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ABSTRACT
The observed wide eccentricity distribution of extrasolar giant planets is thought to be the
result of dynamical instabilities and gravitational scattering among planets. Previously, it has
been assumed that the orbits in giant planet systems become gravitationally unstable after the
gas nebula dispersal. It was not well understood, however, how these unstable conditions were
established in the first place.

In this work, we numerically simulate the evolution of systems of three planets as the planets
sequentially grow to Jupiter’s mass, and dynamically interact among themselves and with the
gas disk. We use the hydrodynamical code FARGO that we modified by implementing the N-body
integrator SYMBA. The new code can handle close encounters and collisions between planets.
To test their stability, the planetary systems were followed with SYMBA for up to 108 yr after
the gas disc dispersal.

We find that dynamics of the growing planets is complex, because migration and resonances
raise their orbital eccentricities, and cause dynamical instabilities when gas is still around. If
the dynamical instabilities occur early, planets can be removed by collisions and ejections, and
the system rearranges into a new, more stable configuration. In this case, the planetary systems
emerging from the gas discs are expected to be stable, and would need to be destabilized by
other means (low-mass planets, planetesimal discs, etc.). Alternatively, for the giant planet
system to be intrinsically unstable upon the gas disc dispersal, a special timing would be
required with the growth of (at least some of) the giant planets having to occur near the end of
the gas disc lifetime.

Key words: Planet–disc interactions.

1 IN T RO D U C T I O N

The eccentricity distribution of the extrasolar giant planets is wide
with orbits commonly having e > 0.3. Such a wide distribution
was unexpected based on our anticipation from the Solar system
planets. Different mechanisms have been proposed to explain the
high-eccentricity values: trapping of planetary pairs in mean mo-
tion resonances (Lee & Peale 2002), the Kozai cycles in binary
systems (Holman, Touma & Tremaine 1997; Mazeh, Krymolowsky
& Rosenfeld 1997), stellar jets (Namouni 2005) and gravitational
scattering during global dynamical instabilities (Rasio & Ford 1996;
Weidenshilling & Marzari 1996; Lin & Ida 1997).

This last mechanism has been investigated with extensive N-
body simulations (Chatterjee et al. 2008; Jurı́c & Tremaine 2008;
Raymond et al. 2009). All these studies assumed that the plane-
tary systems emerging from the gas discs are intrinsically unstable,
and the gravitational interactions among planets cause instabilities
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after the gas disc dispersal. The subsequent scattering encounters
between planets lead to large orbital eccentricities, just as needed
to explain the observations.

A hydrodynamical code has been recently used to study the plan-
etary system instabilities in a low-density rapidly dispersing disc
(Moeckel & Armitage 2012). The initial orbits of the planets were
assumed to be circular and close enough to each other to be unsta-
ble, without any mutual resonance relationship. It was found that
the disc can stabilize some of the planetary systems by driving them
into resonance rapidly. However, the systems that became unstable
ended up behaving as in the gas-free simulations.

The investigations discussed above, including Moeckel &
Armitage (2012), adopt similar choices of initial conditions with
unstable and sometimes overlapping planetary orbits. In reality, the
initial conditions of these studies should be informed from the pre-
vious stages of planet–disc interactions when the damping effects
of gas were important.

The orbital dynamics of giant planets in a massive gas disc has
been studied with a hydrodynamical code by Marzari, Baruteau &
Scholl (2010). They started their simulations with the fully formed
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giant planets and ignored the previous stage during which the giant
planets had grown by gas accretion on to their cores.

Here, we report the result of the first effort to investigate the dy-
namical evolution of planets from their growth phase from cores to
aftermath of the gas disc dispersal. Our simulation set-up is different
from those of previous works and is defined according to the fol-
lowing rationale. Planetary cores are expected to form by oligarchic
growth (Kokubo & Ida 1998) with orbital separations of about 10
mutual Hill radii. However, during and after their formation they
migrate in the disc due to their gravitational interactions with the
gas. According to the Pollack et al. model (Pollack et al. 1996), the
cores can spend a few millions years in the disc before accreting
gas in a runaway fashion and become giant planets. In this time
they can substantially modify their orbits and reach a new equi-
librium configuration. While it was thought in the past that cores
continuously migrate towards the central star (Ward 1997), it is now
known that in a disc with realistic heat diffusion they migrate to-
wards an orbital radius where migration is cancelled (Paardekooper
& Mellema 2006; Kley, Bitsch & Klahr 2009; Lyra, Paardekooper
& Mac Low 2010). This no-migration radius acts as a planet trap.
If multiple cores are present, they are expected to reach a resonant
non-migrating configuration near the trap (Morbidelli et al. 2008).
In this configuration, the cores can be much closer to each other
than their initial 10 Hill radii separation which may lead to very
strong instabilities when the planets grow to Jupiter mass.

With this kind of dynamical evolution in mind, in our hydrody-
namical simulations we set up a planet trap and let a system of
three embryos of 10 M⊕ to evolve until they reach a stable resonant
configuration. Then, we track the evolution of the systems as each
of the three planets grows in sequence to one Jupiter mass. Finally,
we slowly remove the gas from the disc and follow the evolution
of the systems up to 108 yr after the gas dispersal. We use the
hydrodynamical code FARGO (Masset 2000) modified in Morbidelli
& Nesvorny (2012) by implementing the N-body integrator SYMBA

(Duncan, Levison & Lee 1998)1 to handle close encounters and
mutual collisions between planets.

The paper is organized as follows. Section 2 explains the set-up
of our numerical simulations. The dynamics of growing planets
is described in Section 3. We then discuss the effects of the gas
disc dispersal and the subsequent stage of purely N-body interac-
tion of the remaining planets (Section 4). Conclusions are given in
Section 5.

2 SE T- U P O F N U M E R I C A L S I M U L AT I O N S

2.1 Disc parameters

We used the hydrodynamical two-dimensional code FARGO (Masset
2000), in which the original N-body Runge–Kutta integrator was
replaced (Morbidelli & Nesvorny 2012) with the symplectic inte-
grator SYMBA (Duncan et al. 1998). The SYMBA code was specifically
designed to handle close encounters and mutual collisions between
planets. As the hydrodynamical simulations are CPU expensive, we
were not able to run many simulations to fully explore parameter
space. Instead, we considered a few cases that illustrate different
aspects of the problem.

Two different discs were considered (denoted by A and B in the
following) with the initial mass MA = 0.009 M� in case A and
MB = 0.018 M� in case B, where M� is the mass of the Sun. In

1 We use swift_symba7 that is capable of correctly handling the closely
packed planetary systems (Levison et al. 2011).

each case, we performed several simulations that differed in the
prescription for the growth of the planets (see below).

We use units such that G = 1 and M� = 1. The orbital period
of a planet with semimajor axis a = 1 is therefore T = 2π. We
normalize the time t by T in the following, so that t corresponds
to the number of orbits at a = 1, or years. The disc’s kinematic
viscosity coefficient is set to be ν = 10−5 in these units. The initial
surface density profile scales with the distance r from the star as
r( − 1/2).

Our computational domain consists of an annulus of the proto-
planetary disc extending from rmin to rmax. Different disc extensions
have been used in different cases. In some cases (specified below),
the disc had to be extended during the simulations when the migra-
tion caused the innermost planet to approach the inner boundary.
To start with, we used rmin = 0.5, rmax = 4.5, and a grid of Nr =
660 linearly spaced radial cells and Ns = 700 azimuthal cells.

The width of planet’s horseshoe region is given, in the isothermal
disc approximation (Masset, D’Angelo & Kley 2006b), by

x =
√

(m/M�)

(H/r)
a. (1)

For example, for a planet of mass m/M� = 3 × 10−5 (i.e. 10 M⊕)
and disc aspect-ratio H/r = 0.05, we get x = 0.0245a, where a is
the semimajor axis (see Section 2.2). The radial resolution of 0.006
allows us to resolve the horseshoe region by at least four cells for
any a ≥ 1.

The planetary contribution to the potential � acting on the disc
is smoothed according to

� = − Gm√
d2 + ε2

, (2)

where d denotes the distance of a disc element to the planet and
ε is the smoothing-length. In our simulations, we used ε = 0.5RH,
where RH denotes the Hill radius.

2.2 Initial orbits

Three 10 M⊕ planetary cores were placed into the disc and were
initially evolved till they reached a stable configuration in a reso-
nance. We used a planet trap (Masset 2002; Masset et al. 2006a;
Morbidelli et al. 2008) to halt the orbital migration of the innermost
core.

The planet trap was set as a steep and locally positive surface-
density gradient in the disc inside the initial orbital location of the
innermost core. It allows the system of three cores to acquire stable,
separated and non-migrating orbits. The planet trap is a convenient
way to mimic the situation in real radiative discs where the non-
isothermal effects can change the direction of the type-I migration
(Paardekooper & Mellema 2006; Kley et al. 2009). The migration
in the inner part of a real radiative disc can be directed outwards,
while it remains directed inwards in the outer disc. This establishes
the existence of a critical radius where migration vanishes. The
planetary cores migrating inwards will be collected near this radius
as in the case of a planet trap (Lyra et al. 2010).

The planet trap location was set at a = 3 in case A and a = 2
in case B. The local and positive surface-density gradient required
to form the planet trap was created by imposing a transition in the
viscosity from 4ν to ν over �r = 1 around the trap location (Masset
et al. 2006a) The initial orbits of the three cores were chosen near
the 5:4 resonant chain in case A (semimajor axes a1 = 3.07, a2 =
3.62 and a3 = 4.20), and near the 3:2 resonant chain in case B
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(semimajor axes a1 = 2.1, a2 = 2.77 and a3 = 3.66). The initial
eccentricities were set to zero.

In a first step, we followed the evolution of disc and cores, and
waited till the cores arranged themselves in a stable resonant config-
uration. In case A, the cores 3 and 2 ended up in the 6:5 resonance,
and cores 2 and 1 in the 7:6 resonance. In case B, two cores reached
a coorbital configuration (1:1 resonance) near the planet trap, and
the third one ended up in the 6:5 resonance with the other two. The
eccentricities remained small at this stage, e ∼ 0.01–0.02, due to
the strong damping of gas, and the orbits remained nearly coplanar.

2.3 Mass growth

Once the resonant configuration was achieved, the mass of each
core was increased from the initial value (m(0) = 3 × 10−5 M�) to
one Jupiter mass (mJ = 10−3 M�) as follows:

m(t) = m(0) + (mJ − m(0)) sin2

(
π

2

(t − t(0))

�t

)
, (3)

where t(0) was the time when the growth started, and �t was the
growth time interval. Different values of t(0) were chosen for dif-
ferent planets, so that they grew in sequence. Sometimes, we let
the innermost core grow first with the other two growing later. In
other cases, we opted for growing the middle or outer core first (see
Section 3).

We did not consider gas accretion within the Roche lobe. This is
a delicate point which is not well understood yet and which goes
beyond the purpose of this work.

The criterion for collision is that the distance between planets
becomes equal or lower to one Jupiter radius.

The time-scales for the planetary growth that we adopt (�t =
103, 3 × 103 and 4 × 103; see Table 1) are too short to be realistic.
These time-scales are dictated by our current CPU power (using
the parallel FARGO code and 30 CPUs, we compute 10–100 orbits in
1 h, depending on the disc parameters). Slower growth rates will be
investigated in the future.

When a planet grows to Jupiter mass, it is expected that the planet
trap should become ineffective and the planet should start migrating
inwards. We find this behaviour in our simulations.

3 DY NA M I C S IN T H E G A S D I S C

Here, we discuss the orbital dynamics of growing planets in the full
gas disc. Each system is evolved over 20 000–65 000 yr after the
growth of the last planet. To identify the different settings of our
simulations, we label them Ai, j, k for case A and Bi, j, k for case B,
where indices i, j, k ∈ [1, 3] indicate the growth order of the three
cores (initially, a1 ≤ a2 < a3). The characteristics of each simulation
are reported in Table 1.

Table 1. Simulations parameters.

Simulation [rmin, rmax] �t (Nr,Ns)

A2,1,3 [0.5, 6.5] 103 (660,700)
A3,1,2 [0.5, 9.5] �t3 = 4 × 103 (660,700)

�t1, 2 = 103

A3,2,1 [1, 9.5] 3 × 103 (660,700)
[0.5, 9.5] t ≥ 20 000 (700,700)

B1,2,3 [0.5, 4.5] 103 (660,700)
[0.1, 4.5] t ≥ 8500 (720,700)

B3,1,2 [0.5, 4.5] 103 (660,700)
[0.1, 4.5] t ≥ 8500 (720,700)
[0.3, 4.5] t ≥ 30 000 (690,700)

Figure 1. Dynamical evolution of the planets in simulation A2,1,3. Each
planet is represented by a different colour: red for planet 1 (initially the
innermost one); green for planet 2 (middle); blue for planet 3 (outermost).
For each planet, the three curves denote the pericentre, semimajor axis and
apocentre as a function of time. The masses of the cores grow to Jupiter mass
according to equation (3) on �t = 1000 starting at t2(0) = 3200, t1(0) =
8000 and t3(0) = 12 000. The arrows highlight t(0) for each planet.

3.1 Case A2,1,3

Fig. 1 shows the results of simulation A2,1,3. We find that when core
2 grows to Jupiter mass, it starts migrating inwards and scatters the
other two cores at a > 3. We remark that the initial location of the
trap is at a = 3, but the gap opened by core 2 has shifted the trap
at a = 4. Therefore, cores 1 and 3 remain trapped at quasi-constant
semimajor axis, respectively, at a 
 4 and a 
 5.6 till core 1 grows.
As the fully grown planet 1 starts migrating inwards at t = 8000,
it opens a gap and shifts the trap location at a 
 5.5. Core 3 is
scattered out and remains near the new trap position at a 
 5.5 till
t3(0) = 12 000. Core 3 then starts growing and inward migration
begins.

Once all three planets reach Jupiter mass they migrate inwards
and evolve into mutual resonances. Their orbital eccentricities
rapidly grow to large values by resonant interactions. The system
becomes highly unstable. The gas density distribution is strongly
perturbed at this point (Fig. 2) leading to complex gas–planet inter-
actions. Finally, at t = 20 000 yr, the inner planet is lost by plunging
into the star.

Our criterion for collision with the star is that the pericentre
of the planet’s orbit becomes smaller than 0.01. The tidal effects
are ignored in our simulation. In reality, however, the tidal effects
should start to be dominant for small pericentres, potentially leading
to the circularization of the orbit in the hot Jupiter region (Beauge &
Nesvorny 2013). This effect would result in decoupling the planet
from the other two. So, in any case, the inner planet’s influence on
the other two is suppressed. The subsequent evolution of the two-
planet system leads to stable orbits with moderate eccentricities.

3.2 Case A3,1,2

In our first simulation, core 3 was grown on �t = 103. One of the
two remaining cores was ejected from the system during the growth
of core 3. We have therefore reconsidered this case with a longer
phase of growth of core 3, �t3 = 4 × 103 (Table 1). In this case, the
transition is less violent, core 2 is scattered out and its semimajor
axis remains stable at the new trap location (after gap opening by
planet 3), i.e. at a 
 4.3. Core 1 migrates inwards at the same rate
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Figure 2. Gas surface density in the simulation shown in Fig. 1 at t = 15 000.
Three eccentric Jupiter-mass planets produce a complex distribution of gas.
Colour scale range was chosen such that dark blue corresponds to values
≤10−5 and yellow to values ≥10−4 (in dimensionless units).

Figure 3. The same as Fig. 1 for the case A3,1,2. The arrows highlight the
t(0) values: t3(0) = 3200, t1(0) = 8700 and t2(0) = 12 000.

as the fully grown planet 3 (Fig. 3). The growth of core 1 then
leads to a phase when the other two planets are scattered outwards.
The subsequent dynamics is complex with episodes of outward
migration, and a rapid increase of the eccentricities after the growth
of planet 2. As in case A2,1,3, the system becomes highly unstable.
Planet 1 is then ejected from the system. These early ejections could
be related to free-floating planets (Sumi et al. 2011).

The orbits of the remaining two planets are chaotic till t = 52 594,
when the two planets merge.2 The remaining giant planets migrates
inwards and converges to a circular orbit.

3.3 Case A3,2,1

In case A3, 2, 1, all the three cores grow on �t = 3 × 103 (Fig. 4). The
growth phase leads to the inward migration of the growing planet 3.
The other two cores are scattered outwards. The subsequent phase is

2 Note that merging events may happen too often in our simulations due to
the coplanar approximation of the system.

Figure 4. The same as Fig. 1 for the case A3,2,1. The growth of cores started
at t3(0) = 3200, t2(0) = 8600 and t1(0) = 12 000, as indicated by the arrows.

quite different with respect to the two previous cases. Here, the sys-
tem settles in a stable resonant 2:1 configuration with planets slowly
migrating inwards, and eccentricities reaching moderate values (e ∼
0.2–0.3).

We remark that three of the four planets found around the red
dwarf Gliese 876 are on the triple 2:1 resonant configuration (Rivera
et al. 2010). The masses of the planets as well as their distance from
the star are different from our simulation so that our comparison is
only qualitative but nevertheless interesting.

To avoid spurious boundary effects, the disc was extended to
rmin = 0.5 at t = 20 000, when the pericentre of planet 3 was close
to 1. The radial density profile has been extrapolated from the inner
disc edge, and the simulation restarted with the extended disc.

3.4 Case B1,2,3

In this case, cores 1 and 2 become coorbital at the trap location.
It is interesting that they remain coorbital during the growth phase
even if they do not grow at the same time (see Fig. 5). The third
core is scattered out when planet 1 grows. It then migrates inwards
until it reaches the trap at a 
 2. When its mass starts increasing,
3 migrates inwards, and all three planets reach in a compact orbital
configuration. The disc has been extended to rmin = 0.1 at t = 8500

Figure 5. The same as Fig. 1 for the case B1,2,3. The growth of cores started
at t1(0) = 2000, t2(0) = 7000 and t3(0) = 9000, as indicated by the arrows.
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Figure 6. The same as Fig. 1 for the case B3,1,2. The growth of cores started
at t3(0) = 3700, t1(0) = 7000 and t2(0) = 9000, as indicated by the arrows.

using the same procedure as for the case A3,2,1. The extended disc
is followed with a time-step of 
10−3. To calculate 10 orbits this
requires about 1 h on 30 CPUs. The two coorbital planets merge
at t = 13 275 and the third one is scattered out. The eccentricities
of the two remaining planets grow to moderate values. The planets
end up in the 3:1 resonance.

3.5 Case B3,1,2

Core 3 grows first and scatters two coorbital cores outwards. The two
cores appear to be on the trap at very small angular separation �α

with: 10◦ < �α < 30◦. It is therefore possible that the scattering
event affect them in the same way. Actually, as a result of the
scattering they remain coorbital and only their angular separation
changes drastically. The two orbits separate at t = 7000 when core
1 starts growing. Once that happens, core 1 scatters core 2 outwards
(Fig. 6). After the growth of core 2, a complex instability arises
resulting in the ejection of #3 from the system. The two remaining
planets have moderate eccentricities and persist on chaotic orbits
showing an outward migration trend till t = 33 900 when the two
planets merge. This case is comparable to the case A3,1,2.

The disc has been extended to rmin = 0.1 at t = 8500. In order to
follow the chaotic evolution of the two planets on reasonable CPU
times, we have then reduced the disc domain increasing rmin to 0.3
at t = 30 000.

3.6 Summary

From the limited number of cases that we have investigated so far,
we can derive the following tentative implications for the dynamics
of systems with three giant planets and their interaction with a gas
disc:

(i) If the gas lasts long enough after the growth of the last giant
planet, the system develops an instability and one planet is typically
lost. These ejections could be related to free-floating planets (Sumi
et al. 2011).

Indeed, only in one case out of five, we obtained a final stable
system with three giant planets. This is at odds with the results of
Matsumura et al. (2010) who found that the three-planet systems
often survive to the end of gas disc lifetime. This difference may
appear from the approximate treatment of the gas disc in Matsumura
et al. (2010). When the gas density is strongly perturbed as in

Fig. 2, it acts as an additional source of stochasticity in the planetary
evolution. Marzari et al. (2010), who used a hydrodynamical code
similar to ours, also found that systems of fully grown giant planets
on close orbits rarely survive to the end gas disc lifetime.

(ii) The simplified two-planet systems, which emerge from the
three-planet systems when the third planet is eliminated, tend to
be stabilized by their interaction with the gas disc. This was also
pointed out in Marzari et al. (2010) and Matsumura et al. (2010),
and in Moeckel, Raymond & Armitage (2008). In some cases, the
two-planet system shows chaotic evolution till the system is reduced
by a merging event. Future work on the full spatial problem will be
needed to better explore the frequency of merging events.

(iii) We did not find any case where the giant planets would end
up on nearly circular closely packed orbits. This raises doubts about
the applicability of the initial conditions used in the models of planet
scattering after the gas disc dispersal (see Section 1; Chatterjee et al.
2008; Jurı́c & Tremaine 2008; Raymond et al. 2009).

4 G AS DI SPERSAL AND GAS-FREE
DY NA M IC S

In the previous section, we assumed that the gas disc remains present
after the accretion of the giant planets, that is, until the planets reach
a stable dynamical configuration. It is possible, however, that the
gas dispersal occurred during the planetary instability or soon after
it, such that the planetary system did not have enough time to fully
stabilize. Here, we investigate these cases.

The gas density was reduced at each time step dt as

ρ ′ = ρ

(
1 − dt

τ

)
, (4)

where the coefficient τ 
 2000 yr. This dissipation time-scale is
very short when compared to the 105 yr time-scale considered for
photoevaporation in Matsumura et al. (2010). We find that, if the gas
is removed too fast, planetary systems can become unstable. In our
simulations, we did not observe any scattering events or merging
during the dissipation phase, so that we are confident that our results
would not change much using a longer dissipation time-scale.

We recall that our purpose is not to quantitatively describe a
specific phase of the giant planet–disc interaction but to obtain a
qualitative description of the whole phenomenon; this justifies also
the use of a dissipation function (4) which is simple with respect to
the description in Moeckel & Armitage (2012).

When the disc gas density drops to values below ∼10−10 (in
dimensionless units), the effect of gas becomes negligible and we
continue the integration with SYMBA (Duncan et al. 1998). The plan-
etary systems are evolved for up to 108 yr.

We first tried a case where gas was removed after the planetary
system has reached its final configuration. Fig. 7 shows the orbits for
the case A2,1,3, where the gas disc was removed in the time interval
[35 000, 37 000]. During the removal, planetary migration slows
down and the two remaining planets stay in the 2:1 resonance for
the whole N-body integration. The same applies to B1,2,3, where no
scattering event was found after the gas dispersal (gas was removed
at [19 000, 20 000] in this case).

In A3,2,1, where three planets initially survived, they also survived
for the whole length of the N-body integration. The three planets
remained in the 2:1 resonant chain and no scattering among them
occurred (Fig. 8). This happened independently of the removal time
(if chosen after t = 20 000 yr in Fig. 4) and independently of the
removal time-scale τ .
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Figure 7. Evolution of planetary orbits in case A2,1,3. The gas disc is re-
moved at [35 000, 37 000], and an N-body integrator is used to follow the
gravitational interactions among planets for t > 37 000. The arrow indicates
the beginning of the gas-free phase.

Figure 8. Evolution of planetary orbits in case A3,2,1. The gas disc is re-
moved at [39 500, 41 000]. The arrow indicates the beginning of the gas-free
phase.

In Matsumura et al. (2010), in agreement with our results, the two-
planet systems also remained stable. For the three-planet systems,
Matsumura et al. (2010) found stability (e.g., see their fig. 4) only in
some cases. Unfortunately, having only one three-planet system we
cannot test the statistical significance of our result. Note also that
the previous versions of the SYMBA code used in Matsumura et al.
(2010) had a later-identified problem when tracking closely packed
planetary systems (Levison et al. 2011). It has to be verified that
this problem did not cause artificial instabilities in some of their
integrations.

We now turn our attention to the possibility that the gas disc
dispersed during the planetary-scattering phase. In Fig. 9, we re-
moved gas in the interval [15 000, 17 000] during the evolution of
system A2,1,3 (Fig. 1). In this case, the three giant planets undergo a
gravitational scattering event in which one planet is ejected and the
remaining two are sent on to highly eccentric mutually decoupled
orbits (Fig. 9). The same kind of evolution happened in all cases
investigated here, provided that the gas disc was removed during
the scattering phase.

Figure 9. Evolution of planetary orbits in case A2,1,3. The gas disc is re-
moved at [15 000, 17 000]. The arrow indicates the beginning of the gas-free
phase.

5 C O N C L U S I O N S

We used a hydrodynamical code to follow the orbital evolution of
systems of three planets as they grew in sequence to Jupiter mass.
We found that the planet system changes drastically after the growth
of each core. The orbital evolution of planets can be very complex.
More often than not the orbits become unstable leading to a phase
of planetary scattering. Planets can be ejected or merge (Marzari
et al. 2010).

Once the system is reduced to two planets the dissipative effects
of gas decrease orbital eccentricities of the remaining planets, and
migrate planets into a new, stable resonant configuration. In only
one case out of five, there was no instability happening after the
growth of all three planets. The three-planet system remained in a
resonant stable configuration in this case.

If the gas disc is removed after the new stable configuration is
achieved, the orbital eccentricities remain low and the system is sta-
ble. This is at odds with the assumption typically made in the planet-
scattering models (Chatterjee et al. 2008; Jurı́c & Tremaine 2008;
Raymond et al. 2009), where gas is ignored and the planets are
initially placed on closely packed unstable orbits. Here, we show
that these initial conditions may not naturally arise from a previous
stage, in which the planets interacted with their natal protoplanetary
disc.

If the gas disc is removed during the planetary instability, plan-
etary scattering continues after the gas removal and the surviving
planets can reach very eccentric orbits. However, given the short
duration of the planetary instability phase, the removal of gas dur-
ing this phase would require special timing. For example, it may be
possible that the giant planets generally form towards the end of the
disc lifetime. Or, as long as there is gas in the system, the existing
giant planets keep growing and new giant planets keep forming.
This would lead to a richer sequence of planetary instabilities than
the one investigated here. We will investigate this possibility in the
future work.

Another possibility is that the number of giant planets that form
in a typical disc is large (>3). The N-body simulations have already
shown that the eccentricity distribution of exoplanets implies that
at least three giant planet existed in a typical system after the gas
disc dispersal. Our results seem to suggest that, for this condition
to be fulfilled, more than three planets have to form originally.
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Alternatively, the giant planet systems that emerge from gas discs
are stable in isolation, as suggested by in the simulations performed
in this work, but become unstable due to external causes (interac-
tions with smaller planets, effects of the planetesimal discs, etc.;
e.g. Tsiganis et al. 2005; Levison et al. 2011).

In conclusion, the results presented here show that the problem of
understanding the dynamical paths leading to the surprisingly large
eccentricities of extrasolar planets is not fully resolved. Future work
should improve upon our efforts by using more realistic prescrip-
tions for the planet growth and gas dispersal, extend the simulation
to longer time-scales and perform a larger number of simulations
so that the statistical significance of individual outcomes and their
dependence on disc parameters is better understood.
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