Investigating the lives of BHs & NSs The emerging picture from gravitational-wave astronomy Shanika Galaudage November 14, 2023 | Lagrange Seminar

shanika.galaudage@oca.eu

Mass transfer

Maximum BH mass from stellar collapse

Star formation history

•

Shanika Galaudage | Investigating the lives of BHs and NSs: the emerging picture from GW astronomy | Lagrange Seminar

Heavy element production

Supernova mechanisms

Formation channels

 \bullet

Gravitational waves

the properties of the binary system.

Sources so far are compact binary systems consisting of black holes (BH) and/or neutron stars (NS). The gravitational-wave (GW) signal carries information about

Nov 14, 2023

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Population Synthesis/ Simulations

Shanika Galaudage | Investigating the lives of BHs and NSs: the emerging picture from GW astronomy | Lagrange Seminar

Gravitational-wave Observations

Population Inference

 m_1

 $p(m_1)$

Data-driven models

- Very flexible, designed to fit the data, with minimal assumptions.
- More challenging to do model comparison.
- Caution with overfitting, may not be able to capture sharp features.

Astrophysically-motivated models

 Less flexible, designed to probe predictions from astrophysical theory/observations.

Easy astrophysical interpretations.

May miss features that we have not thought of!

Spin magnitude

0

BH born with negligible spin? e.g. Fuller & Ma 2019, Belczynski+ 2020

٠

Isolated formation

Spin orientation

Preferential alignment? e.g. O'Shaughnessy+ 2017, Stevenson+ 2017, Bavera+ 2020

$\cos(\theta$ く ノ

Λ

Dynamical assembly

Spin magnitude

٠

BH born with negligible spin?

From hierarchical mergers? Boyle+2008, Lehner+ 2008

 \mathbf{O}

Shanika Galaudage | Investigating the lives of BHs and NSs: the emerging picture from GW astronomy | Lagrange Seminar

Spin orientation

Isotropic distributions in spin tilt e.g. Kalogera 2000, Mandel & O'Shaughnessy 2010, Rodriguez+ 2016, Zevin+ 2017

Λ

 $\cos(\theta$ く ノ

Spin magnitude

0

Isolated + Dynamical

Spin orientation

χ

Spin distributions: GWTC-3

Spin magnitude distribution (left) spin orientation distribution (right) Solid curve - mean; Shaded region - 90% credible interval

Tong, Galaudage & Thrane arXiv:2209.02206 (GWTC-3 results; model from Galaudage+ arXiv:2109.02424)

Our conclusions on spin-misalignment are model dependent!

Are there non-spinning black holes?

- Around 40% of binary black holes could be non-spinning.
- Support at zero; no clear evidence for non-spinning subpopulation.
- Around 20% definitely spinning.

Tong, Galaudage & Thrane arXiv:2209.02206

What if only one black hole is spinning?

- We consider the case where only one BH spins from tidal spin up of second born BH (e.g. Ma & Fuller 2023; Hu et al. 2022; Qin et al. 2018)
- At least 28% of the BBH contain a primary with significant spin, possibly indicative of mass-ratio reversal. No evidence of secondary spin.

Adamcewicz, Galaudage, Lasky & Thrane arXiv:2311.05182

What do we actually know about spin?

- BHs are not maximally spinning.
- **Possible** that all BBH form via isolated channel (if you only consider spin!)

We need to consider correlations, measure eccentricity and perform detailed population synthesis studies to narrow down formation scenarios.

Possible non-spinning subpopulation (see also Callister+ 2022, Mould+ 2022)

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Understanding the BNS population

- GW190425, most massive BNS
- Why are there no heavy BNS in the Galactic population?
- GW190425; found to be an outlier in LVK analysis.
- Total mass $\sim 3.4 M_{\odot}$, 5σ away from Galactic population.

What connects the GW and radio-visible populations? The birth population!

LVK collaboration arXiv:2001.01761

Forming binary neutron stars

- Standard formation scenario BNS: firstborn **recycled** neutron star sped up from accretion and second-born **slow** neutron star.
- Possible explanations for heavy BNS not observed in radio:
 - Fast-merging via unstable case BB mass transfer; (Romero-Shaw+ 2020)
 - Invisible due to buried magnetic field (Safarzedah+ 2020)

Shanika Galaudage | Investigating the lives of BHs and NSs: the emerging picture from GW astronomy | Lagrange Seminar

17 of 25

Population of DNS at birth

Mass distribution:

- Double Gaussian for recycled NS distribution (Farrow+ 2019)
- For **slow**, we consider a double Gaussian where high-mass peak is motivated by fast-merging DNS.

Formation rate densities:

- Milky Way: Uniform over cosmic time.
- Extra-galactic: Madau-Dickinson

Galaudage+ arXiv:2011.01495

The radio and GW BNS are from two different environments.

Population at death (GWs) • Using the BNS formation rate density and delay-time distribution we can calculate the merger rate density.

Slow-merging Fast-merging channel channel Delay-time = Uniform in log, Delay-time = Delta function at 10 Myr 30 Myr to age of Milky Way Rate Rate

Delay time distributions Time taken from formation to merger differs for the two channels.

Time

Time

Population at mid-life (radio)

fraction of binaries visible due to beaming is about 10%.

• Radio population is determined from the birth and merger rate densities. The

Population at mid-life and death

- We can calculate the merger rate density and the number of radio binaries for our two channels: fast/slow-merging BNS
- Calculate ratio between the two channels $\zeta_{\rm GW} = R_m({\rm slow})/R_m({\rm fast})$ $\zeta_{\rm radio} = N_r({\rm slow})/N_r({\rm fast})$
- The ζ parameter shows how the BNS distribution evolves.

Population of binary neutron stars

Slow neutron mass distribution: Solid curve - mean; Shaded region - 90% credible interval

Nov 14, 2023

Galaudage+ arXiv:2011.01495

Birth population of DNS and GW190425

- not a clear outlier from the Galactic population; consist with findings in population synthesis studies (Kruckow 2020, Mandel+ 2021)
- If we assume this hypothesis is correct: • 8-79% of BNS born are fast-merging Typical fast-merging delay-time is 5-401 Myr
- Implications & areas to explore: r-process enrichment in globular clusters/ultra-faint dwarf galaxies and short gamma-ray burst host galaxy offset observations.

• Mild evidence to support the fast-merging channel hypothesis; GW190425 is

Summary

- alignment; possible non-spinning subpopulation.
- events to confirm let's hope for more BNS in O4!)
- **#O4IsHere** with 63 events as of this morning! Follow along on gracedb: https://gracedb.ligo.org/superevents/public/O4/

• So far we have 90+ BBH; already uncovering some general trends: black hole spins of merging systems not maximal; no clear evidence for extreme anti-

• Heavy BNS may be explained via fast-merging hypothesis. Also important to consider recycled/slow parameterisations vs/primary/secondary (need more

Population inference

- source properties (e.g. mass, spin) from gravitational-wave signals.

• Parameter estimation programs (e.g. BILBY), employing Bayesian inference to extract

• Hierarchical Bayesian inference to study the *shape* of the population. Define model where parameters you sample are describing the shape (e.g. slope, min and max values)

Shanika Galaudage | Investigating the lives of BHs and NSs: the emerging picture from GW astronomy | Lagrange Seminar

Spin parameters: physical quantities

 θ_1

 χ_1

Nov 14, 2023

Shanika Galaudage | Investigating the lives of BHs and NSs: the emerging picture from GW astronomy | Lagrange Seminar

Compact objects in a binary are sorted by mass; see Biscoveanu+ 2021 (arXiv:2007.09156) for work sorting by spin.

 χ_2

Spin parameters: effective spins

Effective inspiral spin parameter (χ_{eff})

$\chi_{\text{eff}} = \frac{\chi_1 \cos(\theta_1) + q\chi_2 \cos(\theta_2)}{1 + q}$

Mass weighted spin projected along orbital angular momentum vector; conserved over evolution

Effective precession spin parameter (χ_p)

$\chi_p = \max \left[\chi_1 \sin(\theta_1), \frac{4q+3}{3q+4} q \chi_2 \sin(\theta_2) \right]$

Mass weighted spin projected in the plane of the binaries orbit; measure of orbital precession

Accounting for negligible spin

- rotating slowly (Fuller & Ma 2019, Belczynski+ 2020).
- expectation of BBH with $\chi \sim 0$ (Galaudage+ 2021)

Theoretical studies of angular momentum transport show that BHs are born

Update models to account for a subpopulation of BHs motivated by the

Population spin models: Default VS Extended Spin magnitude model

Spin orientation model

Shanika Galaudage | Investigating the lives of BHs and NSs: the emerging picture from GW astronomy | Lagrange Seminar

A. 31

Updates following GWTC-3 • Support at $\lambda_0 = 0$; no clear evidence for non-spinning subpopulation. • Spin mislignment of $> 90^{\circ}$ varies with model.

Nov 14, 2023

Tong+ arXiv:2209.02206

Heavy DNS: Future work

- distribution.
- difficulty detecting ultra-relativistic DNS with radio (Pol et al. 2020).
- functions redshift-dependent.

 Used a Delta-function for the fast merging channel delay-time distribution, not very realistic. Use more realistic models for fast-merging channel delay-time

• Did not account for possibility that the magnetic field might decay with time (Bransgrove et al. 2018). Model this effect into the radio-visible calculation.

• Assumed that all DNS systems are equally detectable in the radio. Account the

• Used a zero-redshift approximation. Make radio and gravitational-wave transfer

Event posteriors

Nov 14, 2023

Shanika Galaudage | Investigating the lives of BHs and NSs: the emerging picture from GW astronomy | Lagrange Seminar

A. 34

Birth, radio and GW distributions

$$R_m(t) = \int_0^t dt_b R_b(t_b) \pi(t - t_b)$$

$$N_{r}(t) = \int_{0}^{t} dt' \left(R_{b}(t') - R_{m}(t') \right) \epsilon(t')$$

Ratios: mergers & number of radio-visible DNS

$$\zeta_{\rm GW} = R_m({\rm slow})/R_m({\rm fast})$$

Nov 14, 2023

 $\zeta_{\rm radio} = N_r({\rm slow})/N_r({\rm fast})$

A. 36

Population synthesis study

• Simple population synthesis analysis in order to estimate the typical supernova kick velocities required in order to disrupt a non-negligible fraction of slowmerging binaries without disrupting the fast-merging binaries created by unstable case-BB mass transfer.

 $m_{\rm core} = 2.65 m_s - 0.95$ (Mandel & Müller 2020)

 f_{radi}

 $v_{\rm kick} = km_{\rm core}$

$$o = \frac{N(v_{kick} < v_{max} \& P_b > 1.5hr \& m_{tot} > m_{tot}^{GW190425})}{N(v_{kick} < v_{max} \& P_b > 1.5hr)}$$
$$f_{GW} = \frac{N(v_{kick} < v_{max} \& m_{tot} > m_{tot}^{GW190425})}{N(v_{kick} < v_{max})}$$

A. 37

Population synthesis study: Results

large kicks to explain fast-merging channel. Kicks ~1000 km/s

• Difference in fractions only apparent when k = 400 km/s/Msun;need fairly large kicks to explain fastmerging channel. Kicks ~1000 km/s

f_{ra}
0.0
0.0
0.0
0.0
0.0
0.
0.0
(

Fraction of heavy binaries surviving the slow and fast merging channels.

Difference in fractions only apparent when k = 400 km/s/Msun; need fairly

Kick velocity distribution for k = 400 km/s/Msun

Hyper-parameter posteriors

Recycled mass distribution

Slow mass distribution

A. 39

