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ABSTRACT

Context. With hundreds of exoplanets detected, it is necessary to revisit giant planets accretion models to explain their mass distri-
bution. In particular, formation of sub-jovian planets remains unclear, given the short timescale for the runaway accretion of massive
atmospheres. However, gas needs to pass through a circum-planetary disc. If the latter has a low viscosity (as expected if planets form
in “dead zones”), it might act as a bottleneck for gas accretion.
Aims. We investigate what the minimum accretion rate is for a planet under the limit assumption that the circum-planetary disc is
totally inviscid, and the transport of angular momentum occurs solely because of the gravitational perturbations from the star.
Methods. To estimate the accretion rate, we present a steady-state model of an inviscid circum-planetary disc, with vertical gas inflow
and external torque from the star. Hydrodynamical simulations of a circum-planetary disc were conducted in 2D, in a planetocentric
frame, with the star as an external perturber in order to measure the torque exerted by the star on the disc.
Results. The disc shows a two-armed spiral wave caused by stellar tides, propagating all the way in from the outer edge of the disc
towards the planet. The stellar torque is small and corresponds to a doubling time for a Jupiter mass planet of the order of 5 Myr.
Given the limit assumptions, this is clearly a lower bound of the real accretion rate.
Conclusions. This result shows that gas accretion onto a giant planet can be regulated by circum-planetary discs. This suggests that
the diversity of masses of extra-solar planets may be the result of different viscosities in these discs.
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1. Introduction

The detection of exoplanets is probably one of the most strik-
ing discoveries of the past 50 years in astrophysics. Up to now,
more than 700 exoplanets have been found. This constantly in-
creasing number allows a statistical approach to the analysis of
exoplanets. The resulting statistical distributions are then crucial
benchmarks for planetary formation models. For an exoplanet,
the two easiest parameters to determine are the mass and the
semi-major axis of its orbit. Low mass planets are still hard to
detect, but it seems that the mass distribution of planets more
than 10 Earth masses is double-peaked, with a peak close to the
mass of Neptune, and another peak close to the mass of Jupiter1.
The first peak is probably an effect of observational biases as
low-mass planets are still hard to detect, but the second peak
seems to be real (Mayor et al. 2011).

The most popular model for giant planet formation is the
core accretion model of Bodenheimer & Pollack (1986). In
this model, a solid core grows, embedded in a gaseous proto-
planetary disc. The gas within the Bondi radius (Bodenheimer
et al. 2000) is gravitationally bound to the core, and forms
an envelope. When the planet reaches a critical core mass of
about 12–16 M⊕ (Pollack et al. 1996; Tajima & Nakagawa
1997), the envelope starts to contract quasi-statically and gas

1 http://exoplanet.eu/

accretion rate increases, for an evolution timescale of a few mil-
lion years. This long phase is followed by a runaway gas accre-
tion stage occurring as soon as both core and envelope masses
are approximately equal, during which quasi-static contraction
and thus gas accretion rate dramatically increase. This leads to
an exponential growth of the planet, in a few 105 yr, which pro-
ceeds as long as there is gas available.

This raises the question: what sets the terminal mass of a gi-
ant planet? When a planet becomes massive enough (typically
a Saturn mass), it starts to open a gap in the disc around its
orbit (Papaloizou & Lin 1984; Lin & Papaloizou 1986; Crida
et al. 2006). However, gap opening does not necessarily im-
ply that the gas flow onto the planet has ceased (Artymowicz
& Lubow 1996) because the gap is not totally empty. Hydro-
dynamical simulations (Bryden et al. 1999; Kley 1999; Lubow
et al. 1999; Lubow & D’Angelo 2006) show that a Jupiter-mass
planet keeps accreting gas almost as fast as if gap-opening had
not occurred. Accretion stalls by gap-opening only once a mass
in the range of 5–10 Jupiter masses is achieved. This is at odds
with the masses of the giant planets in the solar system and of
many of the extra-solar giant planets. In particular, the existence
of Saturn-mass planets is a mystery in this scenario.

An often proposed solution (e.g.: Thommes et al. 2008) is
that the giant planets form in “dead zones” – regions in the disc
with very low viscosity – and, consequently, open gaps that are
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much wider and cleaner than previously thought. These gaps
could inhibit accretion for planet masses of order of a Jupiter
mass or less. However, this idea fails because, as demonstrated
by Crida et al. (2006), the depth and width of a gap does not
depend just on viscosity but also on the temperature (i.e. scale
height) of the disc. Thus, even in a dead zone the gap opened by
a Jupiter-mass planet should not inhibit significantly the accre-
tion of gas into the planet’s Hill sphere. Thus, we believe that the
question on the terminal mass of giant planets is still open.

We notice, however, that the Pollack et al. (1996) model con-
sidered an omnidirectional gas accretion towards the planet; yet,
it is physically impossible to reach this state due to angular mo-
mentum conservation of the inflowing gas. In fact, gas must form
a consistent circum-planetary disc (CPD) once the mass of the
planet is higher than about a hundred Earth masses and the plan-
etary atmosphere has shrunk well inside the planet’s Hill radius
(Ward & Canup 2010). This has been confirmed by numeri-
cal simulations (e.g. Ayliffe & Bate 2009a,b). Once a CPD is
formed, the accretion rate of the planet depends on the ability
of gas to lose angular momentum, either by its re-distribution
within the disc (through viscosity) or exchange with external
perturbers (e.g. the star).

Most of the previous simulations considered a significant
viscosity in the CPD, comparable to that of the active zones of
the circum-stellar disc. In this case, angular momentum is redis-
tributed very quickly and the accretion of gas from the CPD onto
the planet is extremely fast, so that the role of the disc can gener-
ally be neglected as shown by Papaloizou & Nelson (2005) who
assumed a viscosity about α = 10−3. However, it is possible that
the CPD is in an MRI dead state as suggested by Turner et al.
(2010), leading to vanishing turbulence and a very low viscos-
ity. Indeed, if the circum-planetary disc has a very low viscosity,
then the transport of angular momentum through this disc can
be very inefficient and gas can only accrete onto the planet at
the rate allowed by the removal of angular momentum by ex-
ternal perturbations, such as the stellar tide. Consequently, the
CPD may act as a bottleneck for gas accretion and dramatically
slow down the planet’s growth. If, as a result, the accretion of a
planet does not enter the runaway phase but proceeds at a more
regular pace on a timescale comparable to the circum-stellar disc
lifetime (a few million years; Haisch et al. 2001; Hillenbrand
et al. 2008) then the observed mass spectrum of the giant planets
may be the consequence of the competition between gas accre-
tion and gas dissipation.

To test whether the idea of a slow accretion rate through a
low-viscosity disc is realistic, we study in this paper the effect of
the stellar tides. We are aware that Reynolds stresses from waves
driven from the circum-solar disc may allow angular momentum
losses in the CPD as well. However, the accretion rate due solely
to the solar tide provides a lower-bound to the real accretion rate
for a CPD of vanishing viscosity. If the result is encouraging –
i.e. the mass-doubling time for a Jupiter-mass planet from solar
tides is longer than the proto-planetary disc lifetime – then the
idea of a low-viscosity CPD as a regulator of the gas accretion
rate onto a giant planet is promising. In this case, future work
will have to evaluate in detail the gas accretion rate with real-
istic 3D hydro-dynamical simulations. Thus, our present paper
should be considered as a first step in a long research plan.

The structure of the paper is the following. In Sect. 2 we
elaborate an idealised semi-analytical model to evaluate the
steady state accretion rate of a planet that is surrounded by an
inviscid disc which undergoes vertical gas inflow and is submit-
ted to a tidal torque from a distant star. Then we evaluate the
two key parameters that enter in this model. The vertical gas

influx rate is estimated in Sect. 3 from 3D simulations avail-
able in the literature. To compute the stellar torque, in Sect. 4
we perform 2D hydrodynamical simulations of a disc centred on
a Jupiter-mass planet. The disc feels the gravitational perturba-
tion from the star, assumed to be on a distant, circular orbit. We
measure the torque due to the stellar tides, after a steady-state is
reached. With these two values in hand, in Sect. 5 we estimate
the planet accretion rate, expressed as a timescale for the dou-
bling of the mass of a Jupiter-planet. Finally, we interpret these
results and discuss their possible implications for giant planet
formation theories in Sect. 6.

2. Model

The tidal torque and the accretion rate are not related in a triv-
ial way in an inviscid disc. In this section, we present a simple
model to derive an accretion rate on the planet from the tidal
torque that we will measure in Sect. 5.

2.1. Depletion of the CPD

The torque exerted by the star on a ring of the disc is not entirely
deposited locally in the disc. Only a fraction of the torque is
deposited. This fraction depends on the disc viscosity and tends
to zero for vanishing viscosity (Martin & Lubow 2011). The rest
(i.e. the totality of the torque in the case of an inviscid disc) is
passed to the adjacent rings through pressure effects (Crida et al.
2006, Appendix C). If no torque is deposited on a ring, then the
gas in the ring does not lose angular momentum and does not
move towards the central planet.

It would be incorrect, though, to expect that the wave raised
by the star does not promote gas accretion from an inviscid disc.
The torque is transmitted from each annulus of the disc to its
internal neighbour by pressure all the way to the inner edge of
the disc (at the boundary with the atmosphere). This inner annu-
lus, not being supported by anything interior to it on a Keplerian
motion, then loses angular momentum and falls onto the planet.
Once the innermost annulus is emptied, the same fate occurs to
the second innermost annulus and so forth. Thus, an inviscid disc
is depleted from the inside out as gas is accreted onto the planet’s
atmosphere.

More precisely, let us note X the radius of the region of the
CPD that is emptied by the torque over a time t. The total orbital
angular momentum of the gas present within r < X is given by:

L =
∫ X

0
Σ2πr × r(rΩ) dr (1)

=
4π
5
Σ
√

GMpX5/2 (2)

(assuming the surface density of the gas, Σ is independent of r).

Here, Ω =
√

GMp

r3 is the angular speed of the gas in Keplerian
motion at a radius r, with Mp the mass of the planet.

By definition of X, L should be exactly opposite to the to-
tal angular momentum taken by the star, which is the torque T ,
accumulated over time: T × t. This gives:

X(t) =

⎛⎜⎜⎜⎜⎜⎝ 5
4π

|T |
Σ
√

GMp

⎞⎟⎟⎟⎟⎟⎠
2/5

t2/5. (3)

We see that the radius X increases with time, as expected.
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2.2. Infilling of the CPD

Here, we assume that the CPD is non-viscous. Thus, the CPD
doesn’t spread radially, and any gas input at its outer edge just
stays there. However, Machida et al. (2008) and Tanigawa et al.
(2012) have shown that vertical inflow onto the CPD is the main
source mass of the CPD. Let us call C this vertical mass flux per
surface unit of the CPD.

Then, the surface density in an initially void region is Σ = Ct.
Input into Eq. (3), this gives:

XC =

⎛⎜⎜⎜⎜⎜⎝ 5
4π

|T |
C

√
GMp

⎞⎟⎟⎟⎟⎟⎠
2/5

· (4)

This implies that there is a radius XC (independent of time) such
that inside r < XC , depletion due to the stellar torque T and
infilling due to the vertical inflow C exactly balance out. In
an arbitrary time span, all the gas input within a circle of ra-
dius XC around the planet has exactly the orbital angular mo-
mentum taken by the stellar torque. As a consequence, the whole
gas of this region falls onto the planet while the vertical in-
flow completely refills it in the same time. Thus, the region
within XC reaches a steady-state density.

The disc outside XC , however, does not accrete and gas piles
up. This issue will be discussed later in Sect. 2.4.

2.3. Accretion rate estimate

We can now write the planet accretion rate as a function of the
torque. The mass flow on the planet is simply the mass flow
inside r < XC:

Ṁp = CπXC
2

Ṁp = π

⎛⎜⎜⎜⎜⎜⎝ 5

4π
√

GMp

⎞⎟⎟⎟⎟⎟⎠
4/5

T 4/5C1/5. (5)

Note that the accretion rate depends weakly on the gas injection
flux C, whereas it depends almost linearly on the torque exerted
by the star T . This equation is central in this paper, as it links the
stellar torque to the planetary accretion rate.

2.4. The issue of gas-piling beyond XC

The model introduced in Sect. 2.2 raises the issue of gas-piling
in the outer part of the disc. Indeed, if the density in the outer
disc continued to increase, the total torque T exerted through
the wave would increase as well, as it is proportional to Σ. This
would imply an increase of the accretion radius X, and of the
accretion rate Ṁp. Moreover, the density in the outer disc could
reach the gravitational instability limit, changing completely the
structure of the CPD and leading to outbursts of accretion, as
suggested by Martin & Lubow (2011).

In reality, though, gas cannot pile-up indefinitely. If the den-
sity in the CPD becomes too large, gas is repelled by pressure
and the inflow from the circum-stellar disc has to stop. Thus, in
this section we estimate the density in the outer CPD, by impos-
ing the pressure equilibrium between the CPD and the circum-
stellar disc (CSD). Our approach is detailed below.

We assume the CSD is much thicker than the CPD. This, and
the fact that the inflow from the CSD to the CPD is along the
vertical direction (Tanigawa et al. 2012) suggests that the CSD

“weights” on top of the surface of the CPD. Then, at equilibrium,
the pressure in the CPD at a height HCPD has to be equal to the
pressure of the CSD at the same height.

Let us now assume a standard Gaussian pressure profile in
both discs: P(z) = P0 exp

(
− 1

2 ( z
H )2

)
where P0 is the pressure at

the mid-plane (denoted hereafter PCSD
0 and PCPD

0 for the CSD
and CPD respectively). At height HCPD, the pressure in the CSD
is PCSD

0 , given our assumption that HCSD � HCPD. In the CPD,
P(HCPD) = PCPD

0 /
√

e. P0 and Σ are linked by the equation of
state P0 = c2

sΣ (where cs = HΩ is the sound speed). The equa-
tion PCPD(HCPD) = PCSD(0) can then be solved for the sole un-
known of the problem:

ΣCPD(r) =
√

e

(
(H/r�)CSD

(H/r)CPD

)2 M�
Mp

r
r�
ΣCSD

where M� is the mass of the star and r� the semi-major axis of
the planet.

For (H/r�)CSD = 0.05 (Piétu et al. 2007), (H/r)CPD = 0.3
(Ayliffe & Bate 2009b), M� = 103Mp, r� = 14.4 RH (see simu-
lation set-up in Sect. 4.1.1) and r = 0.3 RH which corresponds to
the truncation radius of the CPD, as explained in Sect. 4.1.3, one
gets HCSD = 8 × HCPD, justifying our assumption. This gives:

ΣCPD(r) =

(
r

0.31 RH

)
ΣCSD (6)

with RH the Hill radius of the planet: RH = r�
( Mp

3 M�

)1/3
.

So, we estimate that the surface density of the CPD at 0.3 RH
is about equal to the local surface density of the CSD, and can
not exceed this value. This value of the density will be used in
our simulations for tidal torque calculation in Sect. 4.1.2.

3. Gas inflow estimate

To apply the method outlined in Sect. 2, we need to estimate C:
the flux per unit area of the gas injected onto the CPD. To do
that, we use the results from Ayliffe & Bate (2009b). Those sim-
ulations give the flux of gas through the Hill sphere (MH, identi-
fied in that paper as the “planet accretion rate”). For a planet of
mass Mp = 333 M⊕ (which is consistent with our choice of pa-
rameters) and a locally isothermal disc, Ayliffe & Bate (2009b)
find ṀH = 8 × 10−5 MJup/yr. Given that almost all of this flux is
vertical (Tanigawa et al. 2012), we can set ṀH = CπR2

H, which
gives

C = 2.54 × 10−5 MJup/yr/R 2
H . (7)

4. Numerical simulations and Torque computation

The model introduced in Sect. 2 allows us to derive analytically
an accretion rate onto the planet, given a gas inflow on the whole
disc and an accurate knowledge of tidal effects from the star, i.e.
an estimate of the stellar torque on the disc. Having evaluated the
former in the previous section, here we describe how we com-
pute the torque numerically. We start by reviewing the set-up of
our simulations.

4.1. Simulation set-up

4.1.1. Code

To run simulations, we have used the code FARGO2 from
Masset (2000a,b), which is a 2D Eulerian, non self-gravitating,

2 http://fargo.in2p3.fr/
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Table 1. Simulation parameters and results.

H/r Nr Ns ν T XC Ṁp

(R2
HΩH) (MJupR2

HΩ
2
H) (RH) (MJup/yr)

0.05 342 632 10−5 −3.39 × 10−8 5.11 × 10−2 1.87 × 10−7

0.1 170 314 3 × 10−5 −3.76 × 10−8 5.33 × 10−2 2.03 × 10−7

0.1 170 314 10−5 −3.64 × 10−8 5.26 × 10−2 1.98 × 10−7

0.1 170 314 3 × 10−6 −3.49 × 10−8 5.18 × 10−2 1.92 × 10−7

0.1 170 314 10−6 −3.32 × 10−8 5.08 × 10−2 1.84 × 10−7

0.15 114 212 10−5 −3.70 × 10−8 5.30 × 10−2 2.01 × 10−7

0.2 86 160 3 × 10−5 −3.88 × 10−8 5.40 × 10−2 2.09 × 10−7

0.2 86 160 10−5 −4.02 × 10−8 5.47 × 10−2 2.15 × 10−7

Notes. Nr and Ns are the number of radial and azimuthal grid-cells respectively. ν is the viscosity, T the cumulated stellar torque, XC the equilibrium
radius between the inner part of the disc in steady-state and the outer part. Finally, Ṁp is the accretion rate onto the planet.

isothermal code, with a polar grid. FARGO is very suitable for
simulations of the interactions between planets and the proto-
planetary disc. Here, we focus on the environment of the planet.
Thus, we have slightly modified FARGO to adapt it to our case
of study.

From now on, the central body will be the planet, while the
star will be the orbiting body around the planet and its disc.
Simulations take place in a planetocentric frame, corotating with
the star. The orbit of the star is circular and fixed.

The mass unit is the mass of the central body: the planet,
Mp. The distance unit is RH. The time unit is 1

ΩH
, where ΩH =√

GMp/R 3
H is the angular speed at r = RH. Note that the star’s

angular speed is thus Ω� ∼
√

GM�
r3�
= ΩH√

3
·

The mass of the star is taken to be M� = 1000 Mp, which
makes our system scaled like the Jupiter–Sun system. This
gives r� = 14.4 RH.

The star being out of the grid, we do not apply any smoothing
in the computation of the force exerted by the star onto the disc.
This is actually necessary for an accurate computation of the
differential, tidal forces.

4.1.2. Gas parameters

In our simulations, we take an initial density profile Σ(r) =
Σ0

(
r

RH

)−α
, with Σ0 = 5× 10−4 Mp/R2

H. This is in agreement with
the global simulations from Ayliffe & Bate (2009a). Moreover,
the surface density evaluated at 0.3 RH is ∼9 × 10−4 Mp/R2

H
as α = 1/2 (see below). This should be compared to the surface
density at the location of Jupiter: ΣCSD ≈ 10−3 MJup/R2

H in the
Minimum Mass Solar Nebula (Weidenschilling 1977; Hayashi
1981). Thus, our disc fulfils the condition of maximum pile-up,
that we evaluated in Sect. 2.4.

Due to numerical reasons, FARGO does not allow the mod-
elling of a perfectly inviscid disc. Thus, we take a low but
non-zero kinematic viscosity ν = 10−5 R2

HΩH, unless specified
otherwise and adopt a surface density profile α = 1/2 so that the
viscous torque between adjacent annuli is zero. Notice, more-
over, that our method to compute the gas accretion onto the
planet does not use the actual flow of the gas, but only the shape
of the spiral wave generated by the star (whose structure is de-
tailed in Sect. 5.1). Thus, our results should not be significantly
affected by our choice of ν, as we will check in Sect. 5.2.

The Equation Of State in FARGO is locally isothermal,
with P = cs

2 Σ, where cs is the sound speed and cs = HΩ.
The aspect ratio, H/r, is constant in all of our simulations and
independent of r.

The H/r of the CPD has been measured to be 0.3−0.4 in
Ayliffe & Bate (2009a). Unfortunately, the code FARGO is not
stable for values of the scale height that are so large. Thus, we
have run simulations with H/r values ranging from 0.05 to 0.2,
in order to extrapolate the results to H/r = 0.4. Fortunately, as
we will see below, the cumulated torque at the inner edge of the
disc turns out to be independent of the H/r value, which makes
the extrapolation trivial.

4.1.3. Numerical parameters

In several previous studies, simulations have shown that the disc
reaches an equilibrium distribution with a sharp truncation at its
outer edge (Ayliffe & Bate 2009a,b; Martin & Lubow 2011).
This truncation radius is about 0.3–0.4 RH and is likely set by
tidal truncation effects as outlined by Martin & Lubow (2011).
Indeed, we observed ourselves such a truncation radius in simu-
lations with a grid extended to the Hill radius.

Outside the truncation radius, the motion of the gas relative
to the planet is strongly non-Keplerian, as noticed by Ayliffe &
Bate (2009a). The interaction between this region and the CPD
is not clearly understood. Therefore, as we just want to mea-
sure the effect of stellar tides on the CPD, we consider in this
paper a limit case where the CPD is completely isolated and
we truncate the grid at Rout = 0.3 RH. The inner border radius
is Rin = 0.01 RH; for a Jupiter mass planet at 5.2 AU, it cor-
responds to about 540 000 km, which is smaller than the semi-
major axis of Europa.

We choose a logarithmic radial spacing for the grid (the
width of a ring δr is proportional to its radius r), which is suitable
to have an accurate resolution very close to the planet. The res-
olution is taken such that δθ = δr/r < H/5r (see Table 1). This
resolution is appropriate to resolve the pressure density wave ex-
erted by the star, as H is the typical pressure scale length.

4.1.4. Boundary conditions

We use a non-reflecting boundary condition for both the inner
and the outer borders of the disc. This prevents density waves
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from reflecting at the border of the grid. It is important for an
accurate evaluation of the torque onto the disc through the wave.
It also does not allow gas inflow or outflow and keeps the mean
density on the first and last rings constant with time, which is
consistent with our model of an isolated disc.

4.2. Torque computation

The gravitational torque exerted by the star on each ring of
the CPD is computed as follows (see Martin & Lubow 2011).
First, it is computed on each grid-cell. To the direct torque Tg,
we have to subtract an indirect torque Ti due to the acceleration
of the frame (i.e. of the planet).

Denoting by r = (xc, yc) the coordinates of a cell of
mass mcell, by r� = (x�, y�) the coordinates of the star and by
d = r − r� = (xd, yd) the mutual distance vector, the direct and
indirect forces exerted by the star on the cell write:

f g = −GM�mcell

d2

d
‖d‖

f i = −GM�mcell

r2�

r�
‖r�‖

thus, the gravitational torque exerted from the star on one cell is:

‖T‖ = ‖Tg − Ti‖
= ‖r ∧ ( f g − f i)‖
= −[xc( fgyd − fiy�) − yc( fgxd − fi x�)].

Then, we compute the azimuthal sum over all the cells of an an-
nulus, to obtain the gravitational torque felt by one ring. Finally,
the total torque on the disc is the sum of the torques felt by the in-
dividual rings. Thus, it is useful to introduce the notion of cumu-
lative torque, which is the sum of the torques felt from the first
ring to the ring in consideration. The total torque is therefore the
cumulative torque at the last ring. For our purposes in this paper
we consider the outermost ring to be the first and the innermost
one the last (unlike Martin & Lubow (2011), who adopted the
opposite convention).

5. Results

In this section, we describe the results of numerical simulations
on the structure of the CPD and present our estimate of the stellar
torque. Then, we derive results for the accretion rate according
to our analytical model.

5.1. Disc structure

As expected, we see a two-armed spiral density wave, created by
the tides of the star. The wave propagates radially inwards with
the speed of sound. As cs = HΩ, its radial velocity is H/r times
its azimuthal velocity. Thus, the wave has the shape of a loga-
rithmic spiral, with its pitch angle given by H/r. This is clearly
seen in Fig. 1.

5.2. Torque

We measure the torques after the simulations have reached a
steady-state (after 150 orbits at 0.3 RH). Martin & Lubow (2011)

Fig. 1. Density map for an aspect ratio of 0.15. The disc is extended
from r = 0.01 to 0.3 RH.

Fig. 2. Cumulated torques (in MJupR2
HΩ

2
H) as a function of radius (in RH)

for different aspect ratios.

showed that the total torque is negative and that most of it is
exerted on the outer region of the disc (which represents less
than 10% of the disc mass). Therefore, the variations of the cu-
mulative torque in the inner part of the disc (r ≤ 0.1 RH) are
negligible , as can be seen in Fig. 2. This figure shows the cu-
mulative torques for various H/r, after 250 orbits at r = 0.3 RH.
They oscillate from r = 0.3 to 0.1 RH. As explained by Martin &
Lubow (2011), the disc can be divided in four quadrants, start-
ing from the line connecting the planet to the star, rotating in
the anti-clockwise direction. When the two-arm wave is in the
first and third radiant, the torque is negative; when it is in the
second and fourth one, the torque is positive. Thus, the oscilla-
tions of the torque correspond to the passage of the wave from
even to odd quadrants and vice versa, due to its spiral shape.
The wave-length of these pseudo-periodic oscillations is the ra-
dial propagation of the wave during half a revolution around the
planet, that is π r (H/r).

Notice that, although the radial profile of the cumulative
torque is different from simulation to simulation given that the
wavelength of its oscillation is a function of H/r, the limit value
at the inner edge of the disc is remarkably insensitive on H/r.
Thus we can safely assume that the total cumulative torque for
a H/r = 0.3−0.4 disc (the realistic value of the scale height ac-
cording to Ayliffe & Bate 2009a is also ∼4 × 10−8.

We can now check whether our choice of the disc viscos-
ity ν impacts significantly the total torque that we measure. For
this purpose, Table 1 shows the torques measured in simulations
with various viscosities. Some differences are visible, which is
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a sign that our simulations are not dominated by numerical vis-
cosity. However, the total torques are very similar to each other
(within 10% for an order of magnitude change in ν). This gives
confidence that the total torque that we estimate is valid also in
the limit of an inviscid disc.

5.3. Accretion rate

In Sect. 3, we obtained a value for the influx of gas onto the
CPD C. Then, thanks to numerical simulations, we measured
the stellar torque for different aspect ratios and low viscosities
and obtained its order of magnitude in Sect. 5.2. Given these
values, we can derive analytically the planet accretion rate Ṁ
from Eq. (5). The resulting values are listed in Table 1, along
with results on the torques and the corresponding steady-state
radius XC . We find that XC is of the order of ∼0.05 RH, approxi-
mately 50 times the current physical radius of Jupiter.

As can be seen in Table 1, the accretion rate hardly depends
on the aspect ratio, and only increases by about 5% when H/r
doubles. This is because, as we said above, the total cumulative
torque is insensitive to the H/r value of the disc. The viscosity
of the gas in the simulation also has very little influence on the
measured torque. In all the cases, we find that the accretion rate
is of the order of:

Ṁp ≈ 2 × 10−7 MJup/yr.

This accretion rate is low, making Jupiter double its mass
in 5 million years. The torque that we measure is of course pro-
portional to the surface density of the CPD in the simulations,
but we have shown that the adopted value is realistic, and could
hardly be larger. The parameter C may be poorly constrained, but
the dependence of Ṁp on C is such that two orders of magnitude
difference in C would only change Ṁp by a factor 3. Therefore,
this order-of-magnitude estimate of the accretion rate in an in-
viscid CPD solely perturbed by the star, is robust. As a con-
sequence, the accretion of giant planets could be much slower
than expected, thus preventing the runaway accretion phase of
the planet.

6. Conclusion

The classic model for giant planet formation (Pollack et al. 1996)
predicts that the final phase of gas accretion occurs in a very fast
runaway mode. Consequently, planets should keep accreting gas
until they are so massive they open very wide gaps in the disc,
which occurs when they reach a mass equal to multiple times
the mass of Jupiter (Bryden et al. 1999; Kley 1999; Lubow et al.
1999; Lubow & D’Angelo 2006).

In this paper we considered that, during the alleged run-
away growth phase, a planet should be surrounded by a circum-
planetary disc (CPD) due to angular momentum conservation of
the gas global flow. Thus, most of the gas that it accretes should
have passed through this disc. The viscosity in the CPD may
be very low, if the planet is located in a dead zone. Therefore,
we have investigated whether a non-viscous CPD could act as
a bottleneck for gas accretion. If, consequently, the gas accre-
tion timescale can become comparable to the timescale of gas
removal from the proto-planetary nebula, the observed large
spread in giant planet masses could stem from the competitions
between these two timescales.

Considering that there is no radial drift in a non-viscous disc,
we have developed a model for a steady-state non-viscous CPD.

The disc is fed by a vertical gas inflow from the surrounding
environment (as previously observed in 3D numerical simula-
tions, see Machida et al. 2008; Tanigawa et al. 2012; Ayliffe &
Bate 2012), until a pressure equilibrium is reached. The surface
density of the CPD is thus analytically determined and found in
agreement with previous numerical simulations (Ayliffe & Bate
2009a).

However, the CPD is perturbed by the star. This results in
the formation of a two-armed logarithmic spiral density wave,
that propagates all the way inwards down to the inner edge of
our disc. As a consequence, a negative torque from the star is
deposited in the very inner regions of the disc, where gas conse-
quently falls onto the planet. We find that the planetary accretion
rate depends almost linearly on the cumulated stellar torque, and
weakly on the vertical gas inflow (Eq. (5)).

Running 2D simulations of an isolated disc, in a planetocen-
tric frame, extended to 0.3 Hill radius, we have studied the effect
of the star on the disc, and measured the torque. We find that
the torque is negative and basically independent on the disc’s as-
pect ratio. This allowed us to derive the accretion rate of a giant
planet surrounded by a non-viscous CPD perturbed by the star.
We find that the mass doubling time for a Jupiter-mass planet
is about 5 Myr. This timescale is much longer than that in the
runaway accretion mode of Pollack et al. (1996). However, such
a low accretion rate is valid in the limit condition of an invis-
cid disc. In reality, even in a dead zone the viscosity is not
null, though it is still extremely hard to estimate quantitatively
its value. Furthermore, viscosity, if related to ionisation, can in-
crease with time as the disc becomes less optically thick (Turner
et al. 2010). As a consequence, the broad mass range of observed
exoplanets may come from a range of viscosities (or viscosity
evolutions) in their original CPDs.

Moreover, we have only studied the effect of the star on gas
accretion inside the CPD. Several other effects may intervene to
make the CPD lose angular momentum, which need to be in-
vestigated in the near future. In particular, interaction with the
gas beyond 0.3 RH from the planet and outside the Hill sphere
may perturb the flow in the CPD. The study of such interactions
would require further investigations in global simulations and is
beyond the scope of this paper.

In conclusion, it emerges from this paper that the accretion
history for planets more massive than Saturn (the mass beyond
which a CPD forms Ayliffe & Bate 2009b) may be dominated by
the viscous evolution of the CPD. We speculate that planets with
masses between Saturn’s and a few times Jupiter’s may have
formed in “dead zones” with different levels of low viscosity in
their CPDs. Instead, very massive planets (5–10 Jupiter masses),
which reached the mass limit of the runaway growth process im-
posed by gap opening in the disc, should have formed in active
zones, where CPDs did not act as bottlenecks to accretion.
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