Characterization of imaged planetary atmospheres: The case of VHS 1256 b at the era of JWST

Laboratoire Lagrange Université Côte d'Azur

5th September 2023

Simon Petrus <u>spetrus@npf.cl</u> Universidad de Valparaíso, Chile

S. Petrus (NPF), P. Palma-Bifani (OCA), G. Chauvin (OCA), M. Bonnefoy (IPAG), D. Demars (IPAG), A. Simonfin (OCA), M. Ravet (IPAG), B. Charnay (LESIA), P. Tremblin (CEA)

Part 1 - Context

Part 1

Context

Context - The diversity of exoplanets

exoplanet.eu/

Context - The diversity of exoplanets

Sensibility of the detection methods Possible different formation/evolution history ??

Context - The diversity of exoplanets

HOW THESE PLANETS HAVE BEEN FORMED ? EVOLVED ?

Objects of interest

Tracers of formation

Spectral features

Data

Planet diversity

Context - Shopping list

What do we know about planetary formation?

Context - Shopping list - Models of formation

Context - Shopping list - Models of formation

Planets

TURBULENT FRAGMENTATION OF A MOLECULAR CLOUD

Molecular cloud

Objects of interest

Tracers of formation

Spectral features

Data

Planet diversity

Context - Shopping list - Fields of investigations

Which objects can we investigate?

Context - Shopping list - Fields of investigations

Disk morphology, composition Observed planets in formation & evolution (TW Hydrae) (system PDS 70)

<u>Characterization of the sample</u> of known exoplanets (architecture, orbital & mass distribution, atmosphere's properties)

The purpose of ForMoSA

Disk morphology, composition Observed planets in formation & evolution (TW Hydrae) (system PDS 70)

MY WORK

of known exoplanets (architecture, orbital & mass distribution, atmosphere's properties)

Objects of interest

Tracers of formation

Spectral features

Data

Planet diversity

Context - Shopping list

How can we determine the formation history?

TURBU. FRAG.

CORE

ACCRETION

14

DISK INSTABILITY

Context - Shopping list - Tracers of formation The metallicity [M/H]

Context - S

The met

Can accrete solid planetesin

⊖→

ext - Shopping list - Tracers of formation		
e metallicity [M/H]	Can be hard to estimate [M/H]Primary	= [M/H]Companio
etion of solids	[M/H]Primary	< [M/H]Companio
e solids (asteroids, netesimals)	[M/H]Primary	≤ [M/H]Companie
15		

Compare these values to the C/O in a planet's atmosphere can bring clues about the amount of solid accreted and its birth location

Context - Shopping list - Tracers of formation

12CO/13CO

rich in ¹³CO

First detection of ¹³CO in TYC 8998-760-1 b

Context - Shopping list - Tracers of formation

There is currently no absolute method to constrain a planet's formation history

Identification — Quantification — Comparison

NEED FOR DIVERSITY AND A HUGE SAMPLE OF PLANETARY

Objects of interest

Tracers of formation

Spectral features

Data

Planet diversity

Context - Shopping list

How can we estimate these properties?

2000 K; log(g) = 4.0 dex; C/O = 0.6

Context - Shopping list - Spectral properties

Large absorption bands $(H_2O, CH_4, etc.)$

T_{eff}, clouds properties

Atomic and molecular absorptions (Na I, K I, CO, VO, FeH, TiO, etc.)

Molecular abundances, RV (inaccurate)

~ 50000

Tiny doublets resolved, line profile, comb of lines

(KI, CO, FeH, etc.)

Accurate RV, v.sin(i), structures of the atmosphere, surface inhomogeneities (doppler imaging)

BT-SETTL models ($R_{\lambda} \sim 8000$)

When T_{eff} increases : Luminosity increases Flux moves to the blue

When log(g) increases : Absorption lines are deeper and broader (degeneracy with [M/H])

Context - Shopping list - Spectral properties

Continuum subtracted

When C/O increases : CO overtones are deeper

Objects of interest

Tracers of formation

Spectral features

Data

Planet diversity

Context - Shopping list

What kind of data can we acquire?

Context - Spectroscopic data

Large absorption bands (H₂O, CH₄)

→ T_{eff}, clouds properties

Context - Spectroscopic data

Atomic and molecular absorptions (Na I, K I, CO, VO, FeH, TiO, etc.)

Molecular abundances, RV (inaccurate)

Context - Spectroscopic data

Wang et al. (2021a)

Tiny doublets resolved, line profile, comb of lines

(KI, CO, FeH, etc.)

Acurate RV, v.sin(i), structures of the atmosphere, surface inhomogeneities (doppler imaging)

Objects of interest

Tracers of formation

Spectral features

Data

Planet diversity

Context - Shopping list

Are we able to perform object comparison?

Context - Shopping list - Planets analogs

>5000 exoplanets discovered so far

Context - Shopping list - Planets analogs

Context - Shopping list - Planets analogs

... OF FORMATION Not sufficient to ... OF EVOLUTION constrain models... ... OF ATMOSPHERE

It exists a population of young, planetary-mass objects, isolated (large separation) in the sky, that have similar spectral properties than exoplanets

Context - Shopping list - Planets analogs

Objects of interest

Tracers of formation

Spectral features

Data

Planet diversity

Context - Shopping list

To constrain

To estimate

To identify

To observ

Part 2 - The X-Shyne library

Part 2

The X-Shyne library

Part 2 - The X-Shyne library

Part 2 - The X-Shyne library

Part 2 - The X-Shyne library Spectra obtained in one shot with few hours of telescope time

L-T transition Cloud cover sediments and breaks-up

Part 2 - The X-Shyne library

OBSERVED SPECTRA

SYNTHETIC ANALYSIS

Bayesian algorithm (Nested sampling)

<u>Atmospheric</u> properties

T_{eff}

C/O

log(g)[M/H] 37

What kind of models? **Cloudy models**

DRIFT PHOENIX Helling et al. (2008)

Tsuji et al. (2002)

BT-Settl Allard et al. (2012)

Ackerman & Marley (2001)

Exo-REM Charnay et al. (2018)

SONORA Marley et al. (2021)

With different complexity, molecules, grains size, clouds formation, etc.

What kind of models? Cloud-less models

2 thermo-chemical instabilities

The energy transport reduces the temperature gradient in the atmosphere

Modification of the P-T profile: mimic the clouds effect

Part 2 - The X-Shyne library

Relation C/O - SpT is **NOT** expected

- Due to models?
- Due to atmospheric structure after the L/T ?

Part 2 - The X-Shyne library

VHS 1256 b a JWST ERS target

Part 3

The case of VHS 1256 b

CO overtones sensible to the <u>**C**/O</u>

K I absorption lines sensible to the surface gravity and the metallicity

Fit on the FULL SED

Exo-REM (clouds) Charnay et al. (2018)

ATMO (cloud free) Tremblin et al. (2018)

Fit on the spectral windows

Exo-REM (clouds) Charnay et al. (2018)

ATMO (cloud free) Tremblin et al. (2018)

log(g) [M/H]

Exo-REM $T_{eff} \sim 1250 \pm 50 \text{ K}$ T_{eff} ~ 1326 ± 2 K ATMO

Dupuy et al. (2020) : $T_{eff} = 1240_{-50}^{+50} K$

Part 3 - The case of VHS 1256 b

Compatible with an L7

There is a difference between both models (Different physics)

Exo-REM log(g) : not determined [M/H] > 0.2 $log(g) \sim 4.25 \pm 0.20 dex$ ATMO [M/H] > 0.32

Dupuy et al. (2020) : $log(g) = 4.55_{-0.11}^{+0.15}$

log(g) compatible with a young object (150-300 Myr)

[M/H] compatible with solar value but we are in the grid's edge

Exo-REM C/O > 0.62C/O > 0.63**ATMO**

Solar value = 0.55

C/O compatible with solar value but we are in the grid's edge

$[M/H]_{VHS 1256 b} > [M/H]_{Solar} (= 0.0)$ $C/O_{VHS 1256 b} > C/O_{Solar} (= 0.55)$

Medium spectral resolution

ATMO posteriors

How does JWST help?

Large wavelength coverage

The most complete spectrum ever obtained for an exoplanet

15 independent spectral windows

Different fits means different posteriors

Strong dispersion for the chemical abundances

Conclusion

Models of formation

Objects of interest

Tracers of formation

Spectral features

Data

Planet diversity

To constrain

To estimate

To identify

To observ

We cannot estimate robustly the tracers of formation

We identify spectral features

We have data

There is currently no absolute method to constrain a planet's formation history

Identification — Quantification — Comparison

NEED FOR DIVERSITY AND A HUGE SAMPLE OF PLANETARY

There is currently no absolute method to constrain a planet's for a ch history identification \rightarrow Quarto ben done for soft of the planet soft of (^{dn}/W) 10

 Microlensing Primary Transit RadialVelocity 10^{4}

- Young planetary-mass brown dwarfs are ideal exoplanetary analogs:
 - To explore their physical & atmospheric properties (together with imaged planets)
 - To push the limitations of atmospheric models
- X-Shyne:
 - An R=8000 VIS/NIR X-Shooter survey of 38 L to mid-T planetary-mass objects
 - Systematic Forward-Modelling analysis using ExoREM & ATMO models

 - Soon, available for the community library & code
- Application to VHS1256 b
 - Hierarchical architecture: probably formed via stellar-like mechanism,
 - Relatively well reproduced by cloud (ExoREM) & cloud-free (ATMO) models
 - \circ T_{eff} & log(g) compatible with L7 SpT & age,
 - M/H & C/O, solar to super-solar, but pointing the current limitations of the models
 - The JWST provided new spectral information inaccessible so far
 - We can define new methods to provide robust estimate of the atmospheric parameters
 - Perspectives: variability study, new/extended models, 1D to 3D

Exploration bulk properties, clouds, chemical abundances, isotopologues, radial & rotational velocities,

Appendices

Iterative process

The Nested sampling (alternative to MCMC) Skilling 2006

Free parameter θ_1

Converge to \mathcal{L}_{max}

Free parameter θ_1

The Nested sampling (alternative to MCMC)

Fit the positions of two Gaussian laws with A_1 , A_2 , σ_1 and σ_2 constant

Nested sampling advantages

- Global exploration of the parameter space
- Immediate identification of local maxima
- Immediate identification of correlations
- Immediate estimation of the statistical evidence (Useful to perform model comparison, not detailed here)

Animation

The Nested sampling (alternative to MCMC)

Fit the positions of two Gaussian laws with A_1 , A_2 , σ_1 and σ_2 constant

Nested sampling advantages

- Global exploration of the parameter space
- Immediate identification of local maxima
- Immediate identification of correlations
- Immediate estimation of the statistical evidence (Useful to perform model comparison, not detailed here)

Context - Shopping list - Tracers of formation

D/H

Morley et al. (2019)

CH₃D between 4 and 5 μm HDO at 3.7 μm JWST

"For objects from 200 to 800 K closer than 10 pc, a protosolar D/H ratio would be readily observable in 2.5 hr"

Morley et al. (2019)

EMPIRICAL ANALYSIS

It exists a trend of the EWs and the spectral type

Young objects have not the same spectral properties than old objects

Part 2 - The X-Shyne library

System Age ~ 150-300 Myr Distance ~ 22 ± 1 pc Dupuy et al. (2020)

Excludes a formation in a disk Hierarchical system formed by stellar mechanism? Solar chemical properties ??? 71

$[M/H]_{VHS 1256 b} > [M/H]_{Solar} (= 0.0)$ $C/O_{VHS 1256 b} > C/O_{Solar} (= 0.55)$

But still compatible with solar at 3 sigma

We need extensions of current grids to conclude

We need to **compare** these properties with the primary

Part 3 - The case of VHS 1256 b

6.65

Part 3 - The case of VHS 1256 b

Bowler et al. (2020)

Variability

Complex atmosphere (inhomogeneous cloud cover, local chemical disequilibrium, etc.)

Parameters estimate representative of the atmosphere?

There are systematics in models

TWA 26

Part 3 - The case of VHS 1256 b

