MCFOST - Radiative transfer code for protoplanetary disks

Héloïse Méheut

Radiative transfer day - 29/05/2019

Héloïse Méheut MCFOST

Structures in pp diks

Structures in protoplanetary disks

Structures in pp diks

Crescents Vortices?

Héloïse Méheut

MCFOST

Adaptive Mesh Refinement Versatile Advection Code

- AMR + stretched grid
- $\bullet~1/2/3\text{D},$ Cartesian, cylindrical, polar, spherical grids
- Spatial discretizations : central difference, finite difference, finite volume, Riemann solvers
- Temporal discretizations : Euler, predictor-corrector, RK4

Héloïse Méheut

MCFOST

AMRVAC Results

Hydro results (2D) Gas surface density

< 一型

10

Code interface MCFOST

Code interface : Hydro \rightarrow RT

- interpolation of hydro grid on RT grid
- $2D \rightarrow 3D$
- dust density = gas density
- extent the disk

Code interface MCFOST

MCFOST

- Some features
 - 2D/ 3D radiative transfer
 - Monte-Carlo/Ray-tracing
 - Dust + Gas
 - designed for circumstellar environments
 - Input : model or data
 - LTE/N-LTE

- Some outputs
 - Temperature map
 - Optical depth map
 - SED
 - Images
 - Atomic/molecular line maps
 - Stokes parameters

Code interface MCFOST

MCFOST - dust

Some dust properties included in the model $% \left({{{\left[{{{{\mathbf{n}}_{{\mathbf{n}}}}} \right]}_{{\mathbf{n}}}}_{{\mathbf{n}}}} \right)$

- spherical grains (Mie) or distribution of hollow spheres (DHS)
- Mixing rule
- Porosity
- Mass/volume fraction
- Heating method (RE, LTE, N-LTE)
- Size distribution

Optical indices tables given for :

- H2O or CO2 ice
- Silicate

O ...

- Graphite
- Porous interstellar grains
- Amorphous MgFeSiO4 olivine
- Ionized or neutral PAHs