

!!11=0          D=0          DLL=1=1
!!11++!!22=0      D=0      DLL=2 =2 
!!11++!!22++!!33=0  D=0  DLL=3=3

We can estimate the dimension on the attractor in terms ofWe can estimate the dimension on the attractor in terms of
The Lyapunov dimensionThe Lyapunov dimension

Conditions for DConditions for DLL=integer=integer

Looking at the first, sum of first 2 or sum of first 3Looking at the first, sum of first 2 or sum of first 3
Lyapunov exponents we can have a picture of the Lyapunov exponents we can have a picture of the 

(("",St) dependence of the fractal dimension,St) dependence of the fractal dimension



((!!,St)-phase diagram,St)-phase diagram
d=2d=2 d=3d=3

DDFF=0=0

1<D1<DFF<2<2
DDFF>2>2

2<D2<DFF<3<3

DDFF>3>3

Light Particles beingLight Particles being
attracted in point-likeattracted in point-like
attractors (trappingattractors (trapping

in vortices)in vortices)  

Notice that DNotice that DFF>2 always>2 always
vortical structurevortical structure

Seems to be not effective in trappingSeems to be not effective in trapping
Ligth particlesLigth particles



 Lyapunov dimension for  Lyapunov dimension for !!=0=0
DD LL

-d-d

Critical St for clusteringCritical St for clustering
in position spacein position space

Deviation from dDeviation from d
is quadratic in Stis quadratic in St

in in uncorrelated flowsuncorrelated flows
is linearis linear



Clustering in position spaceClustering in position space

DD LL
-d-d

No clusteringNo clustering

!!=0 heavy=0 heavy



MultifractalityMultifractality

qD
(q+

1)
qD

(q+
1)

qq

n integer: controls the probability to find n particles n integer: controls the probability to find n particles in a ball of size rin a ball of size r

Information dimensionInformation dimension
Correlation dimensionCorrelation dimension

Fractal dimensionFractal dimension



Particles in turbulenceParticles in turbulence

!!=0 St=0 St""
11

!!=0 St
=0=0 St=
0

!!=3 St=3 St""
11

0.16->40->3651283

0.16->3.501052563

0.16->3.50651283

0.16->3.501855123
0.16->70040020483

0.16->40->31855123
St range!Re#N3

DNS summary



Preferential concentrationPreferential concentration

Correlations with the flow are stronger for light particlesCorrelations with the flow are stronger for light particles    

Strain        rotation

Bec et al (2006)Bec et al (2006)

!<0 !>0

P(!>0)

Heavy particles like strain regionsHeavy particles like strain regions
Light particles like rotating regionsLight particles like rotating regions

""=0=0

P(!>0)



Lyapunov exponentLyapunov exponent

HeavyHeavy
St<<1St<<1

!!11((StSt) > ) > !!11((St=0St=0))

stay longer instay longer in
strain-regionsstrain-regions LightLight

!!11((StSt) < ) < !!11((St=0St=0))
staying away from strain-regionsstaying away from strain-regionsDue to Due to 

uneven distribution of particlesuneven distribution of particles Calzavarini, MC, Lohse & Toschi 2008



Lyapunov exponentsLyapunov exponents
This effect is absent This effect is absent in uncorrelatedin uncorrelated
Flows Flows (Kraichnan),  absence of persistent(Kraichnan),  absence of persistent
Eulerian tructures: Eulerian tructures: 
preferential concentration preferential concentration is not effectiveis not effective  
Actually in this case PC Actually in this case PC 
should be ushould be understood as a cumulativenderstood as a cumulative
effect on the particle history effect on the particle history 
(P. Olla 2010)(P. Olla 2010)  

The effect can be analytically studied The effect can be analytically studied 
systematically in correlated stochastic systematically in correlated stochastic 
flows with flows with telegraph noise telegraph noise 
((Falkovich, Musacchio,Piterbarg & Vucelja (2007)

StSt-2/3-2/3

Large St asymptoticsLarge St asymptotics
Valid also in correlated flowsValid also in correlated flows

Expected in turbulence for Expected in turbulence for !!pp>>T>>TLL



((!!,St)-phase diagram,St)-phase diagram
d=3 random flowd=3 random flow

2<D2<DFF<3<3

DDFF>3>3

d=3 turbulenced=3 turbulence

StSt

!!

HeavyHeavy
particlesparticles

LigthLigth
particlesparticles

""11++""22<0<0
""11++""22++""33<0<0

""11++""22++""33>0>0
DDFF>3>3

2<D2<DFF<3<3
DDFF<2<2

Signature of vortex filaments?Signature of vortex filaments?
Which are known to be long-lived in turbulenceWhich are known to be long-lived in turbulence



Lyapunov DimensionLyapunov Dimension

Re=75,185Re=75,185

Light particles stronger clusteringLight particles stronger clustering
DD22!!1 signature of vortex filaments1 signature of vortex filaments

Light particles: neglecting collisions might be a problem!





Clustering of heavy particlesClustering of heavy particles
in position spacein position space

• Dissipative range -->Smooth flow -> fractal distribution
• Everything must be a function of StSt!!  & Re& Re"" only (#=0)

correlation dimension

Related to radial Related to radial 
distribution functiondistribution function

 Sundaram & Collins (1997)

  Zhou, Wexler & Wang (2001)



Correlation Dimension  (Correlation Dimension  (!!=0)=0)

Re"=400
Re"=185

!!Maximum of clustering for StMaximum of clustering for St##$$11
!!DD22 almost independent of Re almost independent of Re""
!!Link between clustering andLink between clustering and
Preferential concentrationPreferential concentration,,



MultifractalityMultifractality

D(q)D(q)!!D(0)D(0)



Briefly other aspectsBriefly other aspects
! How to treat polydisperse suspensions?

" Can we extend the treatment to suspensions of
particles having different density or size (Stokes
number)? Important for heuristic model of collisions

  (for details see Bec, Celani, MC, Musacchio 2005)

! What does happen at inertial scales?
" So far we focused on clustering at very small

scales (in the dissipative range r<!) what does
happen while going at inertial scales (!<<r<<L)?

  (for details see Bec, Biferale, MC, Lanotte, Musacchio & Toschi 2007
     Bec, MC. & Hillerbrandt 2007; Bec, MC, Hillerbrandt & Turitsyn 2008 )



e.g. e.g. !!=0 with St=0 with St1 1 and Stand St22

•• St St11=St=St22 same attractor same attractor
••  StSt11""StSt2 2 ““close attractorsclose attractors””  
•• there is a length scale   there is a length scale  

r>rr>r** r<rr<r**

Polydisperse suspensionsPolydisperse suspensions

<-uncorrelated<-uncorrelated
<-correlated <-correlated 

(through the fluid)(through the fluid)

rr**
Relevant to collisions between Relevant to collisions between 
particles with different Stokesparticles with different Stokes



What does happen in the inertial range?What does happen in the inertial range?

••Voids & structuresVoids & structures
from from !! to L to L

••Distribution ofDistribution of
particles over scales?particles over scales?

••What is theWhat is the
dependence on Stdependence on St!!? ? OrOr
what is the properwhat is the proper
parameter?parameter?



Insights from Kraichnan modelInsights from Kraichnan model

(Bec, MC & Hillenbrand (Bec, MC & Hillenbrand 2007)2007)

h=1 dissipative rangeh=1 dissipative range
h<1 inertial rangeh<1 inertial range

Lo
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l c
or
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n 

dim
en
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The statistics only depends on the local Stokes numberThe statistics only depends on the local Stokes number

Tracer limitTracer limit

Ballistic limitBallistic limit

Particle distribution is no moreParticle distribution is no more
Self-similar (fractal)Self-similar (fractal)
(Balkovsky, Falkovich, Fouxon(Balkovsky, Falkovich, Fouxon  2001)2001)



In turbulence?In turbulence?
Not enough scaling to study local dimensionsNot enough scaling to study local dimensions
We can look at the coarse grained densityWe can look at the coarse grained density

Algebraic tails signature
of voids

Poisson
((!!=0)=0)

!"!"



What is the relevant time scaleWhat is the relevant time scale
of inertial range clusteringof inertial range clustering

Effective compressibilityEffective compressibility

We can estimate the phase-space contraction rate forWe can estimate the phase-space contraction rate for
A particle blob of size r when the Stokes time is A particle blob of size r when the Stokes time is !

For St->0 we have that

It relates to pressure



Time scale of Time scale of clusteringclustering

K41

Low Re- possible corrections due to sweeping

Finite Re corrections on  pressure spectra
experiments [Y. Tsuji and T. Ishihara (2003)]
DNS [T. Gotoh and D. Fukayama (2001)]



Nondimensional contraction Nondimensional contraction raterate

Non-dimensional contraction rateNon-dimensional contraction rate!=7.9 10-3 !=2.1 10-3 !=4.8 10-4

Adimensional contraction rateAdimensional contraction rate



SummarySummary
! Clustering is a generic phenomenon in smooth flows: originates from

dissipative dynamics (is present also in time uncorrelated flows)

! In time-correlated flows clustering and preferential concentration are
linked phenomenon

! Tools from dissipative dynamical systems are appropriate for
characterizing particle dynamics & clustering
" Particles should be studied in their phase-space dynamics
" Clustering is characterized by (multi)fractal distributions
" Polydisperse suspensions can be treated similarly to monodisperse ones

(properties depend on a length scale r*)

! Time correlations are important in determining the properties very for
small Stokes (d2-d!St1 or St2, behavior of Lyapunov exponents)

! In the inertial range clustering is still present but is not scale
invariant, in turbulence the coarse grained contraction rate seems to
be the relevant time scale for describing clustering
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