Linking stellar compositions and planet formation: implications for stellar surface abundances and solar models

© NASA/JPL-Caltech/R. Hurt

Masanobu Kunitomo (Kurume U., OCA 2023/11–2024/10)

Lagrange seminar: 2023/Dec/12

Masanobu Kunitomo

2015 March: PhD @ Tokyo Tech., Japan (supervised by Shigeru Ida, M. Ikoma, T. Takeuchi, **Tristan**)

- **2015–2017**: Postdoc @ Nagoya U. (Shu-ichiro Inutsuka)
- **2017–2019**: Postdoc @ U. Tokyo (M. Ikoma; **JOVIAL** mission)
- **2019**–: Assistant prof. (\rightarrow Junior associate prof. from 2021) @ Kurume U.
- 2023/Nov-2024/Oct: Sabbatical @ OCA office: PHC building

Research interests

Star formation & evolution

w/ accretion

Formation & evolution of giant planets

1. ATMOSPHERE

2. OUTER INTERIOR

3. INTERIOR

w/ accretion & rotation

Disk evolution & dispersal

w/ photoevaporation & MHD disk winds

Planet engulfment by red giants

Contents of this talk

- Introduction
 - Star formation accretion
 - Stellar structure convective stability
 - Planet formation "pebble wave"
- Consequences for stellar surface composition - λ Boö stars, binary systems, solar twins, the Sun's birthplace
- **Consequences for solar internal structure** - spectroscopicopy, helioseismology, neutrinos

Cloud

observable

20000 au

50 au

pre-MS star

Protoplanetary disk

observable

Outflow

Forming disk

Protostellar Envelope

protostar missing link simulations

MS star

observable

Planetary system

Credit: Bill Saxton, NRAO/AUI/NSF

Cloud

Bird's eye view of 3D non-ideal MHD simulation

Outflow

Protostellar Envelope

Forming

disk

Accretion

chemical evolution thermal evolution

Protostar initially ~3 MJup

© NASA/JPL-Caltech/R. Hurt

Protoplanetary disk

Protostellar phase:
intense accretion (M ~ 10⁻⁵ M_☉/yr)
accretion injects energy
→ expansion

Pre-main-sequence phase:
 weaker accretion (M ≤ 10⁻⁷ M_☉/yr)
 radiative energy loss dominates
 → Kelvin-Helmholtz contraction

Virial theorem $\Delta E_{\rm total}$ \mathbf{A} **TZ**. Α Τ 7 $= -\Delta V$ $= \Delta K + \Delta V$ thermal grav.

Radiative zone

- Energy flux is transported only by radiation where luminosity and opacity are low
- Slow mixing by atomic diffusion (~Gyr timescale)

Convective zone

- If the temperature gradient is too steep, convection sets in and transports a part of energy flux
- **Fast mixing** (~10 days for the Sun)

+ degeneration, overshooting, semiconvection

Stellar structure

2016 Sep 19 09:30:38.000 (TAI)

Data taken by Jaime de la Cruz Rodriguez & Jorrit Leenaarts at the Swedish 1-m Solar Telescope Visualization generated by NASA's Scientific Visualization Studio

Evolving structure of young stars

 $\Delta E_{\text{total}} = \Delta K + \Delta V = -\Delta K$ grav.

thermal

Evolving structure of young stars

- Higher energy due to accretion

- → lower temperature
- \rightarrow higher opacity ($\kappa \propto T^{-3.5}$)
- "Hayashi phase" Kramers law

Radiative core develops

- K-H contraction → higher temperature
 - → lower opacity

10⁹

- more rapidly for higher-mass stars

Virial theorem

 $\Delta E_{\text{total}} = \Delta K + \Delta V = -\Delta K$

thermal

grav.

p

tars

Solar-System planets

 $\sim 150 M_{\oplus}$ solids were used for planet formation processes in the early Solar System

1.2

Meterille teath Mats

cf. ~5000 M⊕ metals in the Sun

Evolving composition of disk gas

~µm dust grains

~cm 'pebbles''

~km planetesimals

Jessberger+2001

rapidly fall onto the protostar

gas

dust

gas drag

gravity = centrifugal force

gravity = centrifugal force + pressure gradient support

NASA/FUSE/Lynette Cook

Evolving composition of disk gas

~µm dust grains

Jessberger+2001

(at

~cm ebbles"

~km planetesimals

high-Z accretion pebble drift dust

Garaud (2007) <u>____α=10⁻², Pio=30 au</u> $--\alpha = 10^{-2}$, $R_0 = 1000$ au $--\alpha = 10^{-3}, R_0 = 30$ au

Apple

Kunitomo+Guillot 2021

NASA/FUSE/Lynette Cook

Appelgren et a

Early phase: dusty accretion (high-Z)

HL Tau ALMA partnership 2015

0.1" = 14 AU

Late phase: dust-poor acc. (low-Z)

protoplanet

dust emission by ALMA

23 au

PDS 70 Benisty+2021

HL Tau ALMA partnership 2015

Kruijer+17

0.1'' = 14 AU

Heliocentric distance

23 au

ate phase:

oplanet

PDS 70 Benisty+2021

Contents of this talk

- Introduction
 - Star formation accretion
 - Stellar structure convective stability
 - Planet formation "pebble drift"
- Consequences for stellar surface composition - λ Boö stars, binary systems, solar twins, the Sun's birthplace
- Consequences for solar internal structure - spectroscopicopy, helioseismology, neutrinos

Stellar evolution models w/ accretion

Stellar evolution calculation

- 1D MESA code solves the eqs. of:
 - continuity
 - momentum (quasi-hydrostatic)
 - energy (nuclear reaction, accretion energy)
 - temperature (mixing-length theory)
 - composition (nuclear reaction, mixing)

Paxton+11, Kunitomo+17, 18

Accretion

- Mass accretion rate
 - observed $\dot{M} \propto t^{-1.5}$
 - from protostellar phase
- Composition
 - high-Z in the early phase \rightarrow low-Z

Stellar surface composition evolution

- Here we assume a metal-free accretion in the last 0.03 M_o
 - ~150 M_{\oplus} solids were used in the early Solar System
- Low-Z accretion in the late phase *dilutes* the stellar surface: The surface metallicity decreases by ~5%

Refractory-poor stellar surface by accretion

Surface metallicity after accretion

- Higher-mass, metal-poor stars are more affected by the accretion
 - radiative core develops more rapidly
 - K-H timescale $\propto GM^2/RL \propto M^{-1}$
 - low-Z star has a lower opacity

Refractory-poor stellar surface by accretion Surface metallicity after accretion

- Higher-mass, metal-poor stars are more affected by the accretion
 - radiative core develops more rapidly
 - K-H timescale $\propto GM^2/RL \propto M^{-1}$
 - low-Z star has a lower opacity
- The variety in planet formation processes yields the variety in the stellar surface metallicity

Implications for observed puzzles

- Composition anomaly in binaries
- λ Boö stars: refractory-poor A stars
- Composition anomaly in solar twins

e.g., Ramirez+11; Damasso+15

I6 Cyg: Δ[Fe/H] = 0.05

Primary

Secondary

			po	or!
Name	Δ [Fe/H] in dex	Planet	$T_{\rm eff}$ [K]	Dilution?

Name	Δ [Fe/H] in dex	Planet	$T_{\rm eff}$ [K]	Dilution?
16 Cyg A B	+0.047	$-2.4 M_{Jup}$	5830 5751	consistent
XO-2 N S	+0.054	$0.6M_{Jup} \ 0.3 + 1.4M_{Jup}$	≈ 5300 ≈ 5300	consistent
ζ^1 Ret ζ^2 Ret	+0.02 0	- debris disk	5710 5854	consistent
WASP-94 A B	+0.01 0	$0.45 M_{Jup} \\ 0.62 M_{Jup}$	$\approx 6200 \\ \approx 6100$	inconclusive
HD133131 A B	-0.03 0	$1.43 + 0.63 M_{Jup}$ $2.5 M_{Jup}$	$\approx 5800 \\ \approx 5800$	inconclusive
HAT-P-4 A B	+0.11 0	0.7 M _{Jup}	6036 6037	inconsistent
HD 80606 80607	+0.013	4 M _{Jup}	≈ 5600 ≈ 5500	inconsistent

Implications for observed puzzles

Composition anomaly in binaries

λ Boö stars: refractory-poor A stars

Composition anomaly in solar twins

Implications for observed puzzles

Composition anomaly in binaries

λ Boö stars: refractory-poor A stars

Composition anomaly in solar twins

Sun

Solar twins

Stars with similar metallicity, mass, age, and temp. to the Sun

~10% solar twins (incl. the Sun!) have refractory-poor compositions

low Z

Solar abundances normalized by the average of solar twins

Two scenarios

Accretion signature?

Solar surface is diluted by the accretion of disk gas where many planets are formed?

low-Z accretion

e.g., Chambers10

Inner Galaxy is refractory-poor → Outward migration of the Sun induced the difference?

quantitatively not enough

Kunitomo+18

Galactic origin?

e.g., Adibekyan+14

Current

.

birthplace?

Contents of this talk

- Introduction
 - Star formation accretion
 - Stellar structure convective stability
 - Planet formation "pebble drift"
- Consequences for stellar surface composition - λ Boö stars, binary systems, solar twins, the Sun's birthplace
- Consequences for solar internal structure - spectroscopicopy, helioseismology, neutrinos

nposition

Decrease due to updates in atm. models (e.g., $1D \rightarrow 3D$, non-LTE)

See also Asplund+2021

"Solar modeling problem"

Montalban+2006, Basu+Antia 2008, Buldgen+2019, Orebi Gann+2021, Christensen-Dalsgaard 2021

Our idea: composition gradient?

Composition gradient in the solar interior?

present day

Small composition gradient

Larger gradient due to star formation processes?

Metallicity profile of the present-day Sun

Kunitomo+Guillot 2021

central metallicity increases by ~5%

• only in the central region $(\leq 0.2 R_{\odot})$

What governs the central metallicity?

Early phase (≲1.7 Myr)

Late phase (2–10 Myr)

• high-Z accretion due to pebble drift • fully convective proto-Sun Homogeneously high-Z solar interior

• **low-Z accretion** (e.g., dust depletion) \rightarrow low-Z solar surface

central region becomes radiative composition gradient! → high-Z core remains

only in the radiative central region

radiative

convective

Does the compositional gradient affect solar neutrino fluxes?

Planet formation affects neutrino fluxes

Planet formation affects neutrino fluxes

• With ~12–18% opacity increase, helioseismic and spectroscopic observations are well reproduced ($\chi^2 \leq 0.5$)

Kunitomo+Guillot 2021; see also Bahcall+2005, Christensen-Dalsgaaard+2009, Bailey+2015, Buldgen+2019

- However, inconsistent with neutrino observation
- Planet formation processes increase neutrino fluxes

→ consistent with neutrino obs.!

see also Serenelli+2011, Zhang+2019

Neutrino, helioseismic & spectroscopic observations can be reproduced

Solar modeling problem can be solved by star & planet formation processes

Planet formation affects neutrino fluxes

- Higher ⁸B, ⁷Be, CNO and lower pp, pep fluxes due to planet formation processes see also Serenelli+2011, Zhang+2019
- All the observed fluxes are reproduced within $\sim 1\sigma$

Why does planet formation affect neutrinos?

Neutrino fluxes (= nuclear reaction rates) strongly depend on temperature

$$\Phi(^{8}B) \propto T_{center}^{25}$$

$$\Phi(^{7}Be) \propto T_{center}^{11}$$

$$\Phi(CNO) \propto T_{center}^{20}$$

Bahcall+Ulmer1996

Planet formation processes induces higher central metallicity

- → higher opacity
- → higher temperature
- → higher neutrino fluxes

thermal energy ~ keV (~10⁷ K)

~MeV Coulomb barrier vs tunnel effect

<u>Comparison w/ large samples</u>

• Surface Z by GAIA, planet population by PLATO

- Scatter in the shaded region?
 - **Correlation with planets?**

Comparison w/ large samples

• Surface Z by GAIA, planet population by PLATO

Additional input physics

- rotational diffusion ((M)HD instabilities)
- stellar winds (~0.02 M_{\odot} for 4.6 Gyr?)

Future prospects

<u>Comparison w/ large samples</u>

Surface Z by GAIA, planet population by PLATO

Additional input physics

- rotational diffusion ((M)HD instabilities)
- stellar winds (~0.02 M_{\odot} for 4.6 Gyr?)

Realistic Z_{accretion} model

- theory of dust coagulation & drift
- observational constraints

e.g., Kobayashi+Tanaka 2021, Roman-Duval+2020, Kama+2015

Future prospects

Micolta+23

Observed compositions of accretion flow

0.8

- X-shooter/VLT observations of Chamaeleon I star-forming region
- **Color** shows how much Ca II K line is weaker than expected from $H\alpha$
- All the (pre-)transition disks and some full disks have deficit in Ca
- T28 inner disk has a Ca abundance of ~17% solar

Summary

- We simulated the formation and evolution of stars focusing on the evolving composition of accretion flow and found
 - planet formation processes can decrease the stellar surface metallicity and explain chemical peculiarities in λ Boö stars and binaries
 - the solar central metallicity can be increased by up to 5% and neutrino fluxes are reproduced

