Planet S'

Unveiling the Atmospheric Composition of Giant Exoplanets

Stefan Pelletier

Observatoire de Genève

<u>Collaborators</u>: B. Benneke, Y. Chachan, M. Ali-Dib, L. Bazinet, B. Prinoth, R. Allart, D. Ehrenreich, H.J. Hoeijmakers, D. Kasper, A. Seifahrt, J. Bean, A. Lavail, J. Lothringer, L-P. Coulombe, V. Parmentier, A. Kesseli, N. Borsato, B. Thorsbro, O. Lim, A. Carmona, L. Pino, N. Casasayas-Barris, T. Hood, J. Stürmer & The NIRPS Consortium

iREx

Swiss National

Science Foundation

"En ce qui touche les étoiles, nous ne saurons jamais étudier par aucun moyen leur composition chimique."
– Auguste Comte 1835

Abundance of elements in the Sun

Forming planets is a multi-step process

End composition will depend on accretion history

Image credit: Daria Dall'Olio

Atmospheric composition of Jupiter

 \succ Elements on Jupiter are $\sim 3 \times$ enriched relative to solar

Rocks (refractories)

111

Gas (H, He)

Ices (volatiles)

We do not have a direct measurement of the ice-to-rock ratio for any of the Solar System giants.

The ultra-hot Jupiter opportunity

Image credit: Peter Gao

Transit observation of WASP-76b

The high-resolution data:

Wavelength

Species detected on WASP-76b

Retrieved abundances for WASP-76b

Elements match solar/stellar abundances in most cases

A sharp cold-trapping onset

Solar-like abundances until T_{cond} ~1550K, then strong depletion

Takeaways: WASP-76b

Many refractory species detected on WASP-76b from MAROON-X transits

Most refractory abundance ratios on WASP-76b match those of the host star

There exist a sharp onset in condensation temperature for measured abundance ratios

Refractories → Optical Volatiles → Infrared

Dayside observation of WASP-121b

 $0.38 - 0.78 \,\mu \text{m}$

WASP-121b

Orbital trace of WASP-121b's atmosphere

Lines seen in emission, indicating a thermally inverted atmosphere

CO, H₂O, and Fe on the dayside of WASP-121b

Retrieved dayside temperature structure

WASP-121b elemental abundance ratios

Fe/H on WASP-121b is consistent with solar/stellar

WASP-121b elemental abundance ratios

C/H and O/H on WASP-121b are super-solar/stellar

WASP-121b elemental abundance ratios

WASP-121b is enriched in volatiles relative to refractories

Linking composition to formation

001

- (1) Formation within soot line
- (2) Formation between soot and H_2O lines
- (3) Formation with enriched H_2O gas
- (4) Formation wth enriched H_2O solids

- (5) Formation between H_2O and CO lines
- (6) Formation with enriched CO gas
- (7) Formation with enriched CO solids
- (8) Formation beyond CO line

Chachan et al. 2023

Temperature

Linking composition to formation

Linking composition to formation

WASP-121b likely formed from volatile-rich material in the outer disc

Picture consistent with WASP-121b's polar orbit indicative of dynamical past

Takeaways: WASP-121b

Volatile (CO, H_2O) and refractory (Fe) species detected on WASP-121b

WASP-121b has a super-stellar iceto-rock ratio, and may have formed in a volatile-rich environment

The hot giant exoplanet population

Hot and ultra-hot Jupiter atmospheres are compositionally different.

Recall: Ti depletion on WASP-76b

Not all refractories are the same

WASP-76b (T_{eq} = 2200K) Titanium absent

WASP-189b (T_{eq} = 2650K) Titanium present

Prinoth, Hoeijmakers, Pelletier et al. 2023

Titanium on ultra-hot Jupiters

When does the titanium transition occur? And how sharp is it?

Dayside observation of WASP-189b

 $0.38 - 0.69 \,\mu m$

$0.95 - 1.8 \,\mu m$

WASP-189b

Detection of Fe and Ti on WASP-189b

Signals seen in emission, indicating a thermal inversion

Retrieved Ti/Fe ratio on WASP-189b

WASP-189b has more Fe than Ti (relative to the solar/stellar ratios)

Where is the missing titanium?

- \succ Some Ti in other molecular forms like TiO₂ and TiH (unlikely)
- TiO is under-estimated due to line list issues (likely)
- Equilibrium chemistry is not a valid assumption (possible)
- > Star Fe/Ti ratio is even more subsolar than measured (unlikely)
- Some titanium is still partially cold-trapped (?)

Cooler' ultra-hot Jupiter (WASP-76b)

Mg

Ultra-refractories like Ti remain cold-trapped on the nightside

TiO₂

Cold

Nightside

CO Fe Hot OH Dayside Mg

 H_2O

Si

CO

Fe

 H_2O

Si

Image credit: Engine House VFX

`Hotter' ultra-hot Jupiter (WASP-189b)

Cold Nightside

Ti cold-trap is partially broken, with some cloud mass remaining

TiO₂

Mg H_2O Si CO Fe Hot OH Dayside Mg Ti H_2O Si CO Fe

Takeaways: WASP-189b

2

The titanium-to-iron ratio on WASP-189b is sub-stellar, hinting that some Ti is still unaccounted for

-0.9

-1.8

-2.7

The release of titanium from the nightside cold-trap may be a gradual process

