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• 1- How much global energy dissipation in a turbulent fluid (with or w/o magnetic field) ?

• Role of exact laws to measure dissipation, and role of bi-directional cascades


• 2- How much global energy dissipation in wave turbulence ?


• 3- How much local energy dissipation in a turbulent fluid in the presence of waves (intensity vs. localization) ?


• 4- Statistical properties of kinetic energy dissipation: a link between its third- and fourth- order moments


A few questions on energy  dissipation in turbulence, with or w/o waves

             Rotating stratified flows, MHD, solar wind, galaxies … 

:



Equations & definitions: rotating stratified flows
Stochastic Langevin equation

Skewness and excess kurtosis (both 0 for a Gaussian distribution):

εV = Dt <u2 > =  - p<u3> + …


εθ = Dt <θ2> = - q<u θ2> + …
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modes (see [2]), following the procedure described in detail in [50] for QG initial conditions with
zero vertical velocity. Pressure balance with the Coriolis force in the horizontal is enforced, as well as
hydrostatic momentum balance due to gravity (see [51] for a different implementation in a study of
balanced dynamics). One might note that the time-scale associated with the forcing, in particular in
the case of white noise, may matter in the interactions between waves and eddies, with more waves
for short correlation times, in particular at low Froude number for which N becomes comparable to
1/Dt, where Dt is the time-step [34]. The buoyancy flux Bf , the kinetic energy dissipation edu and the
potential vorticity PV (point-wise invariant in the absence of dissipation) are:

Bf = N hwqi ; edu = n
D
|w|2

E
; PV = f ∂zq � Nwz + w ·rq , (3)

with w = r⇥ u the vorticity. Bf is an energy exchange term with the same physical dimension as
edu. It leads to local changes in density in the presence of gravity waves which needs to be modeled in
large-eddy simulations. Characteristic scales can be defined as the Taylor micro-scale lT that factors in
the dissipation in the inertial range, the dissipation scale hK based on a Kolmogorov spectrum, the
buoyancy scale LB measuring the effect of stratification in the large scales, and the Ozmidov scale `Oz:

lT =

 ⌦
u2↵

hw2i

!1/2

, hK =
⇣ edu

n3

⌘�1/4
, LB =

Urms
N

, `Oz =
⇣ edu

N3

⌘1/2
;

`Oz
hK

=

✓
LB
lT

◆3/2
. (4)

The last expression indicates the multi-scale link in the dynamics of the flow between the development
of turbulence and its stratification. The dimensionless parameters governing the fluid behavior are the
Reynolds, Rossby and Froude numbers, Re, Ro, Fr, with the Prandtl number Pr ⌘ n/k = 1 here:

Re =
UrmsLint

n
, Ro =

Urms
f Lint

, Fr =
Urms
NLint

; Rl =
UrmslT

n
, RB = ReFr2 , (5)

with Rl, RB the Taylor and buoyancy Reynolds numbers. For the purely stratified runs, the forcing
scale L f = 2p/kF is used in the evaluation of the parameters instead of the integral scale Lint. One also
defines the interaction parameter RIB and, when involving gravity through N, the Richardson number
Ri based on an overall vertical gradient of u?, as well as a local gradient Richardson number Rig:

RIB =
w2

rms
N2 =

edu
nN2 =

✓
LB
lT

◆2
, Ri =

N2
⌦
∂zu2

?
↵ , Rig =

N(N � ∂zq)
[(∂zu)2 + (∂zv]2]

, IR =
⌦

Rig
↵

. (6)

The phenomenological evaluation of kinetic energy dissipation, eD = U3
rms/Lint, is based on expressing

that it occurs in an eddy turn-over time, irrespective of the (small) viscosity. When edu becomes
comparable to eD, as in FDT, one has RB = RIB. Note also that Ri, Rig, in the absence of uniform shear,
are based on large-scale shear resulting from the overall nonlinear dynamics. One can also define a
Taylor Froude number Fl and relate it to the other parameters. After simple manipulations, one has:

Fl ⌘ Urms
NlT

=
LB
lT

=
ReFr
Rl

= R1/2
IB =

✓
`Oz
hK

◆2/3
. (7)

The RST runs cover the three regimes identified in [52]: wave-dominated at small [Fr, RB], eddy-wave65

interactions at intermediate values, and the eddy-dominated regime with a resolved turbulent inertial66

range beyond the Ozmidov scale (IR > 1). These three regimes can likely be related to the classification67

proposed in [53] for the nocturnal planetary boundary layer (PBL) into weakly stable, transitional, and68

very stable regimes: when increasing the Froude number, there is a drop in the Richardson number,69

particularly marked in the transition regime, and a sharp increase in eddy diffusivities. We also note70

that, at a given (high) buoyancy Reynolds number, all three regimes can be identified in the energy71

spectra in a given flow, provided LB, `Oz and hK are resolved (see [54] for an analysis of these regimes72
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using a turbulence closure). Different values for RIB can be found when using the energy injection rate73

hFu · ui instead of edu, the two equilibrating only on average. This is particularly relevant when there74

are strong intermittent fluctuations in the system [55,56], and this balance can also be broken in the75

presence of an inverse energy cascade. Finally, the skewness and excess kurtosis of a random variable76

V, with averages taken over three-dimensional (3D) space and with SG
V = 0, KG

V = 0 for a Gaussian,77

are defined as usual, with the following parabolic relation to be tested in this paper, e.g. for V = Bf :78

SV =
D

V3
E

/
D

V2
E3/2

, KV =
D

V4
E

/
D

V2
E2

� 3 ; KV(SV) = aVS2
V + bV (8)

2.2. Overview of the direct numerical simulations79

Table 1. Characteristics of the Navier-Stokes (N), stratified (S) and RST runs with random (R) or QG (Q)
forcing. KM

w is the temporal maximum kurtosis of vertical velocity, TM the final time in units of tNL, and
ResN = kmaxhK the numerical resolution for FDT. [aB, bB] are the fit coefficients for the parabolic law of
the buoyancy flux, ResT = `Oz/hK = F3/2

l is the extent of the fully turbulent range, and IR =
⌦

Rig
↵

is
the averaged gradient Richardson number. ResT and IR mark a clear scaling transition for RST runs.

ID np N Fr Re Rl RB Ro KM
w TM ResN | aB bB ResT IR

N1 128 0 – 306 28 – – 0.1 142 2.0 | 2.8 6.2 – 0.82
N2 512 0 – 821 53 – – 0.06 150 3.7 | 3.9 7.0 – 0.34

S1 512 16. 0.032 3223 162 3.3 – 5.06 42 1.96 | 2.49 7.96 0.51 7.1
S2 512 14. 0.036 3209 55 4.2 – 3.88 64 1.97 | 1.06 8.51 3.0 5.4
S3 512 11.8 0.042 3158 155 5.6 – 5.6 59 1.97 | 5.52 12. 0.79 3.7
S4 512 8. 0.060 3017 134 11. – 15.3 428 1.97 | 13.8 29.4 1.6 1.6
S5 512 5. 0.089 2792 113 22. – 6.09 98 1.90 | 14.6 10.3 3.3 0.72
S6 512 2.95 0.145 2692 93.3 56. – 4.09 41 1.71 | 5.31 8.61 8.6 0.28

R1 128 4.78 0.056 454 43 1.4 0.28 8.7 148 2.3 | 7.2 8.2 0.45 4.1

R2 128 3 0.1 345 31 3.3 0.49 5.5 136 2.2 | 3.1 8.8 1.2 2.7
R3 128 1.4 0.24 299 27 16.6 1.2 1.2 134 2.1 | 3.7 5.6 4.3 1.3
R4 512 1.4 0.36 2231 94 293 1.8 0.37 51 6.2 | 3.1 4.0 25. 0.3

Q1 128 4.78 0.07 631 53 3.2 0.36 10.8 197 2.5 | 3.4 16.5 0.76 3.1
Q2 128 3 0.12 450 38 6 0.6 5.6 169 2.0 | 3.6 9.9 1.7 0.69
Q4 256 3.5 0.11 942 63 11.3 0.55 4.16 91 3.0 | 4.4 10.3 2.1 1.8

Q3 128 1.4 0.29 370 31 30.5 1.4 1.6 1646 1.7 | 1.58 5.5 6.4 0.9
Q5 256 1.4 0.36 694 48 87.5 1.8 1.0 89 3.1 | 1.45 6.2 11.9 0.6
Q7 512 1.4 0.36 1063 62 140 1.8 0.69 183 3.8 | 1.6 5.8 15.3 0.5
Q8 512 1.4 0.40 2641 102 385 1.9 0.8 96 3.1 | 1.7 6.0 33.3 0.3
Q6 256 0.7 0.73 636 44 343 3.7 0.22 86 3.2 | 1.4 3.8 34.3 0.2

We use a variety of DNS (see Table 1). The runs labeled N are FDT (N ⌘ 0, W ⌘ 0); the Si=1,680

runs deal with the Boussinesq equations with W ⌘ 0. The R, Q runs are RST with random or QG81

forcing; all these runs have N/ f0 ⇡ 5, leading to 0.28  Ro  3.7. Smaller Rossby numbers would82

imply the development of a strong inverse energy cascade (see e.g. [57] and references therein), a83

cascade that would be altered by the large-scale forcing when there is insufficient scale separation as84

here. The dependence of kurtosis on skewness for various fields in the presence of both inverse and85

direct energy cascades is left for future work. The linear dimension of the cubic grid is np, varying86

from 128 to 512. The code is a versatile pseudo-spectral formulation of the time-integration of a large87

set of partial differential equations for fluid and plasma turbulence, with efficient hybrid parallelism88

implemented in a periodic box [58]. There is a version of the code in non-cubic geometry, as well as89

with non-periodic boundary conditions in one direction for the incompressible case [59]. TM is the90

extension in terms of turn-over time tNL of the segment of the simulation used to build the statistics,91

with 41  TM  1646 across all runs. Data is gathered roughly four times every tNL, but for purely92
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modes (see [2]), following the procedure described in detail in [50] for QG initial conditions with
zero vertical velocity. Pressure balance with the Coriolis force in the horizontal is enforced, as well as
hydrostatic momentum balance due to gravity (see [51] for a different implementation in a study of
balanced dynamics). One might note that the time-scale associated with the forcing, in particular in
the case of white noise, may matter in the interactions between waves and eddies, with more waves
for short correlation times, in particular at low Froude number for which N becomes comparable to
1/Dt, where Dt is the time-step [34]. The buoyancy flux Bf , the kinetic energy dissipation edu and the
potential vorticity PV (point-wise invariant in the absence of dissipation) are:

Bf = N hwqi ; edu = n
D
|w|2

E
; PV = f ∂zq � Nwz + w ·rq , (3)

with w = r⇥ u the vorticity. Bf is an energy exchange term with the same physical dimension as
edu. It leads to local changes in density in the presence of gravity waves which needs to be modeled in
large-eddy simulations. Characteristic scales can be defined as the Taylor micro-scale lT that factors in
the dissipation in the inertial range, the dissipation scale hK based on a Kolmogorov spectrum, the
buoyancy scale LB measuring the effect of stratification in the large scales, and the Ozmidov scale `Oz:

lT =

 ⌦
u2↵

hw2i

!1/2

, hK =
⇣ edu

n3

⌘�1/4
, LB =

Urms
N

, `Oz =
⇣ edu

N3

⌘1/2
;

`Oz
hK

=

✓
LB
lT

◆3/2
. (4)

The last expression indicates the multi-scale link in the dynamics of the flow between the development
of turbulence and its stratification. The dimensionless parameters governing the fluid behavior are the
Reynolds, Rossby and Froude numbers, Re, Ro, Fr, with the Prandtl number Pr ⌘ n/k = 1 here:

Re =
UrmsLint

n
, Ro =

Urms
f Lint

, Fr =
Urms
NLint

; Rl =
UrmslT

n
, RB = ReFr2 , (5)

with Rl, RB the Taylor and buoyancy Reynolds numbers. For the purely stratified runs, the forcing
scale L f = 2p/kF is used in the evaluation of the parameters instead of the integral scale Lint. One also
defines the interaction parameter RIB and, when involving gravity through N, the Richardson number
Ri based on an overall vertical gradient of u?, as well as a local gradient Richardson number Rig:

RIB =
w2

rms
N2 =

edu
nN2 =

✓
LB
lT

◆2
, Ri =

N2
⌦
∂zu2

?
↵ , Rig =

N(N � ∂zq)
[(∂zu)2 + (∂zv]2]

, IR =
⌦

Rig
↵

. (6)

The phenomenological evaluation of kinetic energy dissipation, eD = U3
rms/Lint, is based on expressing

that it occurs in an eddy turn-over time, irrespective of the (small) viscosity. When edu becomes
comparable to eD, as in FDT, one has RB = RIB. Note also that Ri, Rig, in the absence of uniform shear,
are based on large-scale shear resulting from the overall nonlinear dynamics. One can also define a
Taylor Froude number Fl and relate it to the other parameters. After simple manipulations, one has:

Fl ⌘ Urms
NlT

=
LB
lT

=
ReFr
Rl

= R1/2
IB =

✓
`Oz
hK

◆2/3
. (7)

The RST runs cover the three regimes identified in [52]: wave-dominated at small [Fr, RB], eddy-wave65

interactions at intermediate values, and the eddy-dominated regime with a resolved turbulent inertial66

range beyond the Ozmidov scale (IR > 1). These three regimes can likely be related to the classification67

proposed in [53] for the nocturnal planetary boundary layer (PBL) into weakly stable, transitional, and68

very stable regimes: when increasing the Froude number, there is a drop in the Richardson number,69

particularly marked in the transition regime, and a sharp increase in eddy diffusivities. We also note70

that, at a given (high) buoyancy Reynolds number, all three regimes can be identified in the energy71

spectra in a given flow, provided LB, `Oz and hK are resolved (see [54] for an analysis of these regimes72
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length scale. One of the governing parameters of the resulting dynamics is the ratio G = tP/tNL27

with tP the characteristic period of the waves; G is the Rossby number in the presence of an imposed28

rotation, or it is the Froude number in the presence of stratification.29

Accurate direct numerical simulations with pseudo-spectral methods were developed in particular30

at MIT and NCAR in the early 70s and were immediately put to use by Jack Herring to study31

turbulence, as e.g. in the context of the growth of errors in numerical modeling of the atmosphere32

[? ], of two-dimensional (2D), axisymmetric or QG turbulence [? ? ? ], for comparing closures to33

DNS [? ? ], including for non-Gaussian statistics and intermittency in the far dissipation range [? ? ].34

Jack Herring was central to this introduction of models and DNS to complement experimental and35

theoretical studies of FDT. He then moved on to study stratified turbulence([? ? ] (and references36

therein).37

Characteristic of turbulence is the presence of localized extreme dissipation in many settings38

[? ]. In the ocean, satellite altimetry allows to study the interactions of large-scale planetary or39

(sub-)synoptic-scale waves with shear structures, as observed for example in the Gulf Stream and the40

Kuroshio Current [? ? ]. Turbulence leads to filamentation, as seen in phytoplankton dynamics forced41

by hurricanes [? ], as well as to energy transfer and dissipative events (e.g. [? ? ]). There is also recent42

radar data indicative of extreme vertical drafts in the (strongly stratified) polar summer mesosphere43

[? ]. Furthermore, waves can change the energy spectra, as demonstrated in weak turbulence [? ],44

detected in the atmosphere [? ] and in DNS [? ], and as shown in magnetohydrodynamic (MHD) as45

well [? ? ]. Atmospheric data can be related to numerical results for strongly stratified flows showing46

quantitatively that turbulence interacting with fast waves can be more intermittent than FDT [? ? ] in a47

narrow domain of parameters (see [? ] for Solar Wind observations, and [? ] for energy dissipation in48

reconnection events leading also to particle acceleration in the magnetotail).49

In this context, we present preliminary results using DNS on relationships between normalized50

third and fourth order moments taken as proxies to characterize the intermittency and dissipative51

properties of rotating strongly stratified turbulence, contrasting behaviors for high vs. low kurtosis52

of the vertical velocity with varying Froude and Reynolds numbers. Similar relationships have been53

found in the turbulent atmosphere and ocean [? ? ? ? ? ], climate data re-analysis and glaciology [? ? ],54

and in fusion plasmas [? ? ? ], the magnetosheath, the interplanetary magnetic field or the cosmos [? ?55

? ? ? ]. Equations, definitions and our numerical methodology are given in the next section. Some of56

these properties for several field variables for the new runs performed herein are presented in §3 for57

Navier-Stokes and stratified flows. Rotating stratified turbulence is analyzed in somewhat more detail58

in §4. An overview is given in §5, and §6 presents a discussion and conclusions.59

2. Numerical set-up60

2.1. Equations and definitions61

We perform several sets of diverse numerical simulations for an incompressible (r · u = 0)62

velocity field u = (u, v, w) = (u?, w) with rotation and stratification. The active scalar q (called in the63

following temperature) is in velocity units.1 With n, k the kinematic viscosity and thermal diffusivity,64

taken equal, p the pressure, N = [�g∂z q̄/q0]1/2 the Brunt-Väisälä frequency, and f0 = 2W, W = Wz?65

an imposed rotation in the vertical direction of unit vector z?, the Boussinesq equations are:66

∂tu = �(u ·r)u � Nqz? + nr2u + 2u ⇥ W �rp + Fu (1)

∂tq = �(u ·r)q + Nw + kr2q + Fq . (2)

1 Strictly speaking, q and the temperature have opposite signs, but are linearly related through a thermal expansion coefficient.

∇ ⋅ u = 0,

f = 2Ω , λ2 = < u2 > / < ω2 > , ω = ∇ × u



Schroder+2023                                              Strain:                                                                                                         SHI: Stationary, Homogeneous, isotropic

*


*
Sij = [∂iuj + ∂jui]/2



Exact Kolmogorov (1941) law

• Starting point: Invariants (ν=η=0): total energy, 
magnetic helicity & cross-helicity in 3D-MHD, …


• Assumptions: homogeneity, stationarity and large 
Reynolds number, together with finite dissipation ε,  
as well as incompressibility and full isotropy                  
(but not always: Galtier-Banerjee) 


• Fluids: Kolmogorov 1941; Antonia+ 1997;         
2D: Lindborg-99. Passive scalar: Yaglom, 1949


• MHD: Politano+1998ab, Banerjee+ 2016, 2017;       
2D: Caillol, unpublished.                                             


• Compressible: Banerjee+’13,14, Kritsuk 23, …

• Helical laws for fluids, MHD & Hall-MHD: 

Gomez+ 00, Politano+ 03, Banerjee+ 16,17

• Helical sub-invariants (Alexakis, 2017)

• Helical MHD case ?


• Non-linear models of small-scale dynamics: 
EDQNM (fluids: Briard+17), alpha-models for 
fluids & MHD: Graham+ 2006, 2008.   


•            MHD closure case ?


* Beyond Hall & e-MHD: 2D-3C; 2-fluid; extended MHD ?

                           Seven points         

     (1): Exact                                   

                                        (2), ESS: 

                            high-order structure   

                                functions scaling,    

                                     with r   YH




    

(3): cascade direction

(4)                        measure    ε  

(5) +: add terms (model, viscous, force)

(6): Non-Gaussianity, but not necessarily 
intermittency (cf. the 2D case)


(7): More laws when more invariants?   

        * How do they inter-connect?

        * Role of cross-correlations?

+

δuL(r) = u(x + r) − u(x)
S3(r) = < δu3

L(r) > →

*



In any case, L≳ 104η for these data, so that scaling would
be expected between η < r < 104η and far beyond 200η.
In contrast to this expectation, note that in the interval of
scales between about 300η and 5000η, ζ2 is not constant
and depends on r, decreasing from above 0.7 to below
0.6 (and below 2=3 given by K41). Within this range, it
appears that ζ2ðrÞ, whatever its shape, is independent
of Rλ.
To further interrogate the evolution of the structure

functions with increases in the Reynolds number, we
compare the local slopes [Eq. (3)] measured at different
Reynolds numbers. Figure 2 shows the differences (β2)
between the local slopes measured at the highest Rλ (5779)
and those measured at lower Rλ, such that

β2ðr; RλÞ ¼
ζ2ðr; RλÞ − ζ2ðr; 5779Þ

ζ2ðr; 5779Þ
: ð4Þ

For this calculation, the local slope at the highest Rλ has
been smoothed with splines to suppress noise (see red line
in Fig. 2, top). At viscous scales r≲ 20η, we find that

FIG. 2. Bottom: the local scaling exponent differences β2ðr; RλÞ
[Eq. (4)] from their values at Rλ ¼ 5779 for 413 ≤ Rλ ≤ 4998.
The local slopes for Rλ ¼ 5779 are reproduced from Fig. 1. Red
shading indicates $5% intervals. The data have been shifted
vertically in proportion to logðRλÞ, and the colors indicate
logðRλÞ. A representative sample of 29 datasets is shown. Top:
reference case ζ2ðrÞ measured at Rλ ¼ 5779. The red line
indicates the smoothed data used to calculate βðr; RλÞ.

FIG. 1. Top: S2 and S3 (S3 trusted for r > 50η) compensated by
the K41 predictions at three Reynolds numbers and compared
with numerical simulations at Rλ ¼ 2250 [5] (gray triangles). The
arrows indicate r ¼ L. S3 approaches the 4=5 law between about
150η and 300η, and the tilt of S2=ðεrÞ2=3 toward a positive slope
in this interval is a signature of intermittency, which generates
ζ2 > 2=3. Bottom: the local slopes ζ2ðrÞ [Eq. (3)] reveal addi-
tional details in the shapes of the structure functions, including a
monotonic decrease over a range of scales up to and beyond
L≳ 104η. In addition to ζ2ðrÞ of the datasets above, we show
atmospheric data at Rλ ≈ 17 000 [10] (gray squares). The orange
line is for reference and is proportional to 1 − b logðr=ηÞ. The
black arrows indicate the subranges we identify within the inertial
range. Inset: local slope of S3 for the three VDTT datasets.
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Laboratory experiments  

.on decaying fluid flows

.Rλ up to 5779

Active grids

Kuchler+2023


 Rλ =  uλ/ν 
 λ2 = <u2>/<ω2>
          

Kolmogorov
.dissipation length ηk:
.

Local slope: ζ2( r )
 

ω = ∇ × u

η = [ϵ/ν3]−1/4

δu2(r) = rζ2



Laboratory experiments  

.on decaying fluid flows

.Rλ up to 5779

Kuchler+2023


Compensated energy 
spectra

In any case, L≳ 104η for these data, so that scaling would
be expected between η < r < 104η and far beyond 200η.
In contrast to this expectation, note that in the interval of
scales between about 300η and 5000η, ζ2 is not constant
and depends on r, decreasing from above 0.7 to below
0.6 (and below 2=3 given by K41). Within this range, it
appears that ζ2ðrÞ, whatever its shape, is independent
of Rλ.
To further interrogate the evolution of the structure

functions with increases in the Reynolds number, we
compare the local slopes [Eq. (3)] measured at different
Reynolds numbers. Figure 2 shows the differences (β2)
between the local slopes measured at the highest Rλ (5779)
and those measured at lower Rλ, such that

β2ðr; RλÞ ¼
ζ2ðr; RλÞ − ζ2ðr; 5779Þ

ζ2ðr; 5779Þ
: ð4Þ

For this calculation, the local slope at the highest Rλ has
been smoothed with splines to suppress noise (see red line
in Fig. 2, top). At viscous scales r≲ 20η, we find that

FIG. 2. Bottom: the local scaling exponent differences β2ðr; RλÞ
[Eq. (4)] from their values at Rλ ¼ 5779 for 413 ≤ Rλ ≤ 4998.
The local slopes for Rλ ¼ 5779 are reproduced from Fig. 1. Red
shading indicates $5% intervals. The data have been shifted
vertically in proportion to logðRλÞ, and the colors indicate
logðRλÞ. A representative sample of 29 datasets is shown. Top:
reference case ζ2ðrÞ measured at Rλ ¼ 5779. The red line
indicates the smoothed data used to calculate βðr; RλÞ.

FIG. 1. Top: S2 and S3 (S3 trusted for r > 50η) compensated by
the K41 predictions at three Reynolds numbers and compared
with numerical simulations at Rλ ¼ 2250 [5] (gray triangles). The
arrows indicate r ¼ L. S3 approaches the 4=5 law between about
150η and 300η, and the tilt of S2=ðεrÞ2=3 toward a positive slope
in this interval is a signature of intermittency, which generates
ζ2 > 2=3. Bottom: the local slopes ζ2ðrÞ [Eq. (3)] reveal addi-
tional details in the shapes of the structure functions, including a
monotonic decrease over a range of scales up to and beyond
L≳ 104η. In addition to ζ2ðrÞ of the datasets above, we show
atmospheric data at Rλ ≈ 17 000 [10] (gray squares). The orange
line is for reference and is proportional to 1 − b logðr=ηÞ. The
black arrows indicate the subranges we identify within the inertial
range. Inset: local slope of S3 for the three VDTT datasets.
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Exact laws in MHD
  < δvLδvi

2 > + <δvLδbi
2 > - 2 < δbLδviδbi >     = - (4/d) εT r


 - <δbLδbi
2 > - < δbLδvi

2 > + 2 < δvLδviδbi >   = - (4/d) εc r    


 - Also in terms of Y fluxes of Elsasser variables, with energy dissipation rates ε±

      

• Three regimes: v-dominated vs. B-dominated vs. Alfvénic (v ~ b) (cf. Ting et al 1986)


• Dynamical role of the correlation between v & b in the mixed regime (Politano+ GRL 25, 1998;                also Boldyrev, 2006): 
εx = 0 for exact solutions such as (nonlinear) Alfvén waves.


• When such laws apply, the input/dissipation rates εT,C & ε± can be measured,  e.g. in the solar 
wind for different conditions.    What about plasma regimes?


Politano+1998ab; Banerjee+2017

vKH in MHD: Chandrasekhar 1950

± 

ET AND HC


 εT  = - dtET   ,     


 εc  = - dtEC

Review: Marino+ 2023



Sorriso-Valvo, Marino et al.                                 Ulysses data

(see also Phys. Rep. 2023)

 Ulysses data

 = 

But it does not always work ….☺

MacBride+ 2005

=

Z± = v ± b  ,   Z// = Z . r /|r|

∆Z( r ) = Z(x + r ) – Z(x)

Note:  


z+ z+ z - ~ ( v+ B)2 ( v - B) ~ ε +       𝛿 𝛿 𝛿 𝛿 𝛿 𝛿 𝛿



 = 
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Z// = Z . r /|r|

∆Z( r ) = Z(x + r ) – Z(x) 


Larger energy dissipation rate                     
closer to the Sun 

Hall-MHD law

Bandyopadhyay+ 2019

+ Hall terms

Bandyopadhyay+ 2020

Parker Solar Probe, inner heliosphere

Y = [Y+ + Y-]/2

εv ~ 5x104 Jkg-1s-1

εv ~ 20x104 Jkg-1s-1



Dtω =∂t ω + v. ∇ ω =                       ω. ∇v      + ν ∇2 ω      + ∇x F


                                              advection                     stretching by velocity gradients     + dissipation    + forcing


Model:


Dtω = ω.∇v         —>   ∇v is O(1) at early times: exponential growth of vorticity 


But:         ω ~ ∇v    so:


             Dtω = |ω|2 : explosive growth

           Is there a role for the geometry of structures?

Vorticity dynamics for fluid turbulence

Buaria+2018-22, strain-vorticity amplification in [12k]3 DNS



Vorticity, strain and dissipation in fluid turbulence

Betchov 1956: 

Buaria+ 2018-2022: strain-vorticity amplification in 12k^3 DNS


Bradshaw+2019, Johnson 2020, Rafner+2021


Strain and vorticity, local and nonlocal, amplitude and geometry

< |S2 | > = < ω2 > /2
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vicinity of, but never overlap with tube-like regions of intense vorticity due to fundamental
differences in their amplifying mechanisms.

This article is part of the theme issue ‘Scaling the turbulence edifice (part 1)’.

1. Introduction
The dissipation rate of kinetic energy, ε, defined as

ε = 2νSijSij, where Sij = 1
2

(
∂ui
∂xj

+
∂uj

∂xi

)

, (1.1)

plays an indispensable role in our understanding of turbulent fluid flows. Here, ν is the kinematic
viscosity and Sij is the strain rate tensor (the symmetric part of the velocity gradient tensor
∂ui/∂xj). The mean of dissipation rate quantifies the net cascade of energy from large to small
scales, manifestly becoming independent of ν, as ν → 0 [1–3]. This property, also known as
dissipative anomaly, is the central tenet of essentially all turbulence theories and models [1].
However, the fluctuations of dissipation rate (and hence that of strain rate) can be orders of
magnitude larger than its mean [4,5], a phenomena known as intermittency, which renders
any mean-field description of turbulence inadequate [1,6]. Understanding the formation of such
intense fluctuations and characterizing their statistical properties has long remained one of the
outstanding challenges in turbulence [1,7].

Understanding the intense fluctuations of dissipation is also directly important from a practical
standpoint. For instance, strong strain rates can greatly enhance dispersion of particles and
influence mixing of scalars or can adversely affect flame propagation in reacting flows [8–11].
Intense strain also leads to generation of intense vorticity, via the well-known vortex stretching
mechanism [12], which in turn influences clustering of inertial particles [13]. In fact, strain and
vorticity are not independent and their coupling implicitly encodes all the multiscale interactions
in the flow [14,15]. While much attention has been recently given to understand this interaction in
the light of vorticity amplification [15–17] and energy cascade across scales [18,19], in the current
work, we present a complementary investigation focusing on amplification of strain (and hence
dissipation rate).

The key mechanisms controlling amplification of strain can be readily identified by writing its
transport equation (as derived from the incompressible Navier–Stokes equations):

DSij

Dt
= −SikSkj − 1

4
(ωiωj − ωkωkδij) − Πij + ν∇2Sij, (1.2)

where ω = ∇ × u is the vorticity vector and Πij = (1/ρ)(∂2P/∂xi∂xj) is the pressure Hessian tensor.
The first term on the r.h.s. of equation (1.2) captures the self-amplification of strain, which by itself
could lead to a finite time singularity. The second term captures the influence of vorticity and
essentially the feedback of vortex stretching on strain itself. The third term involving pressure-
Hessian represents the influence of non-local effects via the pressure field, and hence couples the
entire state of the flow. This nonlocal dependence is readily seen by taking the trace of equation
(1.2), leading to the Poisson equation

Πii = ∇2P
ρ

=
(ωiωi − 2SijSij)

2
. (1.3)

The final (linear) term in equation (1.2) represents the viscous diffusion of strain.
Here, our main goal is to investigate various amplification mechanisms leading to the

formation of intense strain and hence dissipation. To this end, we analyse the statistics of the
(inviscid) nonlinear terms in equation (1.2), in particular by conditioning them on magnitude
of strain. One of the objectives is to identify and understand which (non-viscous) mechanism(s)
help to prevent an unbounded growth of strain [15]. We use data from high-resolution direct
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∂ui/∂xj). The mean of dissipation rate quantifies the net cascade of energy from large to small
scales, manifestly becoming independent of ν, as ν → 0 [1–3]. This property, also known as
dissipative anomaly, is the central tenet of essentially all turbulence theories and models [1].
However, the fluctuations of dissipation rate (and hence that of strain rate) can be orders of
magnitude larger than its mean [4,5], a phenomena known as intermittency, which renders
any mean-field description of turbulence inadequate [1,6]. Understanding the formation of such
intense fluctuations and characterizing their statistical properties has long remained one of the
outstanding challenges in turbulence [1,7].

Understanding the intense fluctuations of dissipation is also directly important from a practical
standpoint. For instance, strong strain rates can greatly enhance dispersion of particles and
influence mixing of scalars or can adversely affect flame propagation in reacting flows [8–11].
Intense strain also leads to generation of intense vorticity, via the well-known vortex stretching
mechanism [12], which in turn influences clustering of inertial particles [13]. In fact, strain and
vorticity are not independent and their coupling implicitly encodes all the multiscale interactions
in the flow [14,15]. While much attention has been recently given to understand this interaction in
the light of vorticity amplification [15–17] and energy cascade across scales [18,19], in the current
work, we present a complementary investigation focusing on amplification of strain (and hence
dissipation rate).

The key mechanisms controlling amplification of strain can be readily identified by writing its
transport equation (as derived from the incompressible Navier–Stokes equations):

DSij
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(ωiωj − ωkωkδij) − Πij + ν∇2Sij, (1.2)

where ω = ∇ × u is the vorticity vector and Πij = (1/ρ)(∂2P/∂xi∂xj) is the pressure Hessian tensor.
The first term on the r.h.s. of equation (1.2) captures the self-amplification of strain, which by itself
could lead to a finite time singularity. The second term captures the influence of vorticity and
essentially the feedback of vortex stretching on strain itself. The third term involving pressure-
Hessian represents the influence of non-local effects via the pressure field, and hence couples the
entire state of the flow. This nonlocal dependence is readily seen by taking the trace of equation
(1.2), leading to the Poisson equation

Πii = ∇2P
ρ

=
(ωiωi − 2SijSij)
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The final (linear) term in equation (1.2) represents the viscous diffusion of strain.
Here, our main goal is to investigate various amplification mechanisms leading to the

formation of intense strain and hence dissipation. To this end, we analyse the statistics of the
(inviscid) nonlinear terms in equation (1.2), in particular by conditioning them on magnitude
of strain. One of the objectives is to identify and understand which (non-viscous) mechanism(s)
help to prevent an unbounded growth of strain [15]. We use data from high-resolution direct
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FIG. 1. (a) Probability density functions (PDFs) of alignments between the vorticity unit vector ω̂, and
the eigenvectors ei, corresponding to the eigenvalues λi of the strain-rate tensor (with λ1 ! λ2 ! λ3). (b) PDF
of β, defined in Eq. (7), which measures the relative strength of the intermediate eigenvalue with respect to
the overall strain amplitude. Solid lines for Taylor-scale Reynolds number Rλ = 1300 and dashed lines for
Rλ = 140. There seems to be virtually no effect of increasing Rλ on the PDFs.

adversely affect flame propagation in reacting flows [7,8], whereas strong vortical motions engender
clustering of particles, facilitating cloud and rain formation [9,10]. From a fundamental standpoint,
amplification of gradients is an essential component of the energy cascading process, leading to
generation of small scales in turbulent flows [11–13]. Thus, characterizing intermittency and the
associated generative mechanisms is at the heart of turbulence theory and modeling [14,15].

A key mechanism responsible for the formation of such extreme events and the small scales is
the process of vortex stretching [11], which results from nonlinear coupling between vorticity and
strain-rate tensor, respectively, defined as ω = ∇ × u, and si j = 1

2 (∂ui/∂x j + ∂u j/∂xi ), where u is
the velocity field. This is evident from the vorticity transport equation:

Dωi

Dt
= ω j si j + ν∇2ωi, (1)

where D/Dt = ∂t + u · ∇ is the material derivative, ν is kinematic viscosity, and the vector ω j si j
gives the aforementioned vortex stretching term. Numerous studies over the last few decades, both
from experiments and direct numerical simulations (DNS), have revealed some robust features of
vortex stretching, which seemingly appear to be universal across different turbulent flows. Notably,
the vorticity vector preferentially aligns with the eigenvector corresponding to the intermediate
eigenvalue of the strain tensor, which in turn is positive on average [14–19]—leading to net
production of enstrophy (vorticity-squared) in turbulent flows [20]. Figure 1 summarizes these
findings utilizing data from DNS of isotropic turbulence (the details of which are discussed in
Sec. II). Quantitatively the results can be expected to be slightly different for other turbulent flows,
but qualitatively they behave similarly. Remarkably, the results also appear virtually independent of
the Reynolds number.

The persistent correlations between strain and vorticity demonstrated in Fig. 1, highlight some
important aspects of vortex stretching in turbulence. Particularly, the alignment between vorticity
and the intermediate strain eigenvector suggests a depletion of stretching, compared to what can be
expected if vorticity were to align with the most extensive strain eigenvector. However, the statistics
shown in Fig. 1 are obtained from a uniform sampling of the flow, and do not distinguish quiescent
regions from those where extreme events reside. It is well known that the extreme events in the
flow are organized in localized vortex tubes, where enstrophy is orders of magnitude larger than its
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FIG. 3. Conditional probability density functions (PDFs) of alignment cosine between vorticity unit vector
ω̂ and strain eigenvectors ei for (a) i = 2, (b) i = 1, and (c) i = 3, at Rλ = 1300 and various conditioning
values of "τ 2

K shown in the legend. The black dashed lines in each panel correspond to the marginal PDF
shown earlier in Fig. 1(a). (d) The conditional second moment is shown for each eigendirection as a function
of "τ 2

K for various Rλ.

intense vorticity. Interestingly, from this figure, it is also evident that the curves show a very weak
dependence on Rλ.

Overall, the above results point to very different statistical properties of the strain field in regions
of intense vorticity, compared to those in regions of moderate or weak enstrophy. Manifestly, the
weakest events are “structure-less,” with all alignments being equally likely. On the other hand,
intense enstrophy regions appear to have a very specific structure, with the conditional alignments
[as seen from Fig. 3(d)] approximately in the ratio 0.2 : 0.7 : 0.1. Since the most intense vorticity
events are typically found to be arranged in tubes with weak curvatures, the above result appears
consistent with an effectively 2D structure—where the most extensive and compressive eigenvectors
lie in the equatorial plane, and the intermediate eigenvector is along the tube axis. In fact, such an
alignment effect was also established in [27], and shown to result from kinematic constraints. A
similar behavior is also observed in the interaction between vortex structures in the Euler equations,
where the formation of very intense structure, shaped as 2D vortex sheets is often observed; see,
e.g., [28]. For such structures, the largest and weakest strain eigenvectors are perpendicular to
vorticity, and amplification is due to the weak intermediate eigenvector. This results in an effective
reduction of the nonlinearity [14].

104602-8

DNS, Rλ ~ 1300

2Ωij = ∂jui − ∂iuj



Dtω =∂t ω + v. ∇ ω =                       ω. ∇v      + ν ∇2 ω      + ∇x F


                                              advection                     stretching by velocity gradients     + dissipation    + forcing


Model:


Dtω = ω.∇v ,        with ∇v O(1) : exponential growth of vorticity at early times


But.         ω ~ ∇v    so:


             Dtω = |ω|2 : explosive growth

           Is there a role for the geometry of structures?
                                                                                   Yes when v ω      (vortex filament)
                                 locally weak nonlinearities and long-lived coherent structures

// 

Vorticity dynamics: geometry                  ∂tω = ∇ x (v x ω) + ν ∇2 ω + ∇x F

Review: Bradshaw+2019
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turbulence simulations show that a balance is achieved
between these two relaxation processes. The result is that
the magnetofluid evolves toward long wavelength states
dominated by magnetic (possibly helical) excitations in
which v and b are also highly correlated [4,5]. Typically,
global relaxation requires many nonlinear eddy turnover
times. Steady, driven MHD also shows alignment at small
scales [13].

There has been, prior to this time, little suggestion of the
relevance of the above global relaxation picture to turbu-
lence evolution at shorter time scales. Recently, however, it
has been shown that local directional alignment of velocity
and magnetic fluctuations occurs rapidly in MHD for a
variety of parameters in direct numerical simulations and is
also seen in solar wind data [14]. Here, we look for rapid
relaxation associated with correlations and directional
near-alignments of several types. All of these are found
to occur in less than one turnover time. These processes
suppress nonlinear MHD couplings and need not be asso-
ciated with global alignment, but rather occur indepen-
dently, rapidly, and in spatial patches.

We study numerical solutions of the equations of MHD
in dimensionless variables
 

@v
@t

! v"!# j" b$ rP% # R$1
! r2v

@b
@t

! &b ' r(v$ &v ' r(b# R$1
" r2b;

(3)

where r ' b ! 0, and R! and R" are kinetic and magnetic
Reynolds numbers. The kinetic pressure P% ! p# &v2=2(
maintains the incompressibility constraint r ' v ! 0. We
employ direct undriven Fourier pseudospectral [15] simu-
lations of Eqs. (3) using triply periodic boundary condi-
tions (side 2#L), 1283 resolution, and R! ! R" ! 400.
The scheme ensures ideal continuous time conservation of
E, Hm, and Hc. The initial fluctuation amplitudes for v and
b have equal mean square values normalized to 1, are
nonzero in the wave number shell 1 ) kL ) 4, and have
random phases. The initial Hc, Hv, and Hm are small.
Results with nonzero helicities will be presented at a later
time.

Our approach parallels studies [6] of suppression of
nonlinearity in NS turbulence. We compute the distribu-
tions (PDFs) of the angle

 cos$ ! f ' g
jfjjgj (4)

where ff;gg represents one of fv; bg, fv;!g, fj; bg, and
fj;!g. In Fig. 1, these four PDFs are shown. The initial
Gaussian distribution with null (net) helicities corresponds
to imposing a flat initial distribution of Eq. (4). Quickly, as
the nonlinearity develops, strong alignments appear. These
aligned (antialigned) fields correspond to a beltramization
of the magnetofluid, similar to the NS case. Even though
global helicities remain small, the magnetofluid locally

self-organizes into patches (not shown here) which contain
several types of correlations.

The level of alignment can be explored by computing
the following quantities [6]:

 Cf;g ! hjf" gj2i
hjfj2ihjgj2i ; Df;g ! hjf ' gj2i

hjfj2ihjgj2i : (5)

By randomizing the fields f and g with Gaussian distribu-
tions while retaining the same (average) spectrum, we
arrive at the corresponding ‘‘Gaussianized’’ fields fG and
gG. Then we can compute D0

f;g ! Df;g=DfG;gG which is a
measure of the degree of alignment with respect to the
phase-randomized reference field. Analogously, we com-
pute C0

f;g ! Cf;g=CfG;gG . The time behavior of C0 and D0

for several field couples is shown in Fig. 2. The level of
alignment is different for each set of fields: It is stronger for
fj; bg and for fv; bg compared to fv;!g. The stronger
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FIG. 1 (color). PDF of Eq. (4) for the sets of fields: fv;bg (red),
fv;!g (green), fj;bg (blue), fj;!g (pink). The PDFs are eval-
uated at t ! 2:0%A (Alfvèn time %A).
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FIG. 2 (color). Time history of the ratio of the alignment
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Landau fluid: V, Pperp, P , ρ,  B, heat flux Qperp & . Hybrid Vlasov Maxwell: ions 
are PIC, e are isothermal, quasi-neutrality; Two-fluid: ion-electron conservation laws


Aspect ratio: L0 / ld
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Ocean, measured dissipation rate  in the Hawaiian ridge  (Klymak+2008)𝜀

U=0.1ms-1 ,Re ~ 108, L0 ~ 103m, <εV >  ~ 10-10
      —>       τNL=L0/U ~ 2.8 hr


Brunt-V frequency N=0.001s-1  Fr ~ 0.1 , RB~             Active sites:    εV ~10-6  ~  εD ~ U3/L0

TidesDepth

advection speed past the sensors is on the order of 0.1
m s!1, then 3600 s is approximately the time over which
a given feature is smeared. Applying this smoothing to
the strain and dissipation fields, however, yields the
same statistics except for a tightening of the PDFs (not
shown for brevity). This indicates that the events that
are associated with dissipation last longer than an hour,
which is plenty of time for the high shear associated
with them to have been detected by the sonar. The
alternative is that the events are triggered by shear in
patches less than 350 m wide. We cannot test this, but it
seems unlikely given what is known about aspect ratios
in the ocean.

This analysis simply reinforces what can be seen vi-
sually in Fig. 16. The largest overturns are associated

with convective breaking of the internal tidal wave.
These overturns last for a long time and are not likely
associated with a shear instability. Of course, as is
shown below, this is not an open-ocean wave field; how-
ever, these findings correspond well to the previous
results of Alford and Pinkel (2000b).

b. Comparison of turbulence to open-ocean
parameterizations

Turbulence in the open ocean is presently parameter-
ized using a measure of the energy level of the broad-
band wave field (Henyey et al. 1986; Gregg 1989; Gregg
et al. 2003). Here the most basic form of this param-
eterization is used, which requires measurement of the

FIG. 13. As in Fig. 10, but for the second spring tide; note that only the bottom 400 m of the water column are plotted.
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Weekly-gridded 7 years data

Topex-Poseidon+

1/3 degree res.

Error in skewness ~ 0.2

El Niño 1997-98
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Biri+2015

Skewness for SLA

(sea level anomaly) &

horizontal velocities

& ___North-Atlantic Oscillation

The Indian Ocean’s surface circulation displays large seasonal variations due to the reversal of the monsoon
winds there [Lee and Marotzke, 1998]. Consistent with the reversal of the surface Somali Current off the African
coast and the changes of the Monsoon Current south of Sri Lanka, the S and K fields of the u-component also

Figure 10. Regional, monthly mean skewness of SLA (gray), zonal (blue), and meridional (red) geostrophic velocity components derived
from 19 years of AVISO SLA, for the Kuroshio, the tropical Pacific, the Gulf Stream, and the Agulhas regions. The black curves indicate the
respective regionally important climate indices of PDO, SOI, NAO, and SAM.
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Breaking waves on a sloping beach              Ochi 1984         
Longuet-Higgins 1963


K(S) for sea surface deviation



Lenschow+, 1994: PDF = G + αG2 , G Gaussian.


Large α: PDF~ 3(S2/2  + 1), Smax~ 2.83, Kmax~ 15
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 Lenschow+’12: Measurements and LES

Fit
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Sea-Surface Temperature anomaly

          Sura+2008
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FIG. 4. (a) Normalized PDFs of @zθ with binning in N/f (see legend). The dotted black line is the corresponding Gaussian distribution. (b) The same PDFs without the
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dissipation of the flows, in order to maximize the effective Reynolds
number of each run.

The behavior of the QG runs with significantly higher kur-
tosis is probably due to the fact that their initial conditions are

two-dimensional and with w = 0. In such a case, for a small
Froude number and at least for small times, the advection term
leads to smooth fields, and the flow has to develop strong verti-
cal excitation characteristics of stratified turbulence, through local

FIG. 5. Velocity and temperature invari-
ants defined in Eq. (13): (a) b1�2II vs RIB,
(b) g1�2II vs Ri, (c) b1�2II vs b1�3III , and (d) β
vs b1�2II , showing the three regimes as in
Fig. 1. In (e) is given the mixing efficiency
Γf vs b1�2II , with a best-fit reference line
for Fr > 0.05. In (a)–(c), color binning is
done in terms of the Rossby number (see
the inset of Fig. 1), whereas in (d) and (e)
it is in terms of Fr.
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FIG. 5. Kinetic and potential energy dissipation efficiency as a function of Kw (for high-Re runs P1–P7),
measured in terms of the minimal domain volume percentage VεV (%) and VεP (%) needed to achieve 50% of
respectively the global kinetic and potential energy dissipation.

V. ENHANCED LOCAL DISSIPATION EFFICIENCY

The efficiency of the local energy dissipation can be further characterized by computing the
minimal domain volume needed to achieve a given percentage of the global (kinetic and/or
potential) energy dissipation at a given time. We therefore evaluate the local kinetic and potential
energy dissipation efficiency, respectively VεV and VεP , by classifying the temporal outputs of each
run in terms of their domain kurtosis Kw and then computing the minimal volume percentage needed
to achieve the 50% level of the global energy dissipation.

The outcome of this analysis is shown in Fig. 5 for the runs with 2400 ! Re ! 3800 (thus within
a relatively narrow range of values of the Reynolds number) in order to avoid any Reynolds number
dependence of VεV and VεP . First, we note that the HIT case has one of the highest kinetic energy
dissipation efficiencies: Only ≈15% of the most dissipative regions within the volume are in fact
needed to achieve 50% of the global kinetic energy dissipation (Fig. 5, top). Strongly stratified
flows are unable to achieve a similar VεV except when they develop extreme vertical drafts, powerful
enough for the domain kurtosis to be Kw ! 7, attainable in our study only for Froude numbers
within the resonant regime delineated in [55] (runs P4 and P5), a regime compatible with values
found in some regions of the ocean and the atmosphere. Indeed, VεV for these two runs can be
respectively as low as ≈14% and ≈11%, smaller in fact than for the HIT case. Thus, not only do the
large-scale vertical drafts generate small-scale turbulence, but they are also responsible for the local
and efficient enhancement of the kinetic energy dissipation εV . These extreme drafts are therefore
needed in stratified turbulent flows, when stratification is strong enough (Fr " 0.1), for the energy
to be locally dissipated as efficiently as in the HIT case at equivalent Reynolds numbers.

Indeed, without drafts, dissipation efficiency is significantly smaller. The most stratified runs in
our study (runs P7 and P8) are unable to develop significant drafts, and they are both characterized
by an efficiency VεV ≈ 26%, more than twice that of the most dissipative cases of runs P4 and P5.
On the opposite limit, when stratification is weak, as for runs P2 and P3, VεV approaches the value
of the HIT case (in fact from below) even though Kw ≈ 3. The local potential energy dissipation
efficiency VεP exhibits a behavior similar to that of VεV (Fig. 5, bottom) except for the most stratified
runs P7 and P8, that appear to be the most dissipative, although characterized by low kurtosis Kw.
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Figure 6. K(S) for the kinetic energy dissipation edu for (a) Q1, (b) Q2, (d) Q5 and (e) Q6. In the fits,

a =
q

1 + S2
edu /4 (see [65]). At right, we show for run Q3 the PDFs of edu at a time of maximum Kw (c),

and minimum (f); the dash line is Gaussian. At small edu, �3 power laws appear plausible for both.
Similar results, with more intermittency, are found for the NS runs and for potential energy dissipation.

Computations performed at moderate Rl identify small-scale intermittency with numerous370

large-scale structures [6], as opposed to the more familiar vortex filaments [144–146]. Such nonlocal371

structures could be detected in rotating stratified flows using specific algorithms (see [135] for the372

identification of current sheets at the onset of the dissipation range of plasmas in the MHD regime).373

In that spirit, it would be of interest to consider as well the case of quasi-geostrophy, that of cubic374

nonlinearities like for compressible flows, or for solitons (such as for the Korteweg-deVries or the cubic375

nonlinear Schrödinger (NLS) equations and their multi-dimensional extensions), all in the presence376

of forcing and dissipation (see also [147] where the K(S) behavior for the NLS equation is associated377

with on-off intermittency). The large-scale behavior linked with the presence of Rossby waves and their378

possible nonlinear coupling and breaking may also reinforce or even alter large-scale intermittency.379

Finally, a link between inertial and dissipative ranges is consistent with a linear stochastic model380

for the fast small scales which is successful in giving K(S) ⇠ S2 for climate data [13,44]. In decaying381

experiments at both low and high Rl using sulfur hexafluoride, the inertial range does not follow382

a strict power-law, but rather may display a logarithmic correction that is independent of Reynolds383

number and that may arise from the dissipative range, putting into question their independence [148].384

Nonlinearities do not seem to be central to the establishment of non-Gaussian statistics beyond their385

(necessary) mode-coupling role [149], and it is rather the susceptibility of the system being close to386

criticality, linking all scales through dissipation that is central to turbulence dynamics and intermittency.387

This can manifest itself as avalanches in granular media, or in the development of shear instabilities in388

(e.g., RST) flows close to the critical Richardson number ([77,78,92,128,150] and references therein).389
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     Rotating stratified flows at different Froude numbers, with N/f=5, 80 TNL :    w & εv 

             Fr ~ 0.11, Ro= 0.55, Re=942, RB=11, K~4.4S2              and                   Fr ~ 0.4, Ro= 2., Re=103, RB=11,  K~1.6S2       
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Conclusions and perspectives
*Need for detailed explorations of dissipative structures in fluid, MHD and plasma turbulence              

(e.g., sparseness scale as a function of dissipative scale)

*Dissipative structures not fully explored (ongoing work in MHD)


*Skewness S and excess kurtosis K as maps of nonlinear behavior

*K(S) laws in hydrodynamic turbulence, and (rotating) stratified turbulence

*Statistics: need for long-time integration, in excess of ?


*Scaling variation for different regimes? As a trace of what change in structures?

*What intermittency do they correspond to (ongoing work in MHD)? 


*That of the dissipative range?

*That corresponding to a critical shear instability 

*Or other: Langevin model, SOC, …

5000+τNL
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