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ABSTRACT

Context. The strength and direction of migration of embedded low mass planets depends on the disc’s structure. It has been shown
that, in discs where the viscous heating is balanced by radiative transport, the migration can be directed outwards, a process which
extends the lifetime of growing planetary embryos.
Aims. In this paper we investigate the influence of a constant Ṁ-flux through the disc, as well as the influence of the disc’s metallicity
on the disc’s thermodynamics. We focus on Ṁ discs, which have a net mass flux through them. Utilizing the resulting disc structure,
we determine the regions of outward migration in the disc.
Methods. We perform numerical hydrosimulations of Ṁ discs with viscous heating, radiative cooling and stellar irradiation in 2D in
the r-z-plane. We use the explicit/implicit hydrodynamical code FARGOCA that includes a full tensor viscosity and stellar irradiation,
as well as a two temperature solver that includes radiation transport in the flux-limited diffusion approximation. The migration of
embedded planets is studied by using torque formulae.
Results. For a disc of gas surface density ΣG and viscosity ν, we find that the discs thermal structure depends on the product ΣGν
and the amount of heavy elements, while the migration of planets additionally to the mentioned quantities, depends on the amount
of viscosity ν itself. As a result of this, the disc structure can not be approximated by simple power laws. During the lifetime of the
disc, the structure of the disc changes significantly in a non-linear way in the inner parts. In the late stages of the discs evolution
(characterised by low Ṁ), outward migration is only possible if the metallicity of the disc is high. For low metallicity, planets would
migrate inwards and could potentially be lost to the star.
Conclusions. The presented disc structures and migration maps have important consequences on the formation of planets, as they can
give hints on the different formation mechanisms for different types of planets as a function of metallicity.

Key words. accretion, accretion disks – planets and satellites: formation – hydrodynamics – planet-disk interactions –
radiative transfer

1. Introduction

In recent years, it has been shown that the migration of low mass
planets (≈10−20ME) can be changed from inwards to outwards
in discs with heating and cooling (Paardekooper & Mellema
2006; Baruteau & Masset 2008; Paardekooper & Papaloizou
2008; Paardekooper & Mellema 2008; Kley & Crida 2008; Kley
et al. 2009; Ayliffe & Bate 2010). The heating in these previ-
ous works is provided by viscous friction, while for the cooling
a local cooling rate (in 2D simulations) or a radiative diffusion
(in 3D simulations) is utilised. This change of migration has im-
portant consequences for the formation of planets, as it would
provide for a zero-migration radius in the discs, where planets
can survive (Lyra et al. 2010; Bitsch & Kley 2011). Additionally
to that, these points of convergent migration in the disc can trap
planetary cores in resonances (Cossou et al. 2013). But these
cores could then break free from the resonance (due to turbu-
lence), collide and form the cores of giant planets (Pierens et al.
2013).

Only recently, Bitsch et al. (2013, hereafter Paper I) have
shown the importance of stellar irradiation on the disc structure
and the migration of low mass planets in numerical simulations.
In Paper I, we did show that the change of the disc structure from
a shadowed to a flaring disc greatly influences the migration of

embedded bodies. Roughly speaking, a local increase in the as-
pect ratio H/r of the disc, results in inward migration, while a
local decrease in H/r leads to outward migration. As a result,
planets can migrate outwards in shadowed regions of the disc.

In Paper I, we pointed out that the opacity in the disc plays
an important role in order to determine the disc structure, as the
opacity is relevant for the absorption of stellar irradiation and for
the cooling of the disc. We only considered equilibrium discs
that have no net-mass flux through the disc. In this work, we
want to expand to discs with a constant mass flow Ṁ through the
disc. In principle a viscous accretion discs is only accreting in
the inner parts of the disc, while it is viscously spreading in the
outer parts of the disc (Lynden-Bell & Pringle 1974) and actually
behaves as a decretion disc there. If Ṁ strongly depends on r, the
surface density profile varies, so that the high Ṁ regions empty,
and the low Ṁ regions fill, which smooths the variations of Ṁ on
a quicker time scale for sharper variations. Thus, it is reasonable
to assume that Ṁ is almost independent of r at a given moment
in the inner parts of the disc, on which we focus here. This ac-
cretion rate Ṁ can actually be measured in observable discs.

By studying different Ṁ rates for discs, we explore the disc
structures as a function of disc evolution, where Ṁ decreases
with time. Additionally, we study the influence of metallicity on
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the disc structure, as the dust-to-gas ratio can change in time
as the disc evolves. The discs dust-to-gas ratio could decrease
if the radial drift gets rid of the dust particles faster than the gas
falls onto the star, or if planetesimals form efficiently, binding
the dust. But it could increase as the gas is removed and dust is
left behind or is regenerated (e.g. due to collisional grinding); in
the extreme case this leads to debris discs, where the dust-to-gas
ratio is infinite.

Additionally, we investigate the influence of the disc struc-
ture on the migration of embedded planets. As 3D simulations
of planets are computationally very expensive, we relate back to
use torque formulae for prescribing the expected migration of
planets in the disc. We therefore are able to lay out a complete
history of migration during the evolution of protoplanetary discs,
which would not be possible in 3D.

The paper is structured as follows. First, we give in Sect. 2 an
overview over the numerical methods used in this work. We then
discuss about the disc structure and planetary migration in discs
that have a metallicity of 0.01 in Sect. 3. The implications of
different rates of metallicity on the disc structure and migration
is described in Sect. 4. We then point out what roles viscosity
and gas surface density play for the migration of planets in discs
with constant Ṁ rates in Sect. 5. In Sect. 6, we discuss the impli-
cations of our results on the formation and migration of planets
in accretion discs. Finally, we summarize in Sect. 7.

2. Methods

The protoplanetary disc is treated in this study as a three-
dimensional (3D) non-self-gravitating gas whose motion is
described by the Navier-Stokes equations. Without any per-
turbers like planets, the disc is an axisymmetric structure.
We therefore can use only one grid cell in azimuthal direc-
tion, making the computational problem de-facto 2D in radial
and vertical (r-z plane) direction, where we utilize spherical
coordinates (r-θ). The colatitude θ is measured in such a way
that θ = 90◦ is the mid-plane of the disc. A clear picture of the
source of turbulence inside accretion discs is highly under debate
(see e.g. Turner et al. 2014). Nevertheless, some sort of viscos-
ity is needed to drive the accretion disc, so we treat the viscosity
utilizing an α-prescription (Shakura & Sunyaev 1973). The dis-
sipative effects can then be described via the standard viscous
stress-tensor approach (e.g. Mihalas & Weibel Mihalas 1984).
We also include the irradiation from the central star, which was
described in detail in Paper I. For that purpose we modified and
substantially extended an existing multi-dimensional hydrody-
namical code FARGOCA, as it is presented in Lega et al. (2014).

The radiative energy associated with viscous heating and
stellar irradiation is then diffused through the disc and emitted
from its surfaces. To describe this process we utilize the flux-
limited diffusion approximation (FLD, Levermore & Pomraning
1981), an approximation which allows the transition from the
optically thick mid-plane to the thin regions near the disc’s
surface.

The hydrodynamical equations solved in the code have al-
ready been described in detail (Kley et al. 2009) and the two-
temperature approach for the stellar irradiation was described in
detail in Paper I, so we refrain from quoting it here again. As in
Paper I, we take R� = 3 R� and T� = 5600 K, which gives the
flux from the star:

F� =
R2
�σT 4

�

r2
, (1)
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Fig. 1. Opacity profiles of the opacities used in the code. The different
bumps in the profile correspond to opacity transition, where the ice line
is located at ≈170 K. The grey area marks the region where the opacity
changes due to the melting of ice grains. The maximum temperature
during the simulation is reached in the inner parts of the disc, where
viscous heating is dominant and can reach up to ≈900 K for the 1 ×
10−7 M�/yr case. Opacities are plotted for a metallicity of 0.01.

where σ is the Stefan Boltzmann constant and r the distance to
the star. Stellar heating is responsible for keeping the disc flared
in the outer parts of the disc (Paper I).

2.1. Opacity

The opacity is a crucial parameter when using an energy equa-
tion with stellar heating. The Planck mean opacity κP is used
in the coupled 2-energy equations (radiative energy and thermal
energy), the Rosseland mean opacity κR is used for the radiative
cooling and the stellar opacity κ� is used for the absorption of
stellar photons in the upper layers of the disc. For more informa-
tion on how the different opacities are connected to the energy
equation, see Paper I.

In Fig. 1, the 3 different opacities used in the code are dis-
played. For the Rosseland mean opacity κR and for the Planck
mean opacity κP, we use the same opacity law, as these opacities
do not differ that much in the temperature region we are inter-
ested in (Paper I). However, compared to our previous work in
Paper I, we changed the stellar opacity κ�. In Paper I, we took
the stellar opacity to be 0.1 of the Rosseland mean opacity, as
indicated in Fig. 1. However, the stellar opacity depends on the
temperature of the star T� and not on the temperature of the gas,
as dust grains absorb photons whatever their temperature is. As a
consequence, κ� is shown as a constant line in Fig. 1. The value
of κ� = 3.5 cm2/g corresponds to the typical value in a disc with
a mixture of ice and silicate grains for T� = 5600 K. The change
of κ� compared to Paper I will lead to a higher level of absorption
of stellar photons in the upper layers of the disc, as the optical
depth τ = κ�ρΔr is much larger. Eventually, as the opacity was
very low in the upper regions of the disc in the Paper I study,
this will lead to flared discs for much lower gas densities than in
Paper I. But at the same time, the main arguments about the disc
structure (flared vs. non-flared) and for the migration still hold
in the sense of the Paper I.

In the following, we define metallicity as the ratio of heavy
elements to gas. In the condensed form, as ice or silicate grains,
these heavy elements are, in our work, only of μm in size. We
define ΣZ as the surface density of heavy elements in vapour
or micrometer grains form and ΣG as the gas surface density.
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Thus, the metallicity Z is simply the ratio Z = ΣZ/ΣG, assumed
independent of r in the disc. This means that if grain growth
would occur and the total amount of heavy elements (indepen-
dent of size) stays the same, then the metallicity in our sense is
still reduced.

2.2. Surface density

In a steady state accretion disc, the inward velocity of the gas is

vr = −3ν
2r
, (2)

where ν = αH2ΩK is the α-viscosity (Shakura & Sunyaev 1973)
with H being the height of the disc and ΩK being the Keplerian
orbital frequency. r denotes the orbital distance. With the radial
velocity we can define an accretion rate Ṁ as

Ṁ = −2πrΣGvr = 3πνΣG, (3)

where ΣG is the gas surface density. The slope of the surface
density can be calculated using the viscosity

ν = αH2Ω ∝ αh2
0r2ar−3/2 (4)

with h = H/r and where a = 9/7 as H/r ∝ r2/7 (Chiang &
Goldreich 1997, Paper I). The proportionality, ∝r2/7 describes
the flaring index of the disc, which gives for a steady state ac-
cretion disc, where Ṁ is constant for all radii ((d/dr) Ṁ = 0)

Ṁ ∝ h2
0r2ar−3/2ΣG,0r−sṀ , (5)

where sṀ denotes the power law index of the gas surface density
in the Ṁ disc. ΣG,0 is the value of the gas surface density at r0 =
1 AU. This leads to

2a − 3/2 − sṀ = 0 ⇔ 18/7 − 3/2 = sṀ ⇔ sṀ = 15/14. (6)

We are using this slope of surface density for the initial condi-
tions in all our simulations. Vertically, we initially set the den-
sity ρ of the disc to be in hydrostatical equilibrium

ρ(r, θ) = ρ0(r) exp

[
− (r cos θ)2

2H2

]
, (7)

where ρ0(r) is the initial density.
For all simulations an adiabatic index of γ = 1.4 and a mean

molecular weight of μ = 2.3 is set.

2.3. Boundary conditions

To get a disc with a given Ṁ rate, we impose a Ṁ-rate at the outer
boundary, while we leave the inner boundary open. This way,
the density structure inside the disc can change from the initial
conditions and form bumps in the surface density that could not
be created if a Ṁ boundary was applied at the inner boundary as
well, as the total mass inside the Ṁ disc would stay constant and
no re-filling could take place. The important quantities that have
to be treated in a special way at the boundaries are the radial
velocity vr and the gas surface density ΣG in the ghost rings. The
details for the boundary conditions can be found in Appendix A.
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Fig. 2. Evolution of H/r in the disc for the different stages. The disc
features Ṁ = 2 × 10−7 M�/yr. At the beginning, in the (H/r)0 stage,
α0 = 0.001, which we change to α1 = 0.003 after the stage (H/r)1 is
reached. The stage (H/r)2 shows the aspect ratio after the viscosity has
change and (H/r)final shows the final stage after the surface density has
been re-arranged.

2.4. Disc evolution

The initial conditions provided in Sect. 2.2 give an initial aspect
ratio of the disc, (H/r)0, which has to be set to a higher value
as the equilibrium H/r in order to get a flared disc, as a non
flared disc cannot become flared any more (Dullemond 2002),
see Fig. 2. In time then the viscosity would drop (as H drops and
ν = αH2ΩK), until an equilibrium state is reached. Starting a
simulation like that would imply that H and therefore Σ change
a lot in time to guarantee a constant Ṁ. So, if H drops by a factor
of 2−3 as observed in Paper I, the surface density has to rise by
a factor of 4−9. The time for the disc to adjust to that would
be extremely long, as the disc has to be refilled from the outer
boundary on a viscous timescale, which is essentially the life
time of the disc.

We impose several steps in the simulations to save computa-
tion time. We first keep the viscosity constant in time, equal to its
initial value ν0 = αh2

0r15/14, by using the initial h0 = (H/r)0 con-
figuration to determine the viscosity during the whole first step.
As the disc evolves, it compresses towards mid-plane and we
reach an equilibrium state with a flared disc profile in the outer
parts of the disc. We then fit this profile, which is labelled (H/r)1
in Fig. 2, with a new H/r value, where h1 ∝ r2/7 (shown as
(H/r)1,fit in Fig. 2). With this new estimate of H/r, we can com-
pute a new α value for the viscosity by comparing it to (H/r)0.
The change of H in the viscosity is compensated by the change
of α, so that the disc will have the same viscosity as in the first
step and therefore the Ṁ rate is conserved as well.

The simulation is then restarted with the new α value (which
is given by αend = α0h2

0/h
2
1) and the viscosity ν is now given by

Eq. (4), with the local value of H to account for bumps and dips
that might eventually form in the disc. For the outer parts, these
changes of ν are not important as the disc structure is determined
by stellar irradiation and not by viscous heating. In the inner
parts, where viscous heating is the dominant heat source, the vis-
cosity changes compared to the (H/r)0 case, leading to change
of the disc structure. However, these changes are minimal. The
advantage of this procedure is that the Ṁ rate is the same as in
the initial simulation with no need to refill ΣG as H drops.

We then reach a new equilibrium state (H/r)2, where the in-
ner parts of the disc changed compared to (H/r)1, as the viscosity
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Table 1. Simulation parameters for the used models.

Ṁ-rate [M�/yr] Metallicity ΣG,0 αend

2 × 10−7 0.01 5.385 × 10−3 0.003
1 × 10−7 0.01 2.693 × 10−3 0.003
5 × 10−8 0.01 1.346 × 10−3 0.003
1 × 10−8 0.01 2.693 × 10−4 0.003
5 × 10−9 0.01 1.346 × 10−4 0.003
5 × 10−8 0.02 1.346 × 10−3 0.003
1 × 10−8 0.03 2.693 × 10−4 0.0026
5 × 10−9 0.05 1.346 × 10−4 0.0026
5 × 10−8 0.001 1.346 × 10−3 0.0026
1 × 10−8 0.001 2.693 × 10−4 0.0026

changed. But, as the disc still needs to re-arrange the surface den-
sity on a viscous time scale, we relate back to a locally isother-
mal simulation, where we plug in the disc structure and sound
speed as it is shown in the (H/r)2 disc. The disc is then evolved
until a time independent mass flux through the disc is achieved.
After that, we go back to the fully radiative energy equation with
stellar irradiation to account for changes in the heating due to
the re-arranged gas surface density ΣG and arrive at (H/r)final,
which gives the final state of the disc. Please note that this whole
process can only work as the outer disc is supported by stellar
irradiation, keeping the input of mass at the outer boundary con-
stant, not only in time, but also in vertical spacing as H stays
constant.

In this way, much computation time is saved, as the compu-
tation time is mainly dominated by the stellar-irradiation algo-
rithm that can take up to 90% of the whole computation time.
Especially in the state where the surface-density has to be re-
arranged, due to changes in viscosity this makes a big difference.

In principle during time the metallicity of small dust grains
in the disc can change (e.g. due to grow of planetesimals), which
would change the disc structure (see Sect. 4). This would imply
that disc needs to re-arrange the gas inside, which happens on a
viscous timescale. However, as we show below, this re-arranging
of mass is much less pronounced in the outer parts of the disc,
where the viscous timescale is much longer compared to the
inner parts (τvisc = r2/ν = r2/(αH2ΩK)). This is because the
change of viscosity in the outer parts is much smaller compared
to the change in the inner parts of the disc, as the H/r profile
stays constant as it is dominated by stellar irradiation. This in-
dicates that the steady-state of constant Ṁ can be achieved in
the inner parts on a timescale which is shorter than the lifetime
of the disc, which is determined by the viscous timescale of the
outer parts of the disc.

2.5. Numerical setup

We perform several simulations for different Ṁ rates corre-
sponding to different stages of the discs lifetime that are listed
in Table 1. In the first sets of simulations, we assume that the
dust is bound perfectly to the gas and as the gas accretes onto
the star, the dust decreases at the same rate, keeping the dust to
gas ratio constant. In the second set of simulations, we assume
that the dust is not perfectly bound to the gas at the later stages
of the discs evolution, resulting in an increasing and decreas-
ing dust to gas ratio, depending on the favoured scenario for the
evolution of dust particles.

All simulations are performed on a grid with 386 × 66 active
cells in r − θ direction, where the opening angle of the numer-
ical simulation is 20◦, meaning that 70◦ < θ < 90◦. The radial
domain extends from 1 AU to 50 AU.

3. Ṁ-discs with constant gas to dust ratio

In this section we analyse the disc structure for discs with differ-
ent Ṁ rates, but with a constant metallicity of 0.01. The different
Ṁ rates correspond to different evolutionary states of the discs
lifetime. We reduce the surface density of the gas, ΣG, to real-
ize different states of the evolution, but keep the viscosity at the
same value for all simulations. We then analyse the migration be-
haviour of planetary cores inside the Ṁ discs by using the torque
formula provided by Paardekooper et al. (2011).

3.1. Disc structure

In Fig. 3 the H/r, temperature and gas surface density profiles
of discs with different Ṁ are displayed. The H/r profiles show
a flaring part in the outer disc and some bumps and dips in the
inner part of the disc. These bumps and dips are caused by tran-
sitions in the opacity of the disc, for example at the ice line.
This kind of structure was also observed for equilibrium discs
with constant viscosity in Paper I. The height of the bumps and
the depth of the dips in the disc is decreasing with decreasing Ṁ
rate (which means a decreasing ΣG). As Ṁ decreases, so does the
viscous heating, hence the temperature and H/r in the inner part
of the disc. This also means that the shadowed region of the disc
is becoming smaller as the discs density reduces. Additionally
to that, the bumps of the disc structure move towards the central
star as Ṁ decreases. The bumps in the disc originate from the
opacity transition, which always correspond to the same temper-
ature region. Therefore less heating in the inner parts of the disc
moves these bumps further inside.

As the gas surface density is reduced more and more, the
bumps in the disc become smaller and smaller (as the disc heats
less) until they finally disappear completely for small Ṁ. For
the 1 × 10−8 M�/yr disc there is only a very small bump in the
H/r profile visible. This bump vanishes for the 5 × 10−9 M�/yr
disc, which only shows an increase of H/r. In the outer parts of
the disc, the structure is very similar for all Ṁ. The heating in the
outer disc is dominated by stellar irradiation, which is dependent
on the optical depth (Δτ = ρGκ�Δr) of the disc. So, as long as
the disc is optically thick (Δτ > 1) it can efficiently absorb stellar
irradiation and be heated. The disc is then flared with H/r ∝
r2/7 as found for theoretical calculations in Chiang & Goldreich
(1997).

In hydrostatic equilibrium, the temperature is related in mid-
plane to H/r through

T =
(H

r

)2 GM�
r
μ

R , (8)

where μ is the mean molecular weight and R the gas constant.
The temperature profile (middle in Fig. 3) therefore reflects the
fluctuations in the H/r profile by showing steeper gradients
when H/r drops and less steep gradients when H/r increases.
These changes are caused by the transition of opacity. The re-
gion of change in the opacity is marked in grey colour in the
middle panel of Fig. 3.

The surface density is reduced by the appropriate factor for
changing the Ṁ rate. In the outer parts of the disc, this can well
be observed (bottom in Fig. 3). However, in the inner parts of the
disc this seems not to be exactly the case. For example between
the 1 × 10−8 M�/yr disc and the 5 × 10−8 M�/yr disc, the dif-
ference in surface density at the inner boundary is only a factor
of ≈2 instead of 5. This can be explained by the different vis-
cosity in the inner parts of the disc, as ν = αH2Ω and H clearly
varies for the different Ṁ values. A smaller viscosity caused by
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Fig. 3. H/r-profile (top), temperature (middle) and surface density pro-
file (bottom) of discs with different Ṁ rates. The profile is taken when
the discs have reached their radially constant Ṁ rate. The black dotted
lines represent power-law fits to guide the eyes. The grey area in the
temperature plot marks the temperature range where the opacity profile
changes due to the melting of ice grains (see Fig. 1). Please note that
we cut the displayed disc at 30 AU to enhance the details in the inner
parts of the disc.

a smaller H, results in a higher surface density as Ṁ has to be
constant, thus explaining the surface density profiles.

Additionally, there are wiggles in the ΣG profile at ≈5 AU
for all Ṁ discs. This also can be explained by changes in the
viscosity due to changes in H (see top of Fig. 3) and that Ṁ has to
be constant throughout the disc. The changes of the gradients in
the surface density ΣG and in the temperature T have important
consequences for the migration inside these discs.

3.2. Migration maps

In order to estimate the torque acting on planets embedded in the
discs with different Ṁ, we use the formula by Paardekooper et al.
(2011), which captures the effects of torque saturation in contrast
to Paardekooper et al. (2010), where the torques are fully unsatu-
rated. However, the formula by Paardekooper et al. (2011) might
not be accurate for small mass planets. In fact, Lega et al. (2014)
have found a new additional negative torque, which diminishes
the total torque acting on embedded small mass planets. But
these differences do not seem to be that large. So in absence of
a formula that would capture this effect and to avoid large scale
numerical simulations, we use the formula of Paardekooper et al.
(2011), which gives a good approximation. The formula captures
the torque caused by Lindblad resonances and horseshoe drag on
low-mass planets embedded in gaseous discs in the presence of
viscous heating and thermal diffusion. The formula does not in-
clude stellar heating, but stellar heating only changes the disc
structure and not the mechanism responsible for outward migra-
tion (Paper I). This formula was also tested against 3D simula-
tions in Bitsch & Kley (2011), who found a good agreement for
20MEarth planets.

The formula of Paardekooper et al. (2011) is very complex,
so we will not explain the whole formula here. The total torque
acting on an embedded planet is a composition of its Lindblad
torque and its corotation torque:

Γtot = ΓL + ΓC. (9)

The Lindblad torque depends on the gradients of temperature
T ∝ r−β and gas surface density ΣG ∝ r−s. It is given in
Paardekooper et al. (2011) by

γΓL/Γ0 = −2.5 − 1.7β + 0.1s and Γ0 =

(q
h

)2
ΣPr4

pΩ
2
P, (10)

where q is the mass ratio between planet and star, ΣP the gas sur-
face density of the disc at the planet’s location and rP the distance
of the planet to the host star. One can clearly see that a change in
the gradient of temperature influences the Lindblad torque. The
same applies to the corotation torque, which is strongly depen-
dent on the gradient of entropy, S ∝ r−ξ, with ξ = β− (γ− 1.0)s.
The largest contribution of the corotation torque arises from the
entropy related horseshoe drag, which is given by

γΓhs,ent/Γ0 = 7.9
ξ

γ
· (11)

This indicates that we expect a change of the migration rate,
when the temperature changes significantly. This is the case in
the inner parts of the discs, where the aspect ratio H/r shows
fluctuations (as H/r is proportional to T ). In fact, in Paper I
we found that outward migration seems only possible in regions
of the disc where H/r drops. The torque formula that accounts
for saturation effects (Paardekooper et al. 2011) will result in
a smaller region of outward migration compared to the unsat-
urated torque formula (Paardekooper et al. 2010), which can
clearly be seen in Fig. 4. Additionally the formula for the un-
saturated torques is independent on the planetary mass, so that
outward migration will be found for all planetary masses for the
Paardekooper et al. (2010) formula, in contrast to the torque for-
mula that accounts for saturation, as torque saturation depends
on the planetary mass (Paardekooper et al. 2011).

Compared to the equilibrium discs with constant viscosity
presented in Paper I that had seq = 0.5, we now have a much
steeper surface density gradient with sṀ ≈ 15/14. This reduces
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Fig. 4. Torque acting on discs with different Ṁ, with 5 × 10−8 M�/yr
(top), 1 × 10−8 M�/yr (middle) and 5 × 10−9 M�/yr (bottom) for the ap-
plied Paardekooper et al. (2011) formula. The black lines encircle the
regions of outward migration for the Paardekooper et al. (2011) for-
mula. The vertical solid yellow lines mark the outer edge of the zero-
migration region for the unsaturated torques (Paardekooper et al. 2010),
while the dashed-yellow line marks the inner edge of the zero migration
region of the unsaturated torques. The vertical red lines indicate the ice
line at 170 K.

not only the entropy gradient in the disc and therefore the en-
tropy related horseshoe drag, but also the barotropic part of the
horseshoe drag, which is given by

γΓhs,baro/Γ0 = 1.1 (1.5 − s) (12)

by ≈50% compared to equilibrium discs with seq = 0.5. The ef-
fect on the Lindblad torque (Eq. (10)), however, is minimal. The
expected total effect would be a reduced region of outward mi-
gration in the accreting discs compared to the equilibrium discs.

In Fig. 4 we present the migration maps for discs with Ṁ =
5×10−8 M�/yr, Ṁ = 1×10−8 M�/yr and Ṁ = 5×10−9 M�/yr, for
which the disc structures are displayed in Fig. 3. For the high-
est Ṁ disc model, we have two separated regions of outward
migration, which are encircled by black lines in the figure. The

first region is from the inner edge of the disc up to ≈3 AU, the
second is from ≈5 AU < rP < 7 AU. These regions compare
nicely to regions in the disc, where H/r drops. A drop of H/r
corresponds to an increase of the temperature gradient resulting
in an increased entropy gradient and hence a stronger entropy
related corotation torque leading to outward migration. These
changes in H/r are caused by opacity transitions, as was stated
for equilibrium discs in Paper I. In fact, in the temperature profile
shown in Fig. 3 (middle), the grey area marks the region where
the opacity changes, which shows a shallower temperature gra-
dient. For the Ṁ = 5 × 10−8 M�/yr disc this grey region (from
≈3 AU to ≈5 AU) corresponds nicely to the region of inward
migration shown in Fig. 4.

Compared to the studies of equilibrium discs with constant
viscosity (as in Paper I) where the minimum mass for outward
migration was ≈5ME, it is now ≈8ME. This difference has its
origin in the different disc structure. As the Ṁ disc features
a much steeper surface density gradient sṀ ≈ 15/14 com-
pared to the equilibrium disc seq = 0.5, it reduces the differ-
ent positive contributions of the torque, so that very small mass
planets do not migrate outwards any more. For small planetary
masses, the horseshoe drag tends towards the linear corotation
torque, resulting in inward migration. Infact, for small mass
planets (<5MEarth), new studies have shown an additional neg-
ative torque (Lega et al. 2014). The maximum mass of outward
migration, ≈40ME seems to be the same compared to Paper I.
However, one should be sceptical about the results for high mass
planets, as the formula of Paardekooper et al. (2011) was derived
in the linear regime for small mass planets and not for large plan-
ets that can even start to open up partial gaps.

We do not show the migration map for Ṁ = 3 × 10−8 M�/yr
as it shows just a transition state between Ṁ = 5 × 10−8 M�/yr
and Ṁ = 1 × 10−8 M�/yr, since they have no new features, as
can also be guessed from the structures shown Fig. 3. However,
in this case the inner and outer region of outward migration
shrink and are shifted inwards. In fact when arriving at Ṁ =
1× 10−8 M�/yr only one region of outward migration remains in
our computational domain. This region is then much smaller in
size and valid for a narrower range of planetary masses. But, it
also implies that outward migration is possible for planets with
a slightly smaller mass (≈5MEarth).

The migration map for Ṁ = 5 × 10−9 M�/yr (bottom in
Fig. 4) looks completely different as for the higher Ṁ models.
In fact there are no more regions of outward migration left. As
stated before, outward migration is stronger if H/r drops, but for
this case, no drop in H/r can be observed (see Fig. 3), leading
to inward migration for all planetary masses and at all orbital
distances. However, in the region where we observed outward
migration for higher Ṁ discs, the inward migration is slowest. In
the region between 1.5 and 2 AU the inward migration is actually
increased compared to the rest of the disc. This is supported by
the temperature gradient of the disc, which actually seems to
be even partly positive (see Fig. 3), which can even result in a
negative corotation torque. But, keep in mind here that the actual
migration rate is smaller for reduced disc masses, as Γ0 scales
linearly with ΣG, see Eq. (10).

Interestingly, only the torque formula that accounts for satu-
ration gives a negative torque for the whole disc, while the fully
unsaturated torque formula (Paardekooper et al. 2010) still pre-
dicts outward migration. Infact in a Ṁ disc, one can relate the
total unsaturated torque, which consists of the Lindblad torque
(Eq. (10)) and the barotropic (Eq. (12)) and entropy related
(Eq. (11)) part of the corotation torque, to the flaring index of
the disc. Assuming that ΣGν is independant of r as well as α
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(which gives s = 3/2 − β), and that γ = 1.4, one finds by using
Eq. (8)

Γtot/Γ0 = 1−10b, (13)

where b is the flaring index of the disc. This indicates that even
the unsaturated torque is negative in discs with flaring indices
larger than 0.1. By interpolating the trend of the H/r profile to-
wards even smaller Ṁ discs, we speculate that even the unsat-
urated torque formula will predict inward migration as the Ṁ
becomes smaller and smaller. However, the torques saturate in
time, so that the formula for the unsaturated torques should not
be used, especially for small Ṁ discs (see discussion in Sect. 6).

4. Ṁ-discs with different metallicity

In this section we explore the influence of different metallicity
on the disc structure and the corresponding migration maps. A
reduced metallicity in small grains could happen in time as the
first planetesimals and embryos form in the disc and reduce the
amount of heavy elements in the disc. Additionally, radial drift
could wash out the dust grains, reducing the metallicity. A higher
metallicity in small μm size dust grains in the late stages could
be achieved by collisional grinding of planetesimals that produce
small particles.

The change of metallicity has many implications, also for
planet formation. For example, a higher metallicity helps the
streaming instability to operate (Johansen & Youdin 2007) and
the formation of planetesimals (Johansen et al. 2007), while a
lower metallicity hinders the streaming instability to work.

4.1. Higher metallicity

A change in the metallicity of the disc translates to a change of
the opacity of the disc. If the metallicity of a disc is doubled,
so is the opacity. If the metallicity increases, the cooling rate of
the disc decreases as can be seen from Eq. (15). In Fig. 5, it is
shown that the aspect ratio H/r of discs increases with increasing
metallicities, compared to the low metallicity cases (Fig. 3).

In the outer parts of the disc, the structure is quite similar to
the one shown for the low metallicity discs (Fig. 3). This is not
obvious, as the cooling rate reduces with increasing metallicity
while the absorption of stellar irradiation increases. However,
due to more grains in the disc, the absorption of stellar irradia-
tion (which is ∝ρκ�) will happen for smaller densities, which im-
plies that it happens at an higher altitude in the disc. Therefore,
the heat that transfers down to mid-plane is actually reduced. But
this effect is compensated by the reduced cooling, so the result-
ing disc structure in the outer parts is the same.

Clearly the aspect ratio is higher in the inner parts of the disc
for the Ṁ = 5 × 10−8 M�/yr disc with a metallicity of 0.02 com-
pared to the disc with a metallicity of 0.01 shown in Fig. 3. We
recall that the inner part of the discs are dominated by viscous
heating. The viscous heating does not depend on the metallicity,
but only on the gas density. The higher metallicity reduces the
cooling rate and therefore the balance between viscous heating
and cooling turns to higher temperatures, hence to a higher h.
This effect, of course, diminishes as the Ṁ rate is reduced and
therefore viscous heating as well.

Interestingly, not only is the aspect ratio larger for higher
metallicity discs, but also the bumps in the inner parts of the disc
are more pronounced. For the Ṁ = 5 × 10−9 M�/yr disc, the
bumps are actually visible for the first time. The increase of the
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Fig. 5. H/r-profile of discs with different Ṁ rates and metallicities.
The profile is taken when the discs have reached their radially con-
stant Ṁ rate. The colour coding of the high metallicity discs match the
Ṁ rates displayed in Fig. 3. Please note that we cut the displayed disc
at 30 AU to enhance the visibility in the inner parts of the disc.

bumps inside the disc structure is related to the reduced cool-
ing rate in the high metallicity discs. This can have important
implications on the migration of giant planet cores.

In Fig. 6, we present the migration maps for the same
Ṁ discs as in Fig. 4, but with different metallicities. The metal-
licities are 0.02 (top), 0.03 (middle) and 0.05 (bottom). The clear
difference for the migration maps displayed here, with the ones
in Fig. 4 is that the regions of outward migration are much
larger and more extended. Additionally, the migration map for
the 5×10−9 M�/yr disc shows outward migration, which was not
visible for the for disc with a metallicity of 0.01. This is clearly
related to the change in the disc structure in the inner parts (see
Fig. 5), where now a bump appears.

4.2. Lower metallicity

Due to the formation of planetesimals and planetary embryos,
which require dust and ice grains, the amount of small solids can
decrease, if there is no additional source of small grains. Discs
with reduced metallicity, have a reduced opacity inside the disc,
which works in the same way as described Sect. 4.1. The aspect
ratio of discs with a metallicity of 0.001 are also displayed in
Fig. 5.

Clearly, a lower metallicity leads to a higher cooling rate
(Eq. (15)), which explains the drop of H/r in the inner parts
of the disc. The outer parts of the disc remain flared and at
about a constant level, as explained in Sect. 4.1. For the Ṁ =
1 × 10−8 M�/yr disc there is a dramatic change of the disc struc-
ture as no bumps in the discs profile are visible any more, which
are still visible in the case of a metallicity of 0.01.

In Fig. 7 the migration maps for the low metallicity discs are
displayed. In the Ṁ = 5 × 10−8 M�/yr case (Fig. 7, top), the
regions of outward migration are much smaller compared to the
0.01 metallicity case (top of Fig. 4). In fact, the inner region of
outward migration is dramatically reduced and the outer region
is only valid to much smaller masses. Additionally, the outer
region of outward migration is shifted inwards from ≈5 AU to
≈3.8 AU, which can be explained due to the higher cooling rate
in the disc, which shifts the ice line further inwards.
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Fig. 6. Torque acting on discs with different Ṁ and metallicity, with
5 × 10−8 M�/yr and 0.02 metallicity (top), 1 × 10−8 M�/yr and 0.03
metallicity (middle) and 5 × 10−9 M�/yr and 0.05 metallicity (bottom).
The black lines encircle the regions of outward migration. The vertical
red lines indicate the ice line at 170 K. The migration maps correspond
to the disc profiles shown in Fig. 5.

In the case of Ṁ = 1 × 10−8 M�/yr (Fig. 7, bottom), the
changes are dramatic, as no region of outward migration exists
any more. In fact, the region beyond the ice line now features a
region of enhanced inward migration. In all other displayed mi-
gration maps, we observe a region of outward migration (or at
least with slower inward migration). At this point in the disc, the
aspect ratio profile undergoes a steep gradient (Fig. 5), which
actually refers to a positive gradient in temperature, which leads
to a negative entropy related corotation torque, resulting in an
even larger negative total torque. The reason for that is probably
related to the transition of viscous heating to stellar heating. As
viscous heating is operating in the inner (mid-plane) parts of the
disc, heat is produced there. Stellar irradiation heats the upper
layers of the disc, which then transport heat down towards mid-
plane. At ≈2.5 AU stellar heating is getting absorbed effectively,
which heats the mid-plane, but viscous heating seems to dimin-
ish already at a smaller distance to the star. Therefore a higher
temperature can be observed at ≈2.5 AU compared to the inner
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Fig. 7. Torque acting on discs with different Ṁ and metallicity, with
5×10−8 M�/yr and 0.001 metallicity (top) and 1×10−8 M�/yr and 0.001
metallicity (bottom). The black lines encircle the regions of outward
migration. The vertical red (top) and blue (bottom) lines indicate the ice
line at 170 K. The migration maps correspond to the disc profiles shown
in Fig. 5. Please note the different colour scale for the bottom plot.

parts of the disc, which leads to a positive temperature gradient
in the disc.

5. Influence of the interchange between ΣG and ν

As the mass flux Ṁ through a disc is proportional to the gas
surface density ΣG and the viscosity ν, a change in ΣG could be
compensated by a change in ν to still have the same Ṁ. We now
want to construct a scenario where Ṁ and the thermal structure
are the same, but where ΣG and ν are not. For changing ν, we
change α.

Let us look at the different heating and cooling sources of the
disc. The viscous heating, which is the dominant heat source in
the inner parts of the disc, is proportional to ΣGν (Ṁ):

Q+ =
9
8
ΣGνΩ

2
K2πrδr, (14)

which implies that an interchange between ΣG and ν would not
change the viscous heating. The radiative cooling is given by

F = − λc
ρGκR

∇ER, (15)

where c is the speed of light, λ the flux-limiter (Kley 1989) and
ER the radiation energy. In order to get the same cooling rate,
a change in ρG has to be compensated by a change in κR. The
same applies for the absorption of stellar photons, which scales
with ρGκ�. So, if the gas density is increased by a factor sf , the
opacity, and therefore the metallicity, has to decrease by a fac-
tor sf . The ratio of ΣG/ΣZ will change, but this will not change
the thermal structure of the disc. This actually means that the
surface density of heavy elements ΣZ stays constant.
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Fig. 8. Torque acting on discs with Ṁ = 1 × 10−8 M�/yr for a rescaling
of ΣGν by a factor of sf = 0.5 (top) and a factor of sf = 2 (bottom). This
means that the disc displayed in top has a metallicity of 0.005, while
the disc in bottom has a metallicity of 0.02. The black lines encircle the
regions of outward migration. The vertical red lines indicate the ice line
at 170 K.

Therefore we can use the data of the discs presented in the
previous section and scale them by scaling factor sf to inter-
change ΣG and ν. When increasing ν by sf , the gas surface den-
sity ΣG has to decrease by sf . At the same time ΣZ has to be con-
stant, but this means that the metallicity of the disc increases. So
in scenario like that, the opacities κR, κP and κ� increase by sf as
well.

In Fig. 8 we present the migration maps of a Ṁ = 1 ×
10−8 M�/yr disc, for two different cases for exchanging ΣG and
ν. In the top, the viscosity is decreased by a factor of 2 and in the
bottom plot it is increased by a factor of 2. This means that the
top disc has 0.005 metallicity and the bottom one 0.02.

These two migration maps significantly differ from each
other and from the one presented in Fig. 4. In the case of low
viscosity (top in Fig. 8), no outward migration is detected any
more. But in the case of high viscosity, a much larger region of
outward migration is visible. However, outward migration in this
case starts a much higher planetary masses (12MEarth) compared
to the normal viscosity case presented in Fig. 4, where outward
migration starts for ≈5MEarth.

The reason for this is the scaling of the thermal diffusion
coefficient χ in the formula of Paardekooper et al. (2011), which
is not linear in ρGκR. It reads:

χ =
16γ(γ − 1)σT 4

3κRρ2
GH2Ω2

P

, (16)

where σ is the Boltzmann constant. Please note that a factor
of 4 is missing in Paardekooper et al. (2011) according to Bitsch
& Kley (2011). Additionally, the saturation parameters for the

corotation torque and horseshoe drag are also dependent on the
viscosity of the disc. These saturation parameters are responsible
for the transition from horseshoe drag towards the linear corota-
tion torque, which is much smaller than the horseshoe drag. This
can then lead to inward migration, changing the migration maps.

This non-linearity causes different migration behaviour for
discs with different ν to ΣG ratios, even if they feature the same
Ṁ value and the same thermal structure. In total, one could
roughly say that a smaller viscosity allows outward migration for
smaller planetary masses (unless it gets too low and no outward
migration is possible any more), while a larger viscosity allows
outward migration for larger planetary masses, where the min-
imum mass required for outward migration is also increasing.
This is of crucial importance for N-Body simulations of plan-
etary embryos in evolving discs, where just stating a Ṁ value
would not be enough.

6. Consequences on planet formation

The presented migration maps have important consequences for
the resulting structures of planetary systems. Lyra et al. (2010)
stated that planets formed in a disc, would migrate and then sit
at the zero-migration radius, which is independent on the plan-
etary mass in their case, because they use the torque formula of
Paardekooper et al. (2010) that only accounts for the unsaturated
torques. This picture is contradicted by the results presented
here, as we use the torque formula with saturation (Paardekooper
et al. 2011).

The planets in Lyra et al. (2010) consequently move inwards
with the zero-torque radius in time as the disc disappears, which
can also be observed from the migration maps presented here.
However, they used a simple 1D model for their disc evolution
and did not account for stellar heating, which clearly changes the
disc structure and the migration pattern compared to fully radia-
tive discs (Paper I). In particular Eq. (13) shows that the flaring
index should be determined accurately for a good estimate of
the unsaturated torque, but non stellar irradiated discs can not be
flared in the outer parts (Paper I). The main difference between
our model and the Lyra et al. (2010) model originate from the
more complex disc structure presented here and from the differ-
ent torque formula that accounts for saturation effects.

Lyra et al. (2010) also stated that in the late evolutionary
stages of the disc, starting at ≈4.0 Myr, the surface density is
so low that it can not transfer enough angular momentum to the
planet for its orbital radius to evolve as fast as the equilibrium
radius. This means that the planets detach from the evolution of
the disc and are left behind. The beginning of their late stage
of ≈4.0 Myr matches from the surface density at 1 AU quite
well with our Ṁ = 5 × 10−9 M�/yr model with a metallicity
of 0.01, where we do not observe a zero-torque radius any more
for the torques that are prone to saturation (Paardekooper et al.
2011). This would indicate that planetary cores could start in-
ward migration while the disc is disappearing and can not safely
wait and detach themselves from the disc as proposed by Lyra
et al. (2010). Therefore this could make the survival of planets
in the outer parts of the disc in the late stages much harder. This
problem becomes even more severe if the metallicity of the disc
would drop in time (e.g. due to the formation of planetesimals
out of dust grains) as can be seen from Fig. 7, where only in-
ward migration is observed for Ṁ = 1 × 10−8 M�/yr.

The results of Lyra et al. (2010) could be interpreted in a
way that the evolution of the disc naturally would account for
the occurrence of Super-Earth and Mini-Neptune planets in the
inner parts of the solar system. However, if the metallicity of
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the disc is large in the late stages of the evolution, the zero-
migration radius for these planets is at ≈4 AU (see Fig. 6), which
is much larger than in the model of Lyra et al. (2010), even
though we used the torque formula accounting for saturation
here. Additionally in the low metallicity case, the zero-torque ra-
dius for Ṁ = 5×10−9 M�/yr using the fully unsaturated torque is
much further out in our simulations (≈5 AU) compared to ≈2 AU
in Lyra et al. (2010), which is clearly a consequence of the dif-
ferent disc models.

From our simulations, we propose two different ways to form
hot Neptunes. Either they form in the outer disc, where they get
trapped in the outer region of outward migration and are then
released at a late stage where they migrate inwards to the inner
edge of the disc (low metallicity scenario). Or they assemble in
the inner part of the disc from migrating embryos that were too
small to be trapped in the regions of outward migration. Note
that the second scenario can happen for low and high metallici-
ties, as both scenarios require a minimal planetary mass to halt
inward migration.

The migration maps for a metallicity of 0.01 (Fig. 4) can also
be used as a guideline to discuss the evolution of giant planets
during their formation. The core of a giant planet most likely
forms beyond the ice line at the early stages of the disc. The
reason for the core to actually grow to become a giant planet
and not stay a hot Neptune, might be explained in the differ-
ent formation time of the core itself. A faster formation of the
core provides more time to accrete gas to become a gas giant,
than a later formation of the core where the planet is stuck at
Neptune size. Let us assume that a core is trapped at the outer
zero-migration radius where it can grow until it reaches a mass
of ≈40MEarth. Thus, at that stage the planet is in a region between
≈4 and ≈5 AU, depending on which evolutionary stage the disc
is in (the smaller is Ṁ, the closer to the star is the equilibrium
radius). When the ≈40MEarth mass is exceeded, the planet is re-
leased and starts migrating towards the central star. A planet of
that size is growing rapidly due to gas accretion (Pollack et al.
1996) and it starts to open a significant gap inside the disc chang-
ing its migration regime to that of type-II-migration. Due to this
migration phase, the giant planet, once fully formed, is signif-
icantly closer to the star than the original location of its core,
i.e. closer than ∼4 AU. The formation of an inner cavity in the
disc by photo-evaporation can eventually stop the inward migra-
tion of the planet, as suggested by Alexander & Pascucci (2012),
preventing it from becoming a hot Jupiter.

However, in the case of our own solar system, this is not suf-
ficient. A mechanism is needed to move the giant planet (Jupiter)
outwards and bring it to 5 AU. This consideration supports the
Grand Tack scenario (Walsh et al. 2011), in which the formation
of Saturn eventually forces Jupiter to reverse its migration di-
rection and move outwards. In the Grand Tack scenario, Saturn,
once formed, migrates faster than Jupiter and cached it in reso-
nance inside their common gap, which causes the migration re-
versal (Masset & Snellgrove 2001; Morbidelli & Crida 2007;
Pierens & Nelson 2008). A potential problem, often invoked
with this scenario, is that a priori Saturn and Jupiter should
have followed exactly the same growth-migration histories, so
that Saturn could never catch up with Jupiter. Our work now
shows that this assumption is actually not true. If Saturn forms
after Jupiter, Ṁ will have decreased in the disc, and the migra-
tion map will differ. In fact, as times goes by, the maximum
mass for being still trapped in a zero-torque zone decreases.
So, Saturn should start migration inwards at a smaller mass than
Jupiter did. Possibly, Jupiter never had inward type-I-migration,

while Saturn had, and may even have experienced fast type-III-
migration, which leads Saturn to catch up with Jupiter.

Of course this is dependent on the ratio between the migra-
tion speed of the giant planets and the actual accretional evolu-
tion of the disc. In addition, opening of a gap by Jupiter would
change the thermal structure of the disc, hence changing the mi-
gration map for Saturn. A detailed study of this process is be-
yond the scope of this paper, but it is worth noting that our results
qualitatively support the concept of the Grand Tack scenario.

It also seems that it is easier to keep the first cores in discs
with higher metallicity, as the minimum mass needed for out-
ward migration is reduced compared to lower metallicity discs.
This would potentially make it easier to keep the first cores that
form giant planets. As potentially more cores can be kept inside
the disc, it is more likely that these cores can form giant planets.
Therefore, high metallicity discs would imply a higher probabil-
ity to form gas giant planets, which is supported by observations.

Hasegawa & Pudritz (2011) stated that among the ice line
and dead zone, the heat transition between viscous and stel-
lar heating can act as a planet trap. In a disc, stellar heating is
dominant in the outer parts of the disc and therefore responsible
for the flaring part of the disc (see Chiang & Goldreich 1997,
Paper I). In the inner parts viscous heating is dominant. The dif-
ferent heat sources result in a change of the gradient of temper-
ature between these two different regions, which can lead to a
region of outward migration, according to Hasegawa & Pudritz
(2011). Additionally they stated that the ice-line (located at rice)
can function as a planet trap.

However, in the simulations presented here, we see a differ-
ent picture. Here, the ice line functions as a region of divergent
migration, meaning that planets interior to the ice line (r < rice)
migrate inwards, while planets located outside (r > rice) the ice
line migrate outwards. Additionally, one could argue that the
disc is locally radial isothermal at the ice line, as melting and
resublimating of ice grains keep the temperature constant for
a certain distance around the actual ice line (Lyra et al. 2010;
Hasegawa & Pudritz 2011), which is not explicitly taken into
account in our simulations, but it is slightly reflected by the
smoothed transition between the different branches of opacity
(Fig. 1). As the disc is locally radial isothermal, no temperature
gradient exists around the ice line, so that outward migration is
not possible there and therefore the ice line can not act as a point
of convergent migration.

The outward migration beyond the ice line then stops in a re-
gion of the disc, where H/r reaches a local minimum, which is a
convergent migration radius in the disc. A minimum of H/r can
only exist, if H/r increases again, which, in this case, is achieved
by stellar irradiation. In that sense, a change form inward to out-
ward migration is caused by stellar irradiation, because it flares
the disc. But at the same time the change of the opacity at the ice
line, provides a change in the disc structure as the cooling prop-
erties of the disc change. In this sense, the divergent migration
point is related to the opacity transition at the ice line and the
stopping point of outward migration is related to stellar heating,
as the disc becomes flared (Paper I).

The turbulence inside the disc is thought to be driven by the
MRI, which would then also account for a non-turbulent inner
part of the disc, the so called dead zone. The dead zone basically
is a region of low viscosity inside the disc, which can have im-
portant consequences on the disc structure and on the migration
of embedded planets. The study of the influence of the dead zone
on disc structures is planned in future work. Additionally to that,
we plan to use the presented code in 3D to test the influence of
embedded planets on the disc structure of stellar irradiated discs
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and if the migration behaviour is still similar to the one predicted
by the torque formulae. With the presented code these simula-
tions seem to be possible in a reasonable amount of computation
time (several weeks).

7. Summary
We presented here hydrodynamical simulations of stellar irradi-
ated accretion discs, featuring viscous heating, radiative cooling
and stellar irradiation. These discs feature different radially con-
stant accretion fluxes Ṁ = 3πνΣG through them that represent
different stages of the lifetime of an accretion discs, as the Ṁ rate
is reducing as the disc becomes older. We especially focused on
the thermal structure of the disc. From the resulting disc struc-
ture, we computed the torque acting on embedded planets by
using a torque formula (Paardekooper et al. 2011) in order to
find sweet spots for planetary growth.

At the ice line, the opacity profile (Fig. 1) changes due to
the melting and condensation of ice grains. This transition in
opacity changes the stellar heating and radiative cooling rates,
resulting in bumps and dips in the inner disc. These bumps and
dips in the aspect ratio H/r of the disc, translate into changes in
viscosity, ν = αH2ΩK. This therefore causes changes in the gas
surface density ΣG as the product of viscosity and surface den-
sity is constant (the Ṁ-rate). The resulting disc structure (density
and temperature) is therefore not uniform and does not follow a
simple power law. Additionally, the bumps and dips are smaller
and closer to the central star when the Ṁ rate reduces. In the
final stages, the disc is flared with no bumps in the inner part.

The thermal structure of the disc depends on the gas surface
density ΣG and the viscosity ν in such away that they are in-
terchangeable, as long as the surface density of heavy elements
ΣZ is constant. In other words, for discs with a given ΣG × ν
product, the same disc structure is reached as long as ΣZ is the
same. Additionally, we pointed out that a non linear scaling in
the torque calculations exists, which indicate that an interchange
between ΣG and ν leads to a different migration behaviour, even
when the thermal disc structure is the same. In fact, a lower disc
viscosity results in a possible outward migration for lower mass
planets than a higher viscosity disc. We can therefore conclude
that the thermal structure is a two parameter space in ΣGν and ΣZ ,
while the migration is a three parameter space in ΣGν, ν and ΣZ .

As small mass cores can migrate, collide and form bigger ob-
jects at convergent migration distances (Pierens et al. 2013), the
location of these is of high importance. We calculate the migra-
tion by applying the (Paardekooper et al. 2011) torque formula
onto our disc structures. We should point out here, that in all
the disc scenarios, a minimum planetary mass is needed in or-
der to find outward migration. This mass lies (dependent on the
underlying disc structure) in the range of ≈3 to ≈5MEarth. This
is caused by a transition from the horseshoe drag towards the
linear corotation torque in viscous discs, which reduces the total
torque acting on an embedded planet.

We find a nice match between the regions in the disc where
the opacity law changes (and therefore the disc structure) and
where the migration changes. In fact, we confirm here the re-
sults of Paper I, where we stated that outward migration is more
likely in regions where H/r drops. Of course, this means that
for smaller bumps and dips in the H/r profile, a smaller re-
gion of outward migration is the consequence. For a metallic-
ity of 0.01 outward migration is no longer supported in the late
stages of the disc (low Ṁ).

As the disc accretes onto the star, the metallicity of the disc
can change. Our simulations show that a disc with metallicity
of 0.001 actually gives rise to only inward migration, compared

to discs with a metallicity of 0.01. A larger metallicity, on the
other hand, allows outward migration for discs with an even
smaller Ṁ rate. So, if the metallicity of the disc increases in the
late stages, it is easier to keep planets in the disc with gas driven
migration.

The migration map is therefore not fixed in time, but evolves
as Ṁ and the metallicity change. This if of crucial importance
for the migration scenarios. This influences the formation of hot
Neptunes that can halt their migration in these planet traps, be-
cause it allows for two formation scenarios. Either they form
in the outer disc, get trapped at the convergent migration radius
and are then released towards the inner disc in the late stages,
or they assemble from smaller bodies that migrate towards the
inner disc, that then grow and stay there. Additionally to that,
the evolution of the migration maps give also indications about
the final location of giant planets. Especially in the solar system
case our migration maps indicate that Jupiter would be formed
well inside 4 AU and thus needs a mechanism that transports it
outwards again, which is provided by the Grand Tack scenario
(Walsh et al. 2011).
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Appendix A: Boundary conditions

A.1. Inner boundaries

We impose open inner boundaries, which means the velocity can
be direct inwards towards the star and material can leave the disc.
For the radial velocity at the boundary between active and ghost
domain follows:

vr(z) =

{
0 for vr,A(z) > 0
vr(z) for vr,A(z) < 0, (A.1)

where vr,A is the radial velocity in the first active grid cell. A neg-
ative velocity implies an inward flux (towards the central star).
The polar velocity vθ is copied from the active domain and the
azimuthal velocity is set via the following equation:

vφ,G = vφ,A
√

rA/rG, (A.2)

where rA and rG are the distances of the active and ghost cells to
the central star. Note that rA > rG.

The density in the ghost cells is copied from the active cells
to the ghost cells to mimic the outflow condition. This applies to
all other cell centred quantities (ε, T , ER) as well.

A.2. Outer boundaries

From the starting configuration with a given H, the disc evolves
into its final state with a different H. A change of H also implies
a change of the viscosity, ν = αcsH. But the viscosity is verti-
cally constant, as is predicted by MHD simulations (Flaig et al.
2012). We impose the same H/r in the ghost and active cell,

HG/rG = HA/rA,

cs,G = cs,A
ΩGrG

ΩArA
= cs,A

√
rA/rG,

where we can now calculate the height in the ghost cell HG and
the sound speed cs,G. The sound speed in mid-plane is used to
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calculate the viscosity in the ghost cells, where then an averaged
viscosity between active and ghost cells gives the velocity (as
the velocity is defined on the edges of the grid cells):

vr(z) = −3ν
2r
= −3αc2

s/Ω

2r
, (A.3)

where cs is the sound speed in the ghost cells at mid-plane height.
The minus sign defines an inward (to the star) velocity.

The polar velocity vθ is copied from the active domain and
the azimuthal velocity is set via the following equation:

vφ,G = vφ,A
√

rA/rG, (A.4)

where rA and rG are the distances of the active and ghost cells to
the central star. Note that rA < rG.

The density in the ghost cells has to be provided by Ṁ.
Taking into account that ρ varies with height, we get

Ṁ = 3πνΣG = 3πν
∫ z

0
ρ(z′)dz′. (A.5)

The vertical density distribution (hydrostatic equilibrium) is
given by

ρ(z) = ρ0e−z2/(2H2), (A.6)

with H = csΩ. ρ0 can be determined by putting Eq. (A.6) in
Eq. (A.5) and solving as a function of Ṁ. The resulting ρ0
will then be used to calculate ρ(z) in the ghost cells. This
way, the density can change in time as the viscosity changes un-
til the equilibrium state is reached, but the disc will always have
the same Ṁ inflow. The other cell centred quantities are copied
from the active ring, as it was done for the inner boundaries.
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