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ABSTRACT

Context. Understanding the growth of the cores of giant planets is a difficult problem. Recently, Lambrechts & Johansen (2012, A&A,
544, A32, LJ12) proposed a new model in which the cores grow by the accretion of pebble-size objects, as the latter drift towards the
star due to gas drag.
Aims. We investigate the dynamics of pebble-size objects in the vicinity of planetary embryos of 1 and 5 Earth masses and the resulting
accretion rates.
Methods. We use hydrodynamical simulations, in which the embryo influences the dynamics of the gas and the pebbles suffer gas
drag according to the local gas density and velocities.
Results. The pebble dynamics in the vicinity of the planetary embryo is non-trivial, and it changes significantly with the pebble size.
Nevertheless, the accretion rate of the embryo that we measure is within an order of magnitude of the rate estimated in LJ12 and tends
to their value with increasing pebble-size.
Conclusions. The model by LJ12 has the potential to explain the rapid growth of giant planet cores. The actual accretion rates
however, depend on the surface density of pebble size objects in the disk, which is unknown to date.
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1. Introduction

The formation of the massive cores of giant planets within the
short timescale allowed by the survival of a proto-planetary
disk of gas and solids (a few My; Haisch et al. 2001) is still
an open problem. In the classical view, these cores form by
collisional coagulation from a disk of km-sized planetesimals,
through the well-known processes of runaway (Greenberg et al.
1978; Wetherill & Stewart 1989) and oligarchic growth (Ida
& Makino 1993; Kokubo & Ida 1998). In principle these pro-
cesses should continue until the largest objects achieve an iso-
lation mass, which is a substantial fraction of the initial total
mass of local solids. If the initial disk is sufficiently massive
(about 10 times the so-called Minimal Mass Solar Nebula or
MMSN; Weidenschilling 1977a,b; Hayashi 1981), it is expected
that cores of ∼10 Earth masses (ME) form beyond the so-called
snowline (the orbital radius beyond which temperature is cold
enough that water condenses into ice; Podolak & Zucker 2004),
as required in the core-accretion model for giant planet forma-
tion (Thommes et al. 2003; Goldreich et al. 2004; Chambers
2006).

N-body simulations, though, show that reality is not so sim-
ple. When the cores achieve a mass of about 1 M⊕ they start to
scatter the planetesimals away from their neighborhood, instead
of accreting them (Ida & Makino 1993; Levison et al. 2010),
which slows their accretion rate significantly. It has been pro-
posed that gas drag (Wetherill & Stewart 1989) or mutual in-
elastic collisions (Goldreich et al. 2004) prevent the dispersal of
the planetesimals by damping their orbital eccentricities, but in
this case the cores open gaps in the planetesimal disk (Levison
& Morbidelli 2007; Levison et al. 2010), like the satellites Pan

and Daphis open gaps in Saturn’s rings. Thus the cores isolate
themselves from the disk of solids. This effectively stops their
growth. It has been argued that planet migration (Alibert et al.
2004) or the radial drift of sub-km planetesimals due to gas drag
(Rafikov 2004) break the isolation of the cores from the disk
of solids but, again, N-body simulations show that the relative
drift of planetesimals and cores simply collects the former in
resonances with the latter (Levison et al. 2010); this prevents
the planetesimals from being accreted by the cores. In fact, only
planetesimals smaller than a few tens of meters drift in the disk
fast enough to avoid trapping in any resonance with a growing
core (Weidenschilling & David 1985).

In a recent paper, Lambrechts & Johansen (2012, hereafter
LJ12), have proposed a new model of core growth, which ar-
gues that, if the mass in the disk is predominantly carried by
pebbles of a few decimeters in size, the largest planetesimals ac-
crete pebbles very efficiently, rapidly growing to several Earth
masses (see also Johansen & Lacerda 2010; Ormel & Klahr
2010; Murray-Clay et al. 2011). More specifically, this model
builds on the recent planetesimal formation model (Youdin &
Goodman 2005; Johansen et al. 2006, 2007, 2009) in which large
planetesimals (with sizes from ∼100 up to ∼1000 km) form by
the collapse of a self-gravitating clump of pebbles, concentrated
to high densities by disk turbulence and the streaming instability.
The mechanism by which, once formed, planetesimals can keep
accreting background pebbles is described hereafter.

Pebbles are strongly coupled with the gas; thus they en-
counter the already-formed planetesimals with a velocity Δv that
is equal to the difference between the Keplerian velocity and
the orbital velocity of the gas (slightly sub-Keplerian due to the
outward pressure gradient). LJ12 define the planetesimal Bondi
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radius as the distance at which the planetesimal exerts a deflec-
tion of one radian on a particle approaching with a velocity Δv:

RB =
GM
Δv2

(1)

where G is the gravitational constant and M is the planetesimal
mass (obviously the deflection is larger if the particle passes
closer than RB). LJ12 showed that all pebbles with a stopping
time ts smaller than the Bondi time tB = RB/Δv that pass
within a distance R = (ts/tB)1/2RB spiral down towards the plan-
etesimal and are accreted by it. Thus, the growth rate of the
planetesimal is:

Ṁ = πρR2Δv (2)

where ρ is the volume density of the pebbles in the disk.
From (1), the Bondi radius grows with the planetesimal

mass. LJ12 also showed that, when the Bondi radius exceeds
the scale height of the pebble layer, the accretion rate becomes

Ṁ = 2RΣΔv (3)

where Σ is the surface density of the pebbles. Moreover, when
the Bondi radius exceeds the Hill radius RH, the accretion rate
becomes

Ṁ = 2RHΣvH (4)

where vH is the Hill velocity (i.e. the difference in Keplerian ve-
locities between two circular orbits separated by RH).

With these formulae, and assuming that Σ stays constant
and is close to the nominal density of solids in the MMSN,
LJ12 showed that the formation of 10 ME cores is possible
within 1 My essentially anywhere in the disk (up to ∼50 AU).

There are two main advantages in the LJ12 model. First, it
can form 10 ME cores of giant planets within the lifetime of the
disk, a result very difficult to achieve by other models. Second,
because the accretion rate (2) is very sensitive on the planetesi-
mal mass (Ṁ ∝ M2), in practice only the largest planetesimals
formed in the turbulent model can effectively grow in mass by
this process: the minimal mass for triggering significant Bondi
accretion (see Eq. (2)) is about the mass of Ceres in the aster-
oid belt and about the mass of Pluto in the Kuiper belt. Thus
this model explains the maximal sizes observed in the asteroid
and Kuiper belt populations. In essence, in this model bodies
smaller than Ceres (respectively Pluto for the Kuiper belt) re-
mained small bodies (the asteroids and KBOs we see today),
whereas those bigger than this threshold kept accreting peb-
bles and became massive objects (embryos) which then were
removed by migrating away and (possibly) participating to the
build-up of the giant planets. Both these aspects of the model
are very appealing.

However the study conducted in LJ12, both in the analytic
and in the numerical parts, assumes that the motion of the gas is
not perturbed by the planetesimal. This assumption is good for
a Ceres-mass planetesimal, accreting as in (2), but it is far from
reality for planetary embryos (Earth mass or larger), accreting
through their Hill sphere as in (4). In fact, these objects modify
the gas streamlines significantly: a spiral density wave is formed
in the disk and the gas near the orbit of the planet has horseshoe
motion. An over-density of gas is also formed inside the planet’s
Hill sphere. It is not clear a priori what are the effects of these
structures on the pebble accretion rate. This is precisely what
we investigate in this paper with more realistic hydro-dynamical
simulations.

In Sect. 2, we describe our methods: the simulation tool that
we have developed and the parameters that we adopt. In Sect. 3
we present our results, for two embryo masses and 4 pebble
sizes. Our goal is three-fold: (i) describe and understand the dy-
namics of the pebbles for the different mass and size cases; (ii)
evaluate the accretion rate by the embryo and compare it with the
LJ12 estimate and (iii) evaluate the “filtering factor”, that is the
fraction of the pebbles that do not drift by the orbit of the planet
because they are accreted by the embryo. This factor is impor-
tant. If it is large, of a sequence of embryos radially distributed
in the disk, only the outermost one(s) can accrete; instead, if it is
small then the full system of embryos can grow, in an oligarchic
fashion. Our conclusions and discussion of a coherent scenario
of giant planet formation conclude the paper in Sect. 4.

2. Methods

Our simulation software is based on the hydro-dynamical code
FARGO, developed to study planet-disk interactions in Masset
(2000) and publicly available at http://fargo.in2p3.fr/
spip.php?auteur1. In that code, however, the N-body inter-
action among the bodies in the system is studied with a Runge-
Kutta integrator of 5th order. Because the time-step of the in-
tegration is fixed, the Runge-Kutta algorithm is not adequate
to treat accurately the close encounters between objects (e.g.
the encounters between the pebbles and the planetary embryo).
Also, there is no prescription in the original code to detect
collisions.

Thus, we replaced the Runge-Kutta subroutine in FARGO
with a code known as Symba. The latter is a variable-timestep
symplectic code developed in Duncan et al. (1998) to simulate
quasi-Keplerian N-body systems with mutual close encounters.
Symba also identifies collisions and merges the bodies that col-
lide. A technical difficulty in interfacing FARGO with Symba
was that the former is written in C-language and the latter in
Fortran. This required extensive modifications of several sub-
routines of the FARGO package.

In our simulations, the embryo is a massive object: it influ-
ences the evolution of the gas but, for simplicity, we cancel the
influence of the gas disk on the embryo, so that the latter remains
on a fixed, non-migrating orbit. This approximation is reason-
able, as long as the migration of the embryo is slow compared to
the radial drift of the pebbles due to gas drag.

In the FARGO code, the gas is discretized over a polar two-
dimensional grid. However, in our modified code, the pebbles
can evolve in a three-dimensional space. The gas drag on the
pebbles is then computed as follows. We consider a spherical
coordinate system r, θ, φ, where r, θ are the radial and azimuthal
coordinates on the disk mid-plane. At each timestep we iden-
tify the disk grid cell where the spherical projection of the peb-
ble falls on the midplane. This depends on the r, θ coordinates
of the pebble. We consider the values of the gas surface den-
sity Σ and radial and tangential velocities vr, vθ that the gas has
in that cell as well as in its 8 neighboring cells. We interpolate
the set of 9 values for each field with a polynomial function of
type (a + bx + cx2) + (a′ + b′x + c′x2)y + (a′′ + b′′x + c′′x2)y2

and we use it to evaluate Σ, vr and vθ of the gas at the r, θ location
of the pebble. Moreover, we assume that the vertical velocity
of the gas vz is zero. This sets the local relative velocity δu of
the gas and the pebble. The local volume density of the gas at
the pebble location is computed as ρ = Σ/(

√
πH) exp(−z2/H2)

where z is the vertical coordinate of the pebble and H/r is the
assumed aspect ratio of the disk, given as an input of the sim-
ulation. Finally, the drag suffered by the pebble is computed as
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Fig. 1. Color map of the surface density of the gas in a disk in the pres-
ence of a 5 ME embryo at r = 0.8, θ = 3.22. The black curves show
some gas streamlines and the blue, red, yellow and white curves depict
the trajectories of 5 cm, 20 cm, 1 m and 10 m pebbles, respectively, in
the frame corotating with the embryo.

u̇ = −1δu/ts, where ts is the stopping time. The stopping time
is also evaluated locally following Adachi et al. (1976), given
the size and bulk density of the pebble (given as an input of the
simulation) and the local volume density of the gas and Mach &
Knudsen numbers.

2.1. Simulation parameters

Our simulations follow the dynamics of one embryo and a set of
pebbles. We consider planetary embryos of 1 or 5 ME. They are
placed on a circular non-migrating orbit at 0.8 AU. The disk’s
surface density is equal to 1800 g/cm2 at 1 AU, corresponding
to the MMSN, with a radial profile proportional to 1/r. The as-
pect ratio is 5.6%. We follow an α-prescription for the disk’s
viscosity (Shakura & Sunyaev 1973), with α = 6 × 10−3. The
parameters above constitute just one set of (typical) disk param-
eters. Different disk parameters would affect mainly the pebble
stopping time. Given that we will study the dynamics of pebbles
over a wide range of sizes, our exploration of the stopping-time
parameter space will be exhaustive even if working with just one
disk model.

The disk is modeled over a grid extended from 0.75
to 1.12 AU, with a resolution of 160 concentric rings
and 720 sectors. As the disk radial extension is narrow, we use
non-reflecting boundary conditions, so that the spiral density
wave launched by the embryo does not make the surface den-
sity of the disk rough with multiple reflections.

An image of the surface density of the disk is shown in Fig. 1,
with a color scale. The black curves show streamlines of the gas
in the reference frame corotating with the embryo. The position
of the embryo is highlighted by a local maximum of the disk’s
surface density. Notice that the spiral density wave (the slanted
over-density structure departing from the planet) does not have
any reflection at the border of the frame. Therefore, it is not nec-
essary to simulate a wider radial portion of the disk.

The gravitational interaction between the embryo and the gas
is smoothed as 1/(Δ + ε)2 where Δ is the distance between the
embryo and a gas fluid element and ε is a smoothing parameter.
We adopt the quite standard choice ε = 0.6 RH.

We simulated pebbles of 5 cm, 20 cm, 1 m and 10 m in ra-
dius, with a bulk density of 1 g/cm3. With our disk model this
corresponds to the following stopping times at 1 AU: 0.017,
0.22, 2.78, 74.07 cu respectively, where cu is the time code unit,

which is 1/2π of an year. Even if some of these particles are
rather boulder-sized, we still call them pebbles, for simplicity.
The pebbles are assumed to orbit on the same plane as the disk
and the embryo so that our simulations become effectively two-
dimensional. A trajectory of one pebble of each size is shown
in Fig. 1 and described in the next section. The timestep used in
the integration is the minimum between 1/4 of the particle stop-
ping time and 0.1 cu. The latter is the timestep dt imposed by
the CFL condition (Courant et al. 1928) for the numerical solu-
tion of the hydrodynamical equations, given the resolution and
the extension of our grid. Remember that the Symba algorithm
effectively reduces the timestep for the integration of the parti-
cles approaching the embryo, through a clever subdivision of the
embryo’s gravitational potential (Duncan et al. 1998).

To measure the accretion rate and the filtering factor (see
last paragraph of Sect. 1) we proceed in two steps. We first in-
tegrate one pebble starting from the outer boundary of the disk
at r = 1.12 AU at opposition with respect to the embryo. As the
pebble migrates inward, we record the sequence of heliocentric
distance values rk that the pebble has at subsequent oppositions.
We denote by rN the smallest of the rk values with rK > 0.8 AU,
i.e. the heliocentric distance at the last opposition before cross-
ing the orbit of the embryo1. Then, we simulate a large number
of pebbles (usually 100, but this number can change from case
to case to achieve an appropriate resolution), initially at opposi-
tion and with heliocentric distances uniformly distributed in the
range [rN , rN−1]. Of this beam of pebbles, we measure the frac-
tion F that are accreted by the planet. F is the “filtering factor”
defined in the introduction, while 1 − F is the fraction of the
beam that drift across the orbit of the embryo. The accretion rate
is then:

Ṁ = Σ(rN−1 − rN) × FΔv (5)

where Δv is the difference in orbital velocity between the em-
bryo and a pebble placed in the middle of the [rN , rN−1] interval
and Σ is the surface density of the disk of pebbles. Thus, our
result is parametric in Σ and can be directly compared with the
expression (4) from LJ12.

3. Results

Figure 1 shows the trajectory of one pebble for each of the 4 sizes
that we consider in this study. The evolution is shown in a ro-
tating reference frame, with the embryo fixed at r = 0.8 AU
and θ = 3.22. Only the last synodic revolution is shown, i.e. that
leading to the crossing of the orbit of the embryo. The trajecto-
ries of the 5 cm, 20 cm, 1 m and 10 m pebbles are depicted in
blue, red, yellow and white, respectively. The mass of the em-
bryo is 5 ME.

Several considerations should be made, by looking at these
trajectories. First, notice that the stopping time (which increases
with particle size) is not simply related to the migration speed.
The particles with the fastest radial migrations are those with
radii of 20 cm and 1 m (with migration rates roughly equal
to each other). This is well known (Weidenschilling 1977b).
The 5 cm particle migrates more slowly because it is more cou-
pled with the gas (which does not have any net radial motion);
the 10 m particle migrates more slowly than the 1 m particles
because it is less sensitive to gas drag.

The U-turns drawn by the trajectories of the 20 cm and 1 m
pebbles are not related to horseshoe dynamics. They are simply

1 For the 10 m “pebble”, we chose instead N = 2, so that it is still far
enough from the embryo to preserve a quasi-circular orbit.
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Fig. 2. The trajectories of 5 cm pebbles approaching a 1 ME embryo in
relative r, θ coordinates.

due to the fact that the angular velocity of a Keplerian orbit de-
creases as 1/r3/2 so that, in a reference system corotating with
an object at a fixed distance r0 (like Fig. 1 corotating with the
embryo at r0 = 0.8 AU) a particle moves from the right to the
left if it has r > r0 and from the left to the right if it has r < r0.
Thus, as the particle drifts from r > r0 to r < r0 it has to make
a U-turn. In other terms, these bended trajectories are not due to
the gravitational effect of the embryo but just to the rigid rotation
of the reference frame. Only particles passing close to the em-
bryo (shown below) are affected by the gravitational attraction
of the latter.

Instead, the U-turn of the 5 cm pebble is due to horseshoe
dynamics. This is apparent from the fact that the radial motion
is fast only in the vicinity of the embryo. The particle shown
in Fig. 1 traces approximately the maximal width of a particle
horseshoe trajectory. Notice that the width of the horseshoe re-
gion for the particles is much narrower than that for the gas,
highlighted by the U-turning streamlines.

Finally, the trajectory of the 10 m object shows radial oscil-
lations as it approaches towards the embryo. This is due to its
orbital eccentricity, acquired during previous passages at con-
junction with the embryo, and not fully damped by the gas drag
in half a synodic period (i.e. from conjunction to opposition).
This is not the case from the other particles for two reasons: gas
drag is stronger and erases the eccentricity faster (e.g. the 5 cm
pebbles) and/or given their fast radial drift the pebbles passed
too far from the embryo at the previous conjunction to acquire a
large eccentricity (e.g. the 20 cm and 1 m particles).

We now focus on the dynamics in the very vicinity of the
embryo, leading to pebble accretion and the embryo’s growth.

Figure 2 shows the trajectories of several 5 cm pebbles as
they pass close to the 1 ME embryo. Each line is a different par-
ticle. The x-axis reports the difference δθ between the θ values
of the pebble and the embryo. Notice on the right hand side of
the figure the particles doing the horseshoe U-turn (those which
always have δθ > 0). Instead, the particles that are initially in
circulation, i.e. that have r > 0.8 AU and δθ passing from pos-
itive to negative, eventually cross the embryo’s orbit far behind
the embryo itself, when δθ < −0.6. Notice that the U-turn of the
pebbles occurs at r ∼ 0.798, i.e. slightly inside the embryo’s or-
bit (r = 0.8). This is because these pebbles are strongly coupled
with the gas, which has a sub-Keplerian orbital velocity; thus
the exact corotation radius is shifted towards the Sun. In total,
7 pebbles collide with the embryo, assumed to have the Earth’s
radius, as one can see from the trajectories diving towards the
point with coordinate (0, 0.8). Six of these pebbles collide with

Fig. 3. The same as Fig. 2 but for 20 cm pebbles.

Fig. 4. The same as Fig. 2 but for 1 m particles.

the embryo in the approach phase, when δθ is evolving from pos-
itive to negative. However, one pebble hits the embryo “from the
back”, i.e. after having crossed the embryo’s orbit and with δθ
evolving from negative to positive.

Figure 3 is the same but for 20 cm pebbles. The figure is
qualitatively similar to the previous one, but the trajectories are
much more inclined due to the fact that these pebbles drift much
faster towards the Sun (beware that the scales in Figs. 2 and 3
are different) and, consequently, the particles that cross the or-
bit of the embryo at negative δθ do so closer to the embryo
(with δθ > −0.2 instead of <−0.6). The thick ellipse drawn
around (0, 0.8) marks a circle centered on the embryo with a ra-
dius equal to 1/3 of its Hill radius. The resolution of the output of
the simulation is too coarse to resolve the trajectories inside this
radius. However, the internal timestep of the Symba algorithm
is good enough to resolve the physical collision of the pebbles
with the embryo. There are 18 pebbles entering inside the circle,
4 of which enter “from the back”, i.e. after having crossed the
embryo’s orbit. Of these 18 pebbles, 13 physically collide with
the embryo. The remaining ones are slingshot away by the em-
bryo during the close encounter and exit the domain covered by
our grid.

Figure 4 is for one-meter particles. The major difference with
respect to the previous figure is the strong kink that particles re-
ceive when passing from positive to negative δθ. This happens
because these particles are less coupled to the gas and therefore
they can be scattered to large eccentricity when they pass in con-
junction with the embryo. Consequently, the 1-m particles pass
much further away from the embryo than the 20 cm-particles
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Fig. 5. The same as Fig. 2 but for 10 m particles.

Fig. 6. The same as Fig. 5 but for a 5 ME embryo.

when they cross the embryo’s orbit, and therefore they cannot
collide with the embryo “from the back”.

Figure 5 is for 10 m-particles. For these particles we change
the scale of the plot, showing the whole disk up to r = 0.86 AU.
This is because gas drag is weak, and the particles conserve part
of the eccentricity that they acquire during the previous conjunc-
tion with the embryo for a full synodic period. Consequently,
their dynamical behavior when crossing the embryo’s orbit in-
herits the dynamical history recorded over several synodic rev-
olutions. Because the radial drift during a synodic revolution is
small, all particles have to pass eventually very close to the em-
bryo, so that many of them (40%) are accreted. The particles that
safely cross the embryo’s orbit do so with a horseshoe U-turn
at δθ > 0. If the embryo is more massive the fraction of accreted
particles increases and, for a 5 ME embryo, the accretion effi-
ciency is 100% (see Fig. 6).

We now come to a synthesis of the results for what concerns
the embryo’s mass accretion rate and filtering factor.

Figure 7 shows the mass accretion rate for the embryos of
masses 1 ME (filled dots) and 5 ME (open dots) respectively, as
a function of the pebbles size. The mass accretion rate is nor-
malized by Σ (the surface density of the pebbles). The dotted
and dashed horizontal lines show the accretion rate estimated
by LJ12, for embryos of masses 1 ME and 5 ME respectively.
As one can see, our numerically measured accretion rates are
within an order of magnitude of the estimated rates, and tend
asymptotically to the estimated values for growing pebble sizes.
The drop of the accretion rate with particle size is due mainly be-
cause a larger fraction of the particles that enter the Hill sphere
of the embryo are dragged away by the flow of the gas, instead

Fig. 7. The accretion rate as a function of pebble size for embryos
of 1 ME (filled dots) and 5 ME (open dots) respectively. The dotted and
dashed lines indicate the accretion rates estimated in LJ12 for these two
embryo masses.

Fig. 8. The filtering factor as a function of pebble size for embryos
of 1 ME (filled dots) and 5 ME (open dots) respectively.

of falling onto the central object. This phenomenon was ex-
pected in LJ12, who predicted that their accretion rate is valid
for pebbles with stopping time of the order 0.1−1. Remember
that 20 cm pebbles in our simulation have ts = 0.22. Thus, our
results suggest that the nominal accretion rate of LJ12 applies in-
stead from ts ∼ 1; however, it remains valid up to stopping times
larger than predicted, i.e. up to at least ∼100 (the value of ts for
the 10 m particles is 75).

The scaling relative to the embryo’s mass predicted by LJ12
(Ṁ ∝ Rhvh, i.e. Ṁ ∝ M2/3) is confirmed by our numerical simu-
lations for all tested pebble sizes.

Figure 8 shows the filtering factor as a function of pebble
size, again for 5 ME (open dots) and 1 ME (filled dots) embryos.
The filtering factor scales again as M2/3. The filtering factor de-
creases with increasing drift speed and therefore it is the smallest
for the m-sized particles. Except for particles of multiple meters,
the filtering factor is small (a few percent to 10%), which implies
that a system of numerous embryos (with a number of objects
roughly proportional to 1/F) can grow simultaneously in the
disk. Notice that the embryos should grow in an oligarchic fash-
ion, due to the M2/3 dependence of the accretion rate. Instead, if
the disk is dominated by multi-meter particles, only a few em-
bryos can grow, with eventually the outermost one capturing all
the material.

In the LJ12 model, there is no upper limit in mass for an
accreting embryo, as long as pebbles are available: an embryo
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Fig. 9. The gas azimuthal velocity relative to the Keplerian value, as a
function of orbital radius, for disks with embedded planets of 30, 50
and 100 Earth masses. The horizontal line marks the boundary between
sub-Keplerian and super-Keplerian rotation.

keeps accreting at a rate proportional to M2/3Σ. In reality, how-
ever, if the total mass of the planet (the mass of the solid embryo
plus the mass of the gas eventually accreted in its atmosphere)
becomes large enough, the surface density of the gas distribution
is modified. The neighborhood of the planet orbit becomes par-
tially depleted of gas (a shallow gap is opened) and this changes
the pressure gradient in the disk and the angular velocity of the
gas. Eventually the gas becomes super-Keplerian at some loca-
tion outside of the planet’s orbit and this stops the inward radial
drift of pebbles and small planetesimals. The accretion of the
planet by the LJ12 mechanism suddenly stops. Figure 9 shows
the ratio between the azimuthal velocity of the gas and that of a
Keplerian circular orbit as a function of radius, for planet masses
of 30, 50 and 100 ME placed at r = 0.8. For these tests, we have
increased the disk’s radial extension to the interval 0.5−1.3 AU.
For the disk parameters that we chose (see Sect. 2.1), we find that
the disk becomes locally super-Keplerian if the planet’s mass
is ∼50 ME. This mass would be reduced if the disk had a lower
viscosity and/or scale height. Whatever the exact value of the
limit mass of the planet, our result shows that the LJ12 mecha-
nism is capable of feeding a solids to a giant planet until its mass
is several tens of Earth masses.

This result has two main implications. First, the runaway
accretion of the atmosphere onto the embryo might start ear-
lier than in the classic Pollack et al. (1996) model. In fact, in
Pollack et al. the embryo’s accretion stalls when the mass of
the embryo is about 10 ME, because the feeding zone for solids
is strongly depleted. Then, the embryo’s accretion of both gas
and solids continues very slowly, with the consequence that the
critical mass for triggering runaway capture of gas (∼30 ME) is
reached only after several My. In the LJ12 scenario, the mass ac-
cretion of the embryo would not slow down, so that the runaway
accretion of gas, in principle, might start at an earlier time. We
notice however that a high accretion rate of solids has also a neg-
ative effect on gas accretion because it releases a lot of energy
on the embryo which needs to be evacuated (Dodson-Robinson
& Bodenheimer 2010); thus, the net effect of pebble-accretion
on gas-accretion will need to be investigated in hydrodynamical
simulations accounting for heat transfer. Second, the accretion
of pebbles until the planet mass achieves ∼50 ME can help ex-
plaining the large ratio between heavy elements and hydrogen
and helium in the atmosphere of Jupiter, which is 3−4 times
solar (Wong et al. 2004). Enriching the giant planets in heavy
elements is not straightforward (Guillot & Gladman 2000) by

other mechanisms; thus this is another appealing aspect of the
LJ12 model.

4. Conclusions

In this paper we have tested the scenario of giant planet core for-
mation proposed by LJ12 with hydrodynamical simulations that
fully account for (i) the interaction between the growing core
and the gas of the disk and (ii) the local drag exerted by the gas
on pebbles and boulders.

We have found that the pebble dynamics in the vicinity of
the planetary embryo is non-trivial, and that it changes signifi-
cantly with the pebble size. Nevertheless, the accretion rate of
the embryo that we measure is within an order of magnitude of
the rate estimated in LJ12 and tends to their value with increas-
ing pebble-size.

The accretion of pebbles can continue until the embryo’s
mass is of the order of 50 Earth masses (in solids and gas). This
may have important implications on the onset of runaway accre-
tion of gas by the growing giant planets and can help explaining
the enrichment in solids observed in Jupiter’s atmosphere.

The actual accretion rate of an embryo depends on the
amount of mass Σ available in pebbles, which is not known
a priori, given that pebbles are consumed by the formation of
planetesimals and by the accretion of the embryos themselves.
Nevertheless, the accretion rates that we find in Fig. 7 are po-
tentially large. For instance, if a MMSN of solids (20 g/cm2

at 1 AU) were available in 20 cm pebbles, the mass doubling
time for a 1 ME embryo would be only 5500 years! This illus-
trates the importance of the LJ12 model for the growth of giant
planets cores.

Given that the LJ12 model is built in the same framework
as the model that explains the rapid formation of planetesimals
(Johansen et al. 2007), we believe that the community has now,
for the first time, a coherent scenario to explain the the early
phases of planet growth. However, we do not see any evident rea-
son for which only a small number (4−6) of giant planet cores
should grow in the disk, as suggested by the number of giant
planets of our solar system, including rogue ice-giants poten-
tially lost during the dynamical evolution that followed planet
formation (Nesvorny 2011; Nesvorny & Morbidelli 2012). Thus,
we think that, most likely, the LJ12 model explains the formation
of massive planetary embryos of a few Earth masses, but an ad-
ditional stage is needed to form the giant planet cores (10 Earth
masses or more).

This is the scenario that we envision. The embryos formed
by the LJ12 mechanism, once massive enough, start to migrate in
the disk due to planet-disk interactions. Recent results on migra-
tion in radiatively cooling disks (Paardekooper & Mallema 2006;
Baruteau & Masset 2008; Kley & Crida 2008; Paardekooper
et al. 2010; Masset & Casoli 2010; Bitsch & Kley 2011) show
that the embryos migrate from all directions toward an orbital
radius where migration is canceled out by the compensation of
competing torques. This convergent migration towards the same
region can promote the mutual accretion of embryos, eventually
reducing a system of a large number of embryos into a system of
a smaller number of larger objects, i.e. a handful of giant planet
cores (Horn et al. 2012). Admittedly, this scenario is still spec-
ulative and more work is needed to prove its validity. We stress,
however, that a final phase of core formation characterized by
mutual collisions of embryos would explain, in a natural way,
the massive impacts that are needed to explain the current obliq-
uities of Uranus and Neptune (Morbidelli et al. 2012).
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