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ABSTRACT

On timescales that greatly exceed an orbital period, typical planetary orbits evolve in a stochastic yet stable fashion.
On even longer timescales, however, planetary orbits can spontaneously transition from bounded to unbound
chaotic states. Large-scale instabilities associated with such behavior appear to play a dominant role in shaping the
architectures of planetary systems, including our own. Here we show how such transitions are possible, focusing
on the specific case of the long-term evolution of Mercury. We develop a simple analytical model for Mercury’s
dynamics and elucidate the origins of its short-term stochastic behavior as well as of its sudden progression to
unbounded chaos. Our model allows us to estimate the timescale on which this transition is likely to be triggered,
i.e., the dynamical lifetime of the solar system as we know it. The formulated theory is consistent with the results of
numerical simulations and is broadly applicable to extrasolar planetary systems dominated by secular interactions.
These results constitute a significant advancement in our understanding of the processes responsible for sculpting

of the dynamical structures of generic planetary systems.
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1. INTRODUCTION

The question of whether or not the solar system is destined to
gravitationally unravel dates back to the very origins of physical
science and Newton himself (see Laskar 2012). However, the
realization that planetary orbits in the solar system exhibit
chaotic motion and can become violently unstable is quite
recent, especially when compared to the age of the problem
itself (Laskar 1989; Quinn et al. 1991; Sussman & Wisdom
1988, 1992). Indeed, historically the vast majority of research
dedicated to this issue had been aimed at obtaining a proof of
the solar system’s indefinite permanence.*

The first compelling affirmation of the solar system’s stability
stemmed from the works of Lagrange (1778) and Laplace
(1772, 1775), while further extensions to the resulting secular
theory were devised as a consequence of the calculations of
Poisson (1809), Gauss (1809), Adams (1846), and Leverrier
(1855) among others. Nevertheless, the proof of the general non-
integrability of the gravitational three-body problem brought
forth by Poincare (1892) directly disputed previous claims of
orbital regularity (Laskar 1996).

Despite Poincaré’s demonstration of the fragility inherent
to the method of successive approximations, Arnold (1963)
rigorously showed the existence of quasi-periodic orbits in the
planetary N-body problem. However, a direct application of
KAM theory (Kolmogorov 1954; Arnold 1961; Moser 1962) to
the three-body problem placed the estimate of Jupiter’s threshold
mass (below which stability is ensured) at a similar order of
magnitude as the mass of a hydrogen atom (Hénon 1966). As a
result of subsequent efforts, this estimate was refined to a value
much closer to Jupiter’s actual mass (Celletti & Chierchia 1997;
Locatelli & Giorgilli 2000), although the implications of this
result for the solar system as a whole remain limited due to the
restricted scope of the calculation.

Substantial breakthroughs in the evaluation of the solar sys-
tem’s long-term fate irrevocably came as advances in computer

4 Detailed accounts of the problem’s history can be found in works of Laskar
(1996, 2012), to which we direct the curious reader.

technology allowed extensive numerical calculations to illus-
trate the chaotic nature of the orbits (Applegate et al. 1986;
Carpino et al. 1987; Sussman & Wisdom 1988, 1992; Laskar
1989; Ito & Tanikawa 2002). Accordingly, over the last two
decades, the possibility of large-scale instability, fostered by
Mercury’s acquisition of a nearly radial orbit, has been demon-
strated by a variety of dynamical models (Laskar 1994, 2008;
Batygin & Laughlin 2008).

An examination of the numerical results revealed that Mer-
cury’s orbital excitation is facilitated by its entrance into
the so-called vs secular resonance (Laskar 2008; Batygin &
Laughlin 2008) and that general relativistic effects play a cru-
cial role in diminishing the chances of such an event. The final
nail into the coffin of the belief in the solar system’s endur-
ing stability was delivered by the study of Laskar & Gastineau
(2009), who performed a series of high precision N-body simu-
lations that appraised the chances of Mercury’s ejection from the
solar system within the Sun’s remaining main sequence lifetime
at ~1%, and confirmed the existence of collisional trajectories
among the terrestrial planets.

Following the numerical demonstrations of the possible onset
of large-scale instability, a number of authors have began re-
examining Mercury’s dynamics from a perturbative point of
view. To this end, Lithwick & Wu (2011) applied the asteroidal
secular model of Sidlichovsky (1990) to Mercury and semi-
analytically demonstrated that in addition to the chaotic secular
angle identified by Laskar (1989; see also Sussman & Wisdom
1992), a substantial number of higher-order secular angles
stochastically switch between circulation and libration, hinting
at the overlap of numerous high-order secular resonances (see
Chirikov 1979) as the source of Mercury’s irregular motion.
Building on the work of Lithwick & Wu (2011), Boué et al.
(2012) showed that in the vicinity of the vs secular resonance
(an orbital state that Mercury currently does not occupy but can
evolve into), Mercury’s acquisition of a highly eccentric orbit
can be understood within the framework of a simple one degree
of freedom Hamiltonian.

Despite previous efforts, a crucial aspect of Mercury’s chaotic
evolution remains elusive. Specifically, the physical process


http://dx.doi.org/10.1088/0004-637X/799/2/120

THE ASTROPHYSICAL JOURNAL, 799:120 (16pp), 2015 February 1

underlying Mercury’s abrupt transition from a chaotic, yet stable
state to a violently unstable state, as well as the characteristic
timescale for this transition, remain poorly understood from a
theoretical point of view.

Let us elaborate. Chaotic decoherence in the inner solar
system occurs on a timescale that is short compared with the
Sun’s age. Specifically, the characteristic Lyapunov time (a time
required for initially nearby chaotic orbits to diverge by a factor
of e) of the inner solar system is of the order of a few megayears
(Laskar 1989, 1996; Sussman & Wisdom 1992). This means
that since the acquisition of its current orbital state, Mercury
has had the opportunity to lose correlation with its own initial
condition approximately one thousand times. Thus, if the solar
system has existed in a state of vigorous, yet bounded chaos’
for billions of years, what triggers the catastrophic ejection of
Mercury, observed in the numerical simulations? Answering
this question is the primary aim of this work.

The implications of qualitatively understanding the solar
system’s long-term chaotic behavior range far beyond the
special case of Mercury. In particular, the characterization of
the orbital distribution of extrasolar planets (see, e.g., Cumming
2011 and the references therein) as well as recent progress
on quantifying the early evolution of our own solar system
(Tsiganis et al. 2005; Levison et al. 2008, 2011; Batygin &
Brown 2010; Batygin et al. 2011; Nesvorny & Morbidelli 2012)
has shown that dynamical instabilities® play a critical role is
sculpting the orbital architectures of generic planetary systems
(Rasio & Ford 1996; Ford & Rasio 2008; Chatterjee et al. 2008;
Juri¢ & Tremaine 2008; Raymond et al. 2009b). Consequently,
the formulation of a tangible theory for the onset of dynamical
instabilities would without a doubt, significantly advance our
overall understanding of post-nebular dynamical evolution.

In an effort to construct a simple model for the chaotic evolu-
tion of Mercury, we mirror the works of Lithwick & Wu (2011)
and Boué et al. (2012) and opt for a perturbative treatment of
the dynamics. Although not as precise as direct numerical in-
vestigation, this approach is qualitatively more fruitful. Indeed,
perturbative analysis of the Asteroid belt’s dynamical structure
has been immensely useful in elucidating the origins of chaos
and the characteristic properties of stochastic evolution (see,
e.g., Wisdom 1980, 1983; Morbidelli & Giorgilli 1990a, 1990b;
Morbidelli & Henrard 1991a, 1991b; Holman & Murray 1996;
Murray & Holman 1997; Nesvorny & Morbidelli 1998a, 1998b
and the references therein). Moreover, a perturbative study of
the outer solar system’s dynamical structure has yielded impor-
tant insights into the expected dynamical lifetime of the giant
planets (Murray & Holman 1999).

As a starting point, we will adopt the well-known
Lagrange—Laplace theory (see Murray & Dermott 1999;
Morbidelli 2002) and sequentially enhance the complexity of
our model until the desired behavior is adequately represented.
Because the focus of the study lies in understanding the un-
derlying physical processes, comprehensibility will be favored
at the expense of quantitative precision. The formulated theory
will allow for a purely analytical estimation of the Lyapunov
time, chaotic diffusion rate, and the timescale for transition to
global instability. Indeed, computational resources are in prin-

5 Here, an analogy with weather on Earth begs to be made: while weather
itself is unpredictable over timescales longer than a few days, typical
temperature variations are scarcely expected to ever exceed tens of degrees.

6 Numerical experiments (e.g., Raymond et al. 2009a, 2009b) show that the
onset of planet—planet scattering exhibits similar characteristics as the ejection
of Mercury from the solar system.
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ciple unnecessary (although extremely helpful) in completing
the calculations presented here.

The paper is structured as follows. In Section 2, we construct
a secular model that captures the bounded stochastic behavior of
Mercury. In Section 3, we use this model to identify the primary
secular resonances responsible for driving chaotic motion.
Subsequently, we analytically deduce Mercury’s Lyapunov
time and chaotic action diffusion coefficient. In Section 4, we
extend the secular model to encapsulate the abrupt transition
from bounded to unbounded chaos and analytically calculate
the characteristic timescale for the onset of the instability.
Additionally, we briefly discuss the sensitivity of the model to
the general relativistic correction and its effects on the system’s
long-term stability. We conclude and discuss our results in
Section 5.

2. A PERTURBATIVE MODEL FOR MERCURY’S
CHAOTIC MOTION

In this section, we present a series of models, based on
classical series expansions of the Hamiltonian (see, e.g., Laskar
& Robutel 1995; Ellis & Murray 2000), with the aim of finding
the simplest model that captures Mercury’s stochastic secular
eccentricity and inclination dynamics. At this stage, we need not
concern ourselves with the onset of instability (which we show
below requires an additional degree of complexity). Instead,
we begin by elucidating the origin of “short-term” (i.e., multi-
megayear) chaotic behavior.

2.1. A Linear Integrable Model

As already mentioned above, the first complete description
of the solar system’s secular dynamics arose from the works of
Lagrange and Laplace in the late 1700s. The Lagrange—Laplace
secular theory is strictly periodic and therefore cannot yield
chaotic motion. Still, it comprises a useful starting point for the
discussion that follows.

Within the framework of secular theory, Keplerian motion is
averaged over, and the interactions among planetary orbits sim-
plify to that of gravitationally coupled massive wires (Murray &
Dermott 1999; Morbidelli 2002). To leading order in the plan-
etary masses, eccentricities and inclinations, the orbits behave
as a series of linked harmonic oscillators whose equations of
motion constitute an eigenvalue problem.

For clarity, let us begin with a setup relevant to the secular
three body problem. Following Lithwick & Wu (2011) and Boué
et al. (2012), we first treat only perturbations due to Venus onto
Mercury, assuming that Mercury provides no back-reaction onto
Venus. In other words, we model the evolution of Mercury as that
of a test-wire, subject to time-dependent external perturbations.
Figure 1 depicts a sketch of the overall setup of the framework
we adopt in this paper.

In terms of Keplerian orbital elements, the lowest order
expansion of the Hamiltonian that governs Mercury’s secular
evolution is (Murray & Dermott 1999)

Gmmy
H=—-—] e(lz)e2 + fe(zz)eeg cos(w — @)
an ’ ’

+ inflz)sz + fl%)ssz cos(Q — )], (D

where m is mass, a is semi-major axis, e iS eccentricity,
s = sin(i/2), i is inclination, @ is longitude of perihelion,
Q is the longitude of ascending node, and fs are constants
that depend on the semi-major axis ratio (a/a, < 1) only.
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Figure 1. Geometrical setup of the model system we address here. Mercury is treated as a test particle, and is gravitationally perturbed by the remaining planets.
Keplerian motion is averaged over and the gravitational potential is expanded as a power series in the orbital eccentricities and inclinations. The strictly periodic
Lagrange—Laplace secular solution is adopted as a description of the dynamical evolution of the perturbing planets. The gs, f>, and g» eigenmodes are exclusively

retained in the disturbing function.

The functional forms of the constants can be looked up in the
published literature (e.g., Leverrier 1855; Brouwer & Clemence
1961; Murray & Dermott 1999) and are given in Appendix A
of this paper for reference. The subscripts denote the ordering
of planets in the solar system (e.g., a; is Venus’ semi-major
axis) while for simplicity, orbital elements without a subscript
correspond to Mercury.

Keplerian orbital elements do not constitute a canonically
conjugated set. Consequently, in order to employ the Hamil-
tonian framework for further progress, we introduce Poincaré
action-angle variables defined as

g(M®+m)a, )\, :M-’,—w’

F=Al—-V1—-e) A2, y=-w,
Z=(1-D)1-cos(i)) ®2A s>, o =-Q, )

where Mg, is the mass of the Sun, u = m Mg /(Mg +m) >~ m
is the reduced mass, and M is mean anomaly. In terms of the
Poincaré variables, the Hamiltonian (1) reads

GMmmi[, ) (T @ [Tl
H= —T 2f,5 X +2f,5 XA—zcos(y—yg)

fid (Z\, fE |22
== | — Sy — . 3
+ > <A> + > VAR cos(o 02)i| 3)

An assumption inherent to adopting the above Hamiltonian
as an adequate dynamical model is that Mercury resides suffi-
ciently far away from any low-order mean motion commensura-
bilities with the other planets, such that the associated resonant
angles remain in rapid circulation. Under this assumption, av-
eraging over the said angles renders the semi-major axis (and
therefore the action A) a constant of motion (Morbidelli 2002).
Consequently, Hamiltonian (3) constitutes a non-autonomous
(i.e., time-dependent) two degrees of freedom system.

Upon switching to canonical Cartesian coordinates,
defined as

X = x/fcos(y) y = x/ﬁ"sin(y),
w= \/ﬁcos(a) = \/ﬁsin(o), “)

the Hamiltonian (3) takes on the following form:
He — G*Mmmj [f“) <x2 + y2> e (xx2 + yyz)
A% e2 A e2 m

(1) P 2 2)
: + , +
N f:‘2 (w z >+ f;iz (wwz ZZZ>:|. )
AN AAZ

In order to compute Mercury’s dynamical evolution, we
must supply the Hamiltonian (5) with a functional form for

the perturbing variables. As a leading order approximation, we
may assume that the characteristic rate of Mercury’s chaotic
diffusion substantially exceeds that of the other planets’ and
adopt a periodic secular solution for Venus. Specifically, we
take the secular evolution of Venus’ orbit to be given by a
linear superposition of seven eigenmodes (see Laskar 1990;
Murray & Dermott 1999; Morbidelli 2002), corresponding to a
Lagrange—Laplace-like solution:

N,

X2 =\/A>2252,jcos(gjt+ﬂj)

j=2

N,
2= - @Zéz,j sin (g, + B;)
=2

N:
wy = /Ay Y5 cos (fit +0;)

=
N,

2 = _\//TZZEZ,jSin(fjt'i'gj)» (6)
J=2

where gs and fs are eigenfrequencies, e; ;s and s, ;s are scaled

eigenmode amplitudes, B;s and 6;s are phases, and Ns represent
the total number of eigenmodes in the decomposition. Note that
we have purposefully dropped the first eigenmode. This filters
out an unphysical self-resonance from the system (note further
that assuming Mercury to be a test-particle yields only very
limited corrections to the Lagrange—Laplace solution because
of Mercury’s almost negligible mass).

Some variations of the Lagrange—Laplace solution exist in
the literature (e.g., Brouwer & Van Woerkom 1950; Bretagnon
1974; Laskar 1990), however the decompositions are suffi-
ciently similar that for our purposes it does not matter exactly
which solution we choose. For definitiveness, we will adopt the
solution of Brouwer & Van Woerkom (1950), which is thor-
oughly documented in Chapter 7 of Murray & Dermott (1999).
For reference, the dominant secular frequencies8 of the solar
system are shown in Table 1.

A peculiar feature of the periodic decomposition of the solar
system’s secular dynamics is that the g, g» and gs modes
(that dominate Mercury’s, Venus’s, and Jupiter’s eccentricity
variations, respectively) as well as the fj and f, modes (that
dominate Mercury’s & Venus’s inclination variations) occupy

7 In other words, Mercury’s intrinsic Chirikov diffusion is more vigorous
than the stochastic pumping of its orbit by extrinsic chaotic perturbations
(Lichtenberg & Lieberman 1983).

8 The g1 and f; modes that primarily govern Mercury’s secular dynamics are
shown in green. The principal perturbing modes, namely, g5 and f>, are
highlighted in orange. Additionally, the auxiliary perturbing g, mode is
depicted in blue.
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Table 1
Secular Eigenfrequencies of the Solar System (" yr—!)

i 1 2 3 4 5 6 7 8

g 5.46 7.34 17.32 180 429 27.77 2.72 0.63
f =52 —-657 -—-1874 -—-1763 00 -2573 -29 —-0.67

the same frequency range to within ~1-2 arcsec yr~! whereas
the remainder of the relevant’ modes is separated from this
group by ~10 arcsec yr~! or more.

Upon direct substitution of Equation (6) into the Hamilto-
nian (5), fourteen harmonics of the form (y + g;t + B;) and
(o + f;t + 0;) are generated. Although such a system is not eas-
ily tractable analytically, the grouping of the secular frequencies
suggests that only a few of these harmonics are dynamically
significant, and the rest can be ignored (i.e., averaged over). In
particular, since y >~ — g; and 0 >~ — fi, the beat frequencies
of (y + g5) and (o + f>) are much smaller than the rest of the
terms.

Thus, following Boué et al. (2012) we drop all but two
principal harmonics from the Hamiltonian:

G*Mmm3 r
H= -5t [2f§,‘£ (X)

A3
r Yoz
aien| =(3)
f(2)
2\/__ cos(cr + fot + 92)] @)

We note that in addition to these harmonics, there exists an
additional mode (namely, the g, mode), that plays an important
role in Mercury’s chaotic evolution (Lithwick & Wu 2011). We
will add this term and analyze its effects later. For now, we
continue with the simplified Hamiltonian (7).

The explicit time dependence in Hamiltonian (7) can be
eliminated by extending the phase space (Morbidelli 2002) to
accommodate an additional action, T conjugate to ¢ (temporarily,
this Hamiltonian will be characterized by three degrees of
freedom):

e gszm2 |:2f(])( )

A3
T Dz
a7 > (%)
f(2)
2\/_52 24/ — cos(o + fzt + 92)] +T. (8)

Let us now perform a canonical transformation of variables
that arises from the following generating function of the second
kind:

Gy = (y +gst+ Bs)D + (0 + fot +6,)F +1Z. 9)

An application of the transformation equations yields new
action-angle variables:

O=T ¢ =y +gst+Ps,
Y=z Y =0+ fot + 0,
E=T—-gP—- LY &=t (10)

9 The amplitudes associated with g7, gg, f7, and fg modes are negligibly small
and play an insignificant role in Mercury’s dynamical evolution.
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Accordingly, the Hamiltonian takes the following form:
M @
GMmmy [ gy (2
A5 A
[® f(l) p
+ \/— f 2 62 5 A

f(2) N7
L, f cos(t/f):|+g5‘1)+f2 (11

Because 0H/0& = 0, Zis a constant of motion and can therefore
be dropped from the Hamiltonian.

As briefly alluded to in the introduction of this paper, in
addition to planet—planet interactions, it has been shown that the
apsidal precession arising from general relativistic effects plays
an important, stabilizing role in Mercury’s secular dynamics
(Laskar 2008; Batygin & Laughlin 2008; Laskar & Gastineau
2009). To leading order in e, this precession can be accounted
for by adding a term proportional to @ (equivalently, I') to H:

. gszmz 1)
e by

o Y e
s Femors 22 (5)
2) V7
zfﬁ_ \/jCOS(lﬁ)}

3gM
+<gs ic”)é HY (12)

where c is the speed of light.

Recall that the Hamiltonian (12) governs the secular three-
body problem. Let us now extend the above Hamiltonian to
account for interactions between Mercury and all solar system
planets. As before, we will only retain the gs and f, modes in
each planet’s assumed secular solution. This allows us to simply
introduce six additional clones of the bracketed expression in
the Hamiltonian (12) and sum over them. The Hamiltonian thus
takes on the following form:

H=E-—

H = (For + F" + gs) @+ FOV/®cos(¢)
+(F" + £)¥ + FVW cos(y). (13)

For reference, the coefficients read
FO = — 28: (%E “)) —2.75 % 1073
¢ A a; A/
8
FO= - (g";—f”[f;i>‘, 5> =277 % 1071

FV'=-%" gmmj L e\ Z 575 % 109
b g\ A

8
FO= -y (% /8Afl<§>sj 2) =201 x1071°
j=2 !

3GM
Fop = — ( ic2”> = —1.99 x 107°. (14)
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The numerical values of the coefficients are given in units of
Mg, AU, and years, such that G = 472,

The Hamiltonian (13) is a trivial canonical translation away
from that of a pair of decoupled simple harmonic oscillators.
Consequently, the phase-space portrait in either degree of
freedom is a family of circles, nested around an elliptical fixed
point that resides on the Cartesian x axis (i.e., corresponding to

¢=0;¢ =m).
2.2. A Nonlinear Integrable Model

Within the framework of the Hamiltonian (13), resonance is
ill-defined because homoclinic curves are absent from phase
space. Thus, in order to properly define secular resonances,
we must introduce nonlinearity into . The relevant terms in
the series expansion of the gravitational potential are those
proportional to o e* and o s* (Sidlichovsky 1990; Murray &
Dermott 1999). Accordingly, following the transformation (10),
the Hamiltonian reads

H = (For + F" + g5)@ + F®*
+ Fg(sz)\/acos(qb) + (F,-(l) + fo)¥
+ FOW2 + F2VW cos(v). 15)

The newly introduced constants are'”

$ gmm; (2 2
FO - _ T2 f9) = —24.31
¢ Z( aj <A) e
j=2
8 Gmm; (1 2
FO _ _ =) £¥) = —6434. (16
PR () .

Individually, the two degrees of freedom are described by
pendulum-like Hamiltonians, possessing D’Almbert charac-
teristics (Henrard 1982). Hamiltonians of this sort appear in
various aspects of celestial mechanics (Wisdom 1983, 1986;
Henrard & Caranicolas 1990; Sidlichovsky 1990; Nesvorny &
Roig 2000, 2001; Morbidelli 2002; Batygin & Morbidelli 2013;
Deck et al. 2013), as well as other dynamical systems such
as high-intensity particle accelerator beams (Gluckstern 1994;
Batygin 2010). Owing to their wide-spread applicability, Hamil-
tonians of the form (15) are generally referred to as second
fundamental models for resonance (Henrard & Lamaitre 1983).

Because each degree of freedom is separately integrable,
chaotic motion cannot arise within the framework of Hamilto-
nian (15). However, this Hamiltonian can still be used to qualita-
tively understand the conditions under which nonlinear secular
resonances will give rise to instability.

Phase-space portraits of both degrees of freedom of the
Hamiltonian (15) are shown in Figure 2. With nominal parame-
ters (panels on the left), the phase-space portraits are quite rem-
iniscent of the linear model (13). That is, phase space is foliated
in ellipses surrounding a stable equilibrium point. However, the
situation is markedly different if slightly different parameters
are chosen.

To begin with, note that the system is rather close to exact sec-
ular commensurability. That is, constants that multiply the linear

10 Note that if one chooses to adopt the exact form of Poincaré action-angle
coordinates (2), non-linear action terms in # arise even at order ¢? and i2. If
desired, the corresponding contributions in Hamiltonian (15) can then be

retained in Fe(3) and Fi<3)'
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action terms in H are close to zero: (Fgr+FV+gs)/gs >~ —0.42;

(Fl.(l) + f2)/f>=0.14. Now suppose we introduce additional
forcing that slows down Mercury’s apsidal precession rate and
speeds up its nodal recession rate. For the sake of argument, let
us further assume that the modulation is such that the signs (but
not magnitudes) of the constants in front of the linear action
terms change.

The corresponding phase-space portraits are shown in the
right panels of Figure 2. Evidently, the aforementioned manual
modulation gives rise to separatrixes in both degrees of freedom
and associated resonant trajectories (croissant-shaped curves)
appear. The equilibria shown in the left panels of Figure 2
correspond to the resonant equilibria in the right panels, which
in turn reside at high eccentricity and inclination (see also Boué
et al. 2012). Consequently, a modulation of the linear terms of
the Hamiltonian can carry the trajectory to a part of phase space
characterized by a sufficiently high eccentricity!! to permit close
encounters between Mercury and Venus (Batygin & Laughlin
2008) as well as Mars and the Earth (Laskar & Gastineau 2009).

2.3. A Chaotic Model With Two Degrees of Freedom

The manual modulation of the secular frequencies invoked
above in fact arises naturally from action-coupling between the
two degrees of freedom (Lithwick & Wu 2011; Boué et al.
2012). In particular, the relevant fourth-order term that governs
this coupling is of the form o e¢2s2. Upon incorporation of this
term, the Hamiltonian takes on the following form:

H = (For + F" + g5)® + F®*
+ FOV O cos(@) + (F" + fo)¥ + FO¥?
+ FONVY cos() + F @F, a7
where the associated constant reads:

el — _Z Clj A fel,j = X .

j=2

The final term in Hamiltonian (17) breaks its integrability and
allows for the possibility of stochastic evolution. Accordingly,
this gives rise to the quasi-random alteration of the secular
frequencies.

Numerical integration of the equations of motion derived
from the Hamiltonian (17) reveals chaotic eccentricity and
inclination dynamics over a broad parameter range. A particular
realization of the long-term stochastic evolution of Mercury is
shown in Figure 3 with red curves, where the adopted initial
conditions correspond to the amplitudes and phases of the g;
and f; eigenmodes of the Lagrange-Laplace solution.'”

Upon linearization of the equations of motion and an appli-
cation of the MEGNO algorithm (Cincotta & Sim¢é 2000) to the
system at hand, we obtain a numerical estimate for the Lyapunov
time of 7 = 1.1 Myr. This value is in satisfactory agreement
with that obtained using more complex perturbative and N-body

11 1t should be understood that Mercury’s acquisition of high eccentricity and
inclination is not an adiabatic process (Neishtadt 1984) which allows it to
remain at an equilibrium point as system parameters slowly change. Still, this
exercise remains useful as an illustrative example.

12 Quantitatively, the adopted initial conditions are close to Mercury’s present
orbital state and choosing the latter does not alter the results in any meaningful
way. However the use of the g; and f; eigenmode amplitudes and phases as
initial conditions is formally more appropriate, since the majority of
contributing secular modes have been averaged over in Equation (7).
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Figure 2. Phase-space portraits of the individual degrees of freedom of Hamiltonian (15). The level curves of H are shown in terms of global Cartesian coordinates,
scaled such that in the vicinity of the origin, the radial distance is approximately e in the top panels and i in the bottom panels. The left panels are plotted at nominal
solar system parameters and show harmonic oscillator like dynamics, where the phase space is foliated in elliptical orbits nested around slightly off-center stable
fixed points. Conversely, the panels on the right depict pendulum-like dynamics that correspond to a system where the natural apsidal precession rate of Mercury has
been reduced while its nodal recession rate has been enhanced manually. The modified version of the system characterizes Mercury’s dynamical state at the onset of
large-scale instability. Accordingly, the existence of homoclinic curves (shown in blue) as well as the associated resonant trajectories is readily evident in these panels.

methods (Laskar 1989; Quinn et al. 1991; Sussman & Wisdom
1992; Batygin & Laughlin 2008). Consequently, it seems likely
that on timescales comparable to tr,, the simplified system de-
scribed by Hamiltonian (17) captures the chaotic properties of
Mercury’s actual orbit in an adequate manner.

3. CHAOTIC DIFFUSION OF ECCENTRICITY
AND INCLINATION

With a simple model at hand, let us now explore the chaotic
properties of Mercury’s secular evolution. Particularly, in this
section we will analytically derive Mercury’s Lyapunov time as
well as its chaotic diffusion coefficient related to e and i. As

a first step of this calculation, it is worthwhile to delineate the
admissible region of phase space on which Mercury’s secular
dynamics reside.

3.1. The Admissible Domain of H

The flow governed by Hamiltonian (17) is constrained by
the autonomous nature (i.e., the conservation) of . That is,
despite chaotic diffusion, there are forbidden regions of phase
space that the system cannot explore. An implicit assumption
inherent to this assertion is that at fixed values of the angles, @
is a decreasing function of W (and vice-versa). Mathematically,
the admissible domain is characterized by null imaginary
components of the actions. Consequently, provided a value of H
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—— H: 2 degrees of freedom autonomous system
(Mercury perturbed by gs and f; eigenmodes)

—— H: 2 degrees of freedom non-autonomous system
(Mercury perturbed by gs. g2 and f; eigenmodes)

an encounter with M., gives rise to global instability

Time (Gyr)

Time (Gyr)

Figure 3. Long-term dynamical evolution of Mercury. The orbital solutions were obtained by numerically integrating the equations of motion stemming from the
autonomous 2 degree of freedom Hamiltonian (17) (shown in red) and the non-autonomous 2 degree of freedom Hamiltonian (41) (shown in blue). As Mercury’s
initial condition for the integrations, the phases and amplitudes of the g; and f; eigenmodes were adopted. Evidently, the autonomous system adequately represents
the stochastic properties of Mercury’s evolution on multi-megayear timescales. However, transitions from bounded to unbounded chaos are only captured by a more
complex, non-autonomous system. As discussed in the text, the onset of large-scale instability is facilitated by the system’s acquisition of a critical value of H (see
also Figure 6) and additionally corresponds to the system’s entrance into the vs and vy, secular resonances.

corresponding to the initial conditions (let us denote it Hy), the
bounding curves are obtained by sequentially equating ® and ¥
to zero:

Ho = (For + FV + g5)® + FOO? + FO/® cos(¢)
Ho = (F" + fo)¥ + FOW2 + FPV cos(y). (19)

The fact that with nominal parameters the admissible region
does not extend to very high eccentricity is of great importance
for the stability of the inner solar system, as it ensures that (to
the extent that the Hamiltonian (17) is a good approximation
to the real dynamics) chaotic diffusion remains confined. Such
behavior can be readily observed in Figure 3, where the eccen-
tricity and inclination evolution (governed by Hamiltonian 17 -
red curves) stemming from numerical integration of equations
of motion (see Appendix B) appears perfectly bounded.

3.2. High-order Secular Resonances

Let us now identify the dominant features of the dynamical
structure within the admissible region of phase space. To begin
with, recall that the principal harmonics ¢ and Y present in
‘H are in circulation given nominal parameters, and homoclinic
curves are noticeably absent from the phase-space portraits (see
Figure 2). However, the lack of overlap of resonances associated
with ¢ and ¢ clearly does not imply a lack of chaos, and
indeed we must look to higher-order resonances to explain the
stochastic behavior exhibited by Mercury. We will do so by
making use of canonical perturbation theory.

There exist numerous flavors of canonical perturbation theory
(Goldstein 1950; Lichtenberg & Lieberman 1983), each in
principle as appropriate as the next, depending on the problem
at hand. In this work, we wish to retain the ability to carry out
the perturbation series to order higher than two. In practice,
this is best accomplished by employing Lie transformation
methods (Hori 1966; Deprit 1969; Morbidelli 2002) and this
is the approach we adopt here.

We begin by separating Hamiltonian (17) into a trivially
integrable component,

’]:[ = (FGR + Fe(]) + gS)CI) + Fe(3)(I)2
+(FV+ )Y+ FOW? + F, 0¥, (20)
and a perturbation,

H = e[FPVDeos(g) + FOV¥eosy)]. 21

where € is a formal “label” of order, which we will set to unity
later. With the above expressions, the homologic equation,

H +{H, x} =0, (22)

where {} is the Poisson bracket, is satisfied by the generating
Hamiltonian

R
X=¢ 6 6)
For+ F, ' + g5+ 2F, " ®+ F,;'¥
O iy

+
FU+ f, +2FP¥ + F,®

sin(¢)

sin(w)]. (23)

Written out explicitly to third order in €, the averaged Hamilto-
nian takes the form (Morbidelli 2002)

_ . | I 1
H=H+ {H/1 X} + 5{{H7 X}v X} + 5{{7-[/7 X}7 X}
1 .
+ 20 o )+ O, (24)

As expliciated by Equation (24), the averaging procedure
(i.e., the application of the Lie transform under the flow
of x), eliminates harmonics of the order of € (i.e., Equa-
tion (22)) at the expense of introducing new harmonics at orders
€2, €3, -+ (see Morbidelli 1993; Morbidelli & Giorgilli 1993
for an in-depth discussion). Specifically, at order €> the aver-
aging process generates the angles (2¢), 2v), (¢ — ), and
(¢ + V), while at order €* the procedure additionally yields
(@), (V). 39), BY), Qo—y), 2p+¥), (¢ —2¢), and (p+2¥).
Naturally, as ¢ and v individually obey D’ Almbert rules, so do
their combinations.

Following Chirikov (1979), we analyze the generated har-
monics independently, and examine the equilibria of the asso-
ciated resonances. Since the leading order perturbation is now
proportional to €2, let us perform a canonical transformation
of variables such that the new angles correspond to the novel
second-order harmonics introduced by the averaging process.
This can be accomplished by employing the following generat-
ing function of the second type:

Gr=@—YY/2+@+¥)V/2, (25)
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Poincaré surface of section (¥ = )

Poincaré surface of section ( ¥ = 7 ) with reduced coupling

- T2 0 2 ™ - -T2 0 T2 ™
U T D v
o 2 4 6 x10r10

Figure 4. Poincaré surfaces of section of the 2 degree of freedom autonomous Hamiltonian, H (expression (17)). The left panel depicts a surface of section with
nominal parameters. Specifically, the black-gold points depict a numerically obtained surface of section and the color represents the local chaotic diffusion coefficient,
computed as the square of the change in action between sequential section points divided by the corresponding change in time. Blue curves denote quasi-periodic
trajectories. The critical curves (in the pendulum approximation) of the (¢ — v) resonance (gold), and (¢ — 21) resonance (cyan) are over-plotted on the section. The
resonance widths, AY as well as the distance between the resonances, § Y are depicted on the side of the panel. The curves bounding the admissible domain within which
the actions are real are additionally labeled. The y axis of the section is scaled such that 2Y'/A >~ ¢> — i%. The right panel depicts an equivalent surface of section, but
with a coupling parameter (F,;) that has been reduced by a factor of 0.6. Naturally, as the reduction in the nonlinear coupling brings the system closer to integrability,
the majority of the phase space on the right panel is occupied by quasi-periodic trajectories. The vicinity of the unperturbed separatrixes of the analytically identified
(¢ — ¥) and (¢ — 2¢) resonances are encompassed by thin chaotic layers and are shown with black points. Meanwhile, the corresponding quasi-periodic resonant
trajectories are shown in red. Note that in addition to the two primary resonances, there also exists an intricate web of yet higher order secular resonances. Although
the angles associated with these resonances also undergo chaotic evolution under nominal parameters, their contribution to Mercury’s stochasticity is sub-dominant.

which yields the action-angle coordinates

Y=0_%,
V=04 (26)

v=1_(¢—-V)/2,
v=I(p+V)/2,

Given that both ¢ and i circulate rapidly into the same (neg-
ative) direction, so does the newly defined angle v. However,
a cursory inspection of the Hamiltonian (provided nominal pa-
rameters) reveals that although neither ¢ nor v undergo bounded
oscillations, their time-derivatives are nearly identical, ¢ ~ ¥,
meaning that the beat angle v can be expected to resonate.'?
With this consideration in mind, we construct a Poincaré sur-
face of section with respect to the rapidly circulating angle
aty =,

The surface of section for the nominal value of the Hamil-
tonian Hy is shown in the left panel of Figure 4. The pink and
green regions in the figure show the inadmissible part of phase
space, while thick black curves denote the boundaries of the
admissible region (Equation (19)). Quasi-periodic trajectories
are shown as blue curves, while the chaotic sea is depicted with
black-gold points. The color scale inherent to the chaotic sea
represents the local chaotic diffusion coefficient Dy, which is
computed as the square of the change in action Y divided by
the time difference between successive section points. Note that
the local diffusion coefficient appears to track the deformed
structure of the underlying resonances.'*

Upon examination, it is immediately clear that the vast
majority of phase space is occupied by chaotic trajectories,
signaling gross overlap of at least two high-order secular
resonances (Chirikov 1959). In other words, there exist at least
two high-order secular resonances whose equilibria lie within
the admissible region. In an effort to identify the overlapping
resonances, let us begin by plotting the critical curve of the
(¢ — ) resonance on the surface of Section 4.

13 In fact, v is a chaotic angle, as was first shown by Laskar (1989; see also
Sussman & Wisdom 1992; Lithwick & Wu 2011).

14 See Murray et al. (1985) for an in-depth discussion of the non-uniformity of
diffusion in a chaotic layer.

The coefficient of the harmonic is obtained at order €2 in the
perturbation series:

Ce2 cos(¢p — ¢) = <{H/, X} + >
= (FPFY FuOV¥) cos(¢p — )
x [(4(For + FD + g5 + 2FY® + F,¥)?) !
+(4FV + fo+2FPW + F, 7). @7)

{H, 1}, x})
(p—v)

Obviously, the function C exhibits a rather complex dependence
on the actions. With the goal of intelligibility in mind, here we
replace @ and ¥ in Equation (27) with their nominal values,
corresponding to the amplitudes of the g; and f; eigenmodes
of Mercury’s Lagrange—Laplace decomposition. As such, the
amplitude of the harmonic is assumed to be constant.

Augmenting the integrable Hamiltonian (20) with an exclu-
sive perturbation (27), the Hamiltonian is cast into a familiar
pendulum-like form:

Her = For(Y — Y’g")z + Cen cos(nv), (28)

where Tgn is an action corresponding to the fixed points of Hen
and n is the order of resonance. Completing the square, the
parameters of H, take on the following forms:

]:gz = (Fe(S) + Fi(3) — Fei)/4a
Y5 = (For+ F" + g5 — FV — o+ FOV
— FPV)(F = Fu + F)7, (29)

where V is evaluated at nominal actions.

The separatrix of the corresponding resonance is shown as
a gold curve in action-angle variables in the left panel of Fig-
ure 4. By deforming the dynamics of the resonance into that a
pendulum (by forcing C to be constant), we allow the critical
curve to not be constrained by the admissible domain of the
Hamiltonian (17). Although a more careful treatment of
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perturbation series can remedy this inconsistency, at our de-
sired level of approximation this does not constitute a significant
drawback.

Because the remaining second-order harmonics (2¢), (2v),
and (¢ + ) circulate rapidly, their equilibria lie well outside
of the admissible region. Accordingly, these harmonics do not
contribute to the stochasticity of the evolution. Therefore, the
(¢ — ) resonance is overlapped by a harmonic of order higher
than two.

Analyzing the angles proportional to €3 in the same way as
above, we find the equilibria of all resonances except (¢ — 2v)
to reside outside of the admissible region. The amplitude of the
(¢ — 2¢) resonance is computed in the following way:

(,xhx) {HH, 1), x), x}>
2 6 6—29)

Cescos(p —2¢) = <

= (F? FOF,0v/W) cos( — 29)[2F.i (For + F"
+ g5 +2F0+ F, W) (FV + fo + Fu® +2FOW)
— 6FO (For + F" + g5+ 2FO® + F,,¥)° (F”
+ [+ F,®+ 21‘7[(3)‘11)_2 + Foi(For + FV + gs
+2FY® + ng‘P)z(Fi“) + fr+ F, 0+ 21”1.(3)‘{’)72
—4FP(For + FV + g5 + 2FP® + F,;'\P)
x (Fi(l) + fr+ F, D+ 2Fi(3)‘I‘)_] +2FY + F,]
x (12(For + FO + g5 + 2FP® + F, )Y 7 (30)

The perturbing n = 3, (¢ — 2¢) resonance can be molded
into the form (28) through a variable change arising from the
generating function

Ga = (@ = 29)Y/3+(p+¥)V/2. 3D
The new variables are related to the old ones through
D=(—-2¢)/3, YT=0-V%,
V=1(p+V)/2, V =220+ P)/3. (32)

Accordingly, the constants of the Hamiltonian (28) read

Fo = (FO+4FY - 2F,) /9, (33)
TFS = 3(2(FGR + Fe(l) + gS) - 4(171'(]) + fZ) + (2Fe(3)
4L AFO)D)EFS - 8F, +1657)

where V is again evaluated at nominal actions.

The separatrix of the (¢ — 2v) resonance is shown as a
cyan curve in Figure 4. As can be gathered from the figure,
the homoclinic curves of (¢ — ) and (¢ — 2v) resonances
overlap in a nearly perfect fashion, insinuating chaotic motion
throughout much of the domain covered by the critical curves
(Chirikov 1979). The rough agreement of the expected size
and character of the chaotic layer with the numerical surface
of section depicted in the same figure suggests that these two
resonances are indeed the ones primarily responsible for driving
Mercury’s stochastic motion.

In order to check that no additional resonances of significant
importance contribute to Mercury’s chaotic evolution, we may
take advantage of the flexible nature of our perturbative model
and explore a regime where the resonances are not overlapped

BATYGIN, MORBIDELLI, & HOLMAN

and the stochasticity parameter (defined below) is slightly below
unity. To do this, we recompute the Poincaré surface of section
shown in the left panel of Figure 4, reducing the coupling
constant’ F,; by a factor of 0.6. The result is shown in the
right panel of Figure 4.

In this surface of section, most of the plotted orbits are quasi-
periodic and the underlying resonant structure is clearly visible.
The neighborhoods of the unperturbed separatrixes of the
(¢ —1) and (¢ —2¢) resonances remain chaotic and are depicted
in the figure with black points. Additionally, there exist several
chains of high-order resonances. However, because of their
small widths they are unlikely to contribute to large-scale chaotic
evolution significantly. This suggests that accounting for the
(¢ — ) and (¢ — 24) resonances alone is sufficient to describe
Mercury’s chaotic evolution to a satisfactory approximation.

3.3. Characteristic Lyapunov Time and Diffusive
Transport in Action Space

Generally, the eigenfrequency associated with the equilibria
of the Hamiltonian (28) is given by

Aer = 13/2FnCon, (34)

while the resonance half-width reads

2Cen
AYEH = _/T:,, . (35)

With the above constants specified in the previous sub-
section, the distance between the resonant equilibria is now
also well defined:

ST =[xy — 5. (36)

The stochasticity parameter (Lichtenberg & Lieberman 1983;
Murray & Holman 1997) is concurrently defined as the ratio of
the average resonance width to the distance between resonances:

(AY) AT +AYeq

K= = .
DaTE e

(37)

For the parameters relevant to Mercury, we obtain a stochasticity
parameter of the order of unity: K ~ 1.05, signaling marginal
resonance overlap.'¢

A mathematically equivalent way to treat the overlap of
multiple nonlinear resonances is to view the chaotic layer
as being periodically swept by a single separatrix (Escande
1985; Cary et al. 1986; Henrard & Henrard 1991). In a regime
characterized by a stochasticity parameter close to unity, the
separatrix sweeping period is of the order of the characteristic
libration period, 27 /A (Murray & Holman 2001; Morbidelli
2002).

The time interval between successive encounters with the
separatrix is intimately related to the characteristic decoherence
time of a bundle of nearby trajectories, or the Lyapunov
time (Holman & Murray 1996; Murray & Holman 1997).
Accordingly, taking advantage of the fact that X~ 1 for the
system at hand, we approximate the Lyapunov time as the
inverse of the average of the unstable eigenvalues of the (¢ — V)
and (¢ — 2v) resonances:

12
o~ (38)

15 Recall that setting F,; = 0 yields an integrable system.
16 This is consistent with the picture outlined in the surface of Section 4.
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where the factor of one-half accounts for the fact that the chaotic
layer gets swept by the separatrix twice per libration period.
The functional form of this expression is consistent with the
estimate obtained by Holman & Murray (1996) for the asteroid
belt. Quantitatively, Equation (38) evaluates to t; ~ 1.4 Myr, in
good agreement with 71, obtained from numerical integration of
the perturbative model (17) and published simulations (Laskar
1989; Sussman & Wisdom 1992; Batygin & Laughlin 2008).

On timescales significantly longer that the Lyapunov time,
it is not sensible to imagine the evolution of a single orbit
as representative. Instead, it is more sensible to consider the
statistical properties of the evolution of the actions. Within a
perfectly chaotic layer, the transport in action space is governed
by the Fokker—Plank equation (Wang & Uhlenbeck 1945). For
Hamiltonian systems, it can be shown that the Fokker—Plank
equation simplifies to the diffusion equation (Landau 1937) and
the evolutionary properties of the system are captured by the
chaotic diffusion coefficient, D.

An upper bound on the diffusive excursion in action can be
obtained by assuming the typical change in action to be of the
order of the average half-width of the overlapped resonances
while the characteristic timescale for such an excursion is the
decoherence (or Lyapunov) time:

(AT)?
L ’

Dy S (39)

A somewhat better approximation for the quasi-linear diffu-
sion coefficient may be obtained directly from the equations
of motion. Specifically, following Murray & Holman (1997),
we employ the random-phase approximation!” (Lichtenberg &
Lieberman 1983) and estimate

1 </2” (71.Cen sin(nv))? >
— ———dv
27\ Jo T

_ 7% | Cen 72 (AY)?
4 \n2F '

48
With nominal parameters, we obtain Dy ~ 1.7 x 1071°(A/2)? as
an average estimate and D™ ~ 8.4 x 107'%(A/2)* as an upper
bound on the diffusion coefficient.

Evaluation of the diffusion coefficient by numerical in-
tegration of the equations of motion (see Figure 4) yields
Dy = 1.74 x 107'°(A/2)* and DF*™ = 7.63 x 107'19(A/2)?
for the average and maximum values, respectively. These es-
timates are in excellent agreement with those obtained from
Equations (38)—(40). Consequently, we conclude that despite
the approximations made in deriving the analytical results, the
obtained values remain quantitatively sound.

DY:

(40)
L

4. THE ONSET OF LARGE-SCALE INSTABILITY

The above-defined diffusion coefficient Dy characterizes
stochastic dispersal in Mercury’s eccentricity and inclination
within the admissible region of phase space. However, we have
already argued that orbit crossing is not possible within the
framework of the Hamiltonian (17) because the admissible
domain of the dynamics does not extend to a sufficiently
high eccentricity. What additional ingredient is needed for the
simplified system to successfully exhibit bounded—unbounded

17 We additionally take the fraction of time spent in either resonance to be
comparable.
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Figure 5. Double section of H at ¢ = 0, Y = . The loci denote level curves of
the Hamiltonian. The blue curve corresponds to the nominal value of H and is
labeled Hj. Note that there are two solutions on the double section for H = Hy:
at present, Mercury resides on the stable solution, shown on the left bottom
quadrant of the figure. The critical locus (labeled H = Hyi¢) is shown in green.
A transition to the critical locus breaks the topological boundary between highly
eccentric orbits and the present dynamical state, allowing the system to evolve
toward a globally unstable configuration. As discussed in the text, it can also
be shown that a transition through the critical locus corresponds to a transition
through the vs (¢) and vy () secular resonances. An H level significantly
exceeding Hcric is shown in red. Chaotic (Chirikov) diffusion along a locus
arises from the overlap of high-order secular resonances (see Figure 4) and is
labeled Dy. Diffusion across H levels is stochastically pumped by the irregular
nature of the eccentricity evolution, and is labeled Dy in the figure. Generally,
the transition to instability (i.e., diffusion of H) occurs on a timescale much
longer than that corresponding to the ergodic exploration of a given locus (i.e.,
diffusion of Y').

0.15

chaotic transitions? An answer to this question can be gathered
by constructing a double surface section of the Hamiltonian (17).
Figure 5 depicts such a double section, where the angles of the
Hamiltonian have been fixed at ¢ = 0 and ¥ = 7 and multiple
levels of H are plotted.

As stochastic evolution carries the trajectory through the
chaotic sea, every time the angles ¢ and ¢ randomly line up to
¢ = 0and ¢ = m, the actions of the orbit will map onto the blue
locus labeled H = H, on Figure 5. In other words, as chaotic
evolution proceeds, the system ergodically explores the portion
of the blue locus not occupied by quasi-periodic trajectories.'®

Let us now imagine that the value of H is slowly modulated
toward a critical value H — Hqe = 1.17 Hp, shown as a green
curve on Figure 5. As long as H < Hi, chaotic diffusion of
Mercury’s orbit remains bounded because the loci delineated on
Figure 5 are qualitatively similar to the nominal H = H, curve.
However, a drastically different turn of events can be envisioned
if the value of H is allowed reach H . Indeed, at H = Herie,
the topology of the double section changes, such that the loci
connect to catastrophic values of the actions. Consequently, if
the dynamics remains globally chaotic at H > Hy, the system
will diffusively evolve toward an orbit crossing on a timescale
considerably grater than, but nevertheless comparable to the
Lyapunov time.

The value of the Hamiltonian H = H,; holds additional
physical meaning beyond being a simple topologic transition
in phase space. Particularly, it is a locus that corresponds

18 We note that for the same value of H = Ho, there exists another admissible
locus in Figure 5 that resides at high eccentricity and inclination. This solution
is characterized by prograde rather than retrograde circulation of v and
transitions between the loci is not permitted as long as H remains conserved.
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to null oscillation frequencies'® of the angles ¢ and . In
other words, the corresponding green curve depicted on the
double Section 5 tracks the locations of the vs and vy, secular
resonances (i.e., resonances associated with the leading order
critical angles ¢ and ). Consequently, the evolution of H
toward H within the framework of our model is equivalent
to the evolution of the system toward linear secular resonance,
as observed in numerical experiments (Laskar 2008; Batygin &
Laughlin 2008).

This discussion highlights the additional component needed
to fully capture Mercury’s orbital evolution on multi-gigayear
timescales: the conservation of H must be broken. Consequently,
it is natural to infer that the process that governs the transition
between bounded and unbounded chaos in Mercury’s case is
the slow diffusion of H itself. Moreover, an examination of
the double Section 5 intuitively explains why the onset of
large-scale instability appears to occur “suddenly” in numerical
simulations.

4.1. A Chaotic Model with 2.5 Degrees of Freedom

The Hamiltonian itself, —H, is an action conjugate to f.
Thus, in order to capture the transitions between bounded
and unbounded chaos, we must incorporate explicit time-
dependence into the governing equations. To do this, we retain
an additional term in the decomposition (6), which generates an
extra harmonic in the Hamiltonian. Specifically, we will retain
the g» mode, as it is the largest amplitude, slowly varying term
that remains in the expansion.?’

Applying the transformations (10) yields the following ex-
pression:

/F( = (FGR + Fe(l) + gS)(D + Fé?’)q)z
+ FOV®@cos@) + (F" + fo)¥ + FO¥?
+ FOVW cos(y) + Fo @

+ FONV® cos(¢ + (g2 — g5)t + (B2 —

Bs)). (41

In contrast with Equation (11), in Hamiltonian (41) we have
chosen not to extend the phase space and thus retain the

non-autonomous nature (denoted by a tilde) of H (Morbidelli
2002). The newly introduced constant, in some similarity with

Equation (14), reads
8
Gmm, @
-2 (= fe/ i
j=2 J

—1.72 x 10719,

2 _—
Fe2 =

(42)

With explicit time-dependence in place, the slow diffusion
of H can indeed carry the trajectory to catastrophically high
eccentricity. This is elucidated in Figure 3 where the evolution
stemming from the same nominal initial conditions invoked
before, but governed by the Hamiltonian (41), is shown in
blue. In stark contrast with the trajectory obtained from the
autonomous model (17), in this numerical experiment Mercury
successfully evolves into the vs and vy, secular resonances and

19 This naturally follows from Hamilton’s equations.

20" We note that although Lithwick & Wu (2011) did not elucidate the role of
the harmonic associated with this mode in their investigation, they did point
out that its inclusion into the Hamiltonian had an unknown but important effect
on the dynamics.
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Figure 6. Stochastic evolution of H. The presented evolutionary sequence was
obtained within the framework of the non-autonomous Hamiltonian (41) and
corresponds to the orbital solution showed as a blue curve in Figure 3. The green
curve corresponds to a direct evaluation of Equation (41) at an arbitrary cadence.
Concurrently, the blue curve denotes 7—2, evaluated whenever the time-dependent
harmonic k = ¢ + (g2 — g5)t + (B2 — Bs) crosses its initial value of k = /2.
Accordingly, the blue curve tracks the average value of the non-autonomous
system, yielding a closer correspondence to its autonomous counterpart. Note
that large-scale instability is triggered as a consequence of the intersection of
the average value of H with Heyir, as suggested by Figure 5.

becomes violently unstable on a timescale comparable to the
remaining main-sequence lifetime of the Sun.

With a numerical solution at hand, it is possible to check the
sensibility of the qualitative discussion regarding the approach
of H toward H,; as the cause of the instability, quoted above.
To do this, let us examine the evolution of the value of H
as a function of time, shown in Figure 6. The green curve
depicted in the figure represents the value of H (normalized
by its initial value) as given by Equation (41) and sampled
at an arbitrary cadence in time. As can be seen, this function
crosses Hic repeatedly before the onset of instability at ~5 Gyr.
However, it should be understood that there is not a one-to-one
correspondence between H and H since the former incorporates
an additional, time-dependent harmonic. This harmonic yields
rapid oscillations in the value of the Hamiltonian, obscuring a
candid comparison between the evolution of H and the double
section of H.

A more sensible comparison can be made by sectioning the
evolution on the time-dependent angle k = ¢ + (g2 — gs)t +
(B2 — Bs), and plotting H only when « corresponds to its initial
value, which we set to w/2, such that the initial values of H
and H are also identical. This procedure effectively tracks the
average value of 7 and is shown as a blue curve on Figure 6.
With a more direct connection between H and H established, it
is immediately apparent that the onset of instability corresponds
to a point when the average value of H crosses Heyit, as discussed
above.

With all of the desired effects (bounded chaotic diffusion
on a ~megayear timescale and the onset of global instability
on a ~gigayear timescale) accounted for, Hamiltonian (41)
constitutes the simplest dynamical model for Mercury’s secular
evolution. Because 7 is based on a classical series expansion
of the disturbing gravitational potential (which treats e and s
as small parameters; Murray & Dermott 1999), its quantitative
agreement with a full N-body model (see, e.g., Quinn et al.
1991; Sussman & Wisdom 1992) should not be expected to
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be superb. However, as we show below, the characteristic
dynamical lifetime derived from 7{ is in moderately good
agreement with numerical experiments (Laskar 2008; Batygin
& Laughlin 2008; Laskar & Gastineau 2009) and reproduces
the qualitative behavior of the solutions well.

4.2. Chaotic Diffusion of H and the Dynamical
Lifetime of the Solar System

Although the Hamiltonian (41) captures the onset of large-
scale instability and the Hamiltonian (17) does not, as long as
the system resides in the bounded chaotic regime, the stochastic
properties of the orbits governed by the two models (i.e., .., Dy)
are nearly indistinguishable. Consequently, with the chaotic
properties of the two degree of freedom model delineated in
the previous section, we are now in a position to estimate
the global lifetime of the system by considering the chaotic
diffusion of H. The relevant equation of motion, stemming from
Hamiltonian (41) reads

dH

=" H} = FPF? sin(wt + ABa,s)

+ FOVD((Fop + FV + g5) + 2FO® + F )

x sin(¢ + wt + Ay 5). 43)

The leading term in the above expression does not induce any
long-term drift in H and can therefore be ignored. Moreover,
recall that the basis of the series expansion of the Hamiltonian
is an assumption of small eccentricities and inclinations (Ellis
& Murray 2000). Thus, for tractability we may discard terms of
superior order in the actions, as their effects will be secondary.
An approximate expression for variation in H then reads

dH
— = F(For + FV + gs) V@

x sin(¢ + wt + ABas), (44)

where w = (g2 — gs) and AB, 5 is a phase constant which we
set to /2, as above (this does not change the results in any
meaningful way).

From the form of Equation (44), it is immediately clear that
if the evolution of @ and ¢ is forced to be strictly periodic,
the evolution of H will be quasi-periodic. Consequently, in the
absence of low-order secular resonances between the angles
¢, ¥ and wt, it is natural to treat the chaotic evolution of H as if
itis driven “extrinsically” by the chaotic properties of the (®, ¢)
degree of freedom, effectively reducing Equation (44) to the
Langevin stochastic differential equation (Klebaner 2012). Such
calculations are often referred to as chaotic pump calculations
of Arnold diffusion (Chirikov et al. 1971; Lichtenberg &
Lieberman 1983).

An important caveat inherent to this procedure of breaking up
the Hamiltonian into two parts is the assumption that the changes
in H (prior to large-scale instability) do not affect the dynamics
of the remaining degrees of freedom significantly. In the case
of Mercury this assumption holds, however, it is important to
keep in mind that it need not generally. In the contrary case, one
would proceed to calculate the diffusion of 7 in a conventional
Chirikov fashion, as done above.

As a starting assumption of the calculation, we note that the
characteristic frequency of the time-dependence in H greatly
exceeds the Lyapunov exponent:

L > 21 /w. 45)
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This means that over a single cycle of the critical angle in
Equation (44), the evolution of @ will appear only mildly
stochastic. Thus, over the relevant timescale, we can approx-
imate the time-evolution of @ as being composed of a periodic
(Lagrange-Laplace) component and a smaller stochastic com-
ponent:

[OX
\/azy/q)LL+cDSZ cI)]_L+—St.
t 2(/(®11)

Equation (44) is now composed of two terms.>' The term
multiplied by /@y leads to rapid short-term variations of H
and has no appreciable long-term contribution. Consequently, to
capture the diffusive property of , we can concentrate entirely
on the stochastic part:

(46)

dH Dy
<5> =P Fon s B0 4 89) 5 s
X (cos(q)) cos(wt) — sin(¢) sin(wt)). A7

Over timescales that are short compared to the Lyapunov
time, the random-phase approximation does not apply to ¢.
This means that although the integral of Equation (47) will
exhibit some short-term variation, it will be nearly periodic.
However, on a timescale of the order of a few Lyapunov
times, the Cartesian components of the eccentricity vector
V2D cos(¢p) and /2D sin(¢) act as independent uncorrelated
random variables. An alternative viewpoint is that it takes of the
order of a Lyapunov time to build up the inherent randomness
of the integral. Thus, an integral of Equation (47) over a
characteristic de-correlation time will amount to an integral
over a single cycle of the critical angle under the de-correlated
assumption.

Moreover, it is sensible to assume that averaged over
timescales longer than i,

(D cos(@) cos(wt)) ~ (D sin(¢) sin(wt)) (48)
because the diffusive properties of the components of the
eccentricity vector are the same. With the aforementioned
arguments in mind, we may write

I (G
0 dt

N Fe(zz)(FGR + Fe(l) + g5)
(OLL)

21 /w
X / D sin(¢) sin(wt)dt.  (49)
0

The above expression implies that the evolution of H can be
envisioned as arandom walk with a characteristic step size given
by the quoted stochastic integral over a single circulation cycle
of w and a characteristic step time of the order of a Lyapunov
time.

It now remains only to evaluate the stochastic integral (49). As
a leading order approximation, let us assume that the evolution
of @y sin(¢) is akin to drift-free Weiner process, W, with the
standard deviation set to the chaotic diffusion coefficient,??> Dy
(Grimmett & Stirzaker 2001).

21 Note that the denominator of the second term in Equation (46) is set to the
time-average of the periodic component of the solution for simplicity.

22 If ¢ and s behave like Gaussian random variables with similar variance, then
Do ~ Dr/+/2, however, such factors of the order of unity are unimportant at
the level of approximation employed in this work.
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Let ¢ = wt. We now have

2 1
AH = 1 [Dy FP(For + F{" + gs)
w

w (Dr)

2

X W, sin(p)de,
0

(50)

where W, is W, scaled such that the time unit is dimensionless
(i.e., wt).
Next, we note that

dW, cos(p)) = (dW,) cos(p) — W, sin(p)de.  (51)

In turn, this means that

2

2
W, sin(@)de = / cos(p)dW, — W, cos(2m)
0

2
/ (cos(p) — cos(2m)) dW,. (52)
0

The integral (52) is thus a Gaussian random variable with
zero mean and variance (Klebaner 2012):

2w
/ (cos(p) — cos(2m))? do = 3. (53)
0
Putting this result together with expression (50), we obtain the
following estimate for the diffusion coefficient of H:

37 (FP(Fgr+FV +gs))?

Dy =D
e (@)

(54)

61)3 18

Accordingly, given a value Hy, at which the system transi-
tions to global instability and an initial condition Hy, we may
estimate the characteristic dynamical lifetime of the solar sys-
tem as

-~ (Hcrit - HO)Z
Dy '

T (35)

Quantitatively, expression (55) evaluates to 7 ~ 108-10° yr.
This estimate is in good agreement with repeated numerical
integration of the Hamiltonian (41) with slightly different initial
conditions but is considerably shorter than the typical dynamical
lifetimes obtained by precise numerical models (e.g., Laskar &
Gastineau 2009).

Reasons for this almost certainly arise from the imperfect
nature of our simplified secular model. First, as already pointed
out above, the characteristic Lyapunov time obtained within the
context of our treatment is somewhat shorter than that of the real
Mercury (Laskar 1989; Sussman & Wisdom 1992). Second, our
model is based on a series expansion that treats e and i as small
parameters, and therefore becomes increasingly imprecise as
the critical value of H is approached. To this end, we have
also adopted the Lagrange—Laplace solution as a description of
the dynamical evolution of planets other than Mercury, which
introduces additional inaccuracies. Finally, it is well known that
the dynamical stability of the solar system is sensitive to small
changes in the underlying parameters and it is therefore not
too surprising that somewhat different quantitive results are
obtained provided distinct models. Nevertheless, the obtained
instability timescale exceeds the Lyapunov time by more than
two orders of magnitude and thus captures the long-term chaotic
behavior of the inner solar system well, on a qualitative level.
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Figure 7. Effects of general relativity on the stability of the solar system. In
some parallel with Figure 5, this figure shows loci corresponding to nominal
and critical values of H for various degrees of amplification of the relativistic
precession. As the relativistic contribution to the apsidal precession of Mercury
is increased, so is the difference between the nominal and the critical values of
the Hamiltonian. Specifically, the normalized value of Hcj increases from its
nominal value of Hit/Ho = 1.17 to Herit/Ho = 1.3 and Herit/Ho = 1.42,
as the relativistic correction is enhanced by factors of 1.5 and 2, respectively
(further amplification significantly alters Dy obscuring candid interpretation).
Moreover as shown in the inset, if the relativistic correction is neglected within
the context of our simplified model, Hri;/Ho drops below unity meaning that
the system becomes unstable immediately upon initiation.

4.3. General Relativistic Effects

Among the more surprising features of the solar system’s
dynamical behavior is its significant dependence on relativistic
effects. The stabilizing role of general relativity was first noted
in the works of Laskar (2008), Batygin & Laughlin (2008) and
explored more thoroughly in the study of Laskar & Gastineau
(2009). Specifically, the latter investigation determined that
while a purely Newtonian solar system has a ~60% probability
of becoming unstable within the next 5 Gyr, accounting for
relativistically induced apsidal precession of Mercury reduces
the chances to ~1%.

Although the quantitative agreement between the dynamical
lifetime predicted by our simplified model and the solar system’s
true dynamical lifetime is imperfect, it is still interesting to
explore its dependence on underlying parameters. To do this,
we manually enhance or diminish Fgr in the Hamiltonian
and monitor the difference between the initial and catastrophic
values of H, i.e., (Heit — Ho)-

Figure 7 mirrors the double section depicted in Figure 5 and
shows pairs of loci corresponding to Hy and Hcy for nomi-
nal Fgr (blue), Fgr enhanced by a factor of 1.5 (green) and
Fgr enhanced by a factor of two (pink). As can be gathered
from the figure, the separation in H between bounded and un-
bounded chaotic states increases quasi-linearly as the relativisti-
cally facilitated apsidal precession is enhanced.”? Accordingly,
expression (55) suggests that dynamical lifetime increases ap-
proximately as 7X (Fggr)>.

This is in agreement with repeated numerical integration of
the system governed by Hamiltonian (41). Although, simula-
tions also show that if Fgr is enhanced by a factor of ~3 or
greater, the dynamical lifetime shortens significantly. This be-
havior is likely associated with the changes in the diffusive

23 Another way to view this effect is that increasing Fgr de-tunes the system
away from the vs and vy, secular resonances (Batygin & Laughlin 2008; see
also Adams & Laughlin 2006).
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properties of the two degree of freedom system (17), which also
enter into the expression for 7 through the diffusion coefficient
Dy (see Equation (54)). Moreover, the possible appearance of
high-order secular resonances between the three angles ¢, ¥
and wr may dramatically accelerate the diffusion rate of H
(Lichtenberg & Lieberman 1983).

An additional peculiar feature of our model is that if the rel-
ativistic correction is neglected entirely, at nominal parameters
Ho exceeds Hcrit, signaling immediate instability. This further
highlights the fact that our perturbative model is by default closer
to linear secular resonance than the real solar system, in con-
currence with a somewhat shorter derived dynamical lifetime
quoted above.

Despite considerable limitations arising from a perturbative
treatment of the gravitational interactions, the qualitative fea-
tures of the solar system’s dynamical dependence on relativistic
effects seems to be well-represented by the simple model at
hand. Therefore, cumulatively it would appear that introducing
additional complications into the calculations presented in this
work is unlikely to yield further insights of considerable value.
In other words, the analytical estimates derived from the per-
turbative model considered here probably capture the dominant
characteristics of the solar system’s dynamical evolution in an
acceptable manner.

5. DISCUSSION

In this study, we have revisited the centuries-old question of
the long-term dynamical evolution of the solar system (Laskar
2012), from an analytical perspective. We began by construing a
simple Hamiltonian model based on a classical expansion of the
gravitational potential (Leverrier 1855; Ellis & Murray 2000)
that successfully captures the stochastic, yet bounded character
of Mercury’s orbit on multi-megayear timescales. Building on
the work of Laskar (1989), Lithwick & Wu (2011), and Boué
et al. (2012), we applied canonical perturbation theory utilizing
Lie transform methods (Deprit 1969; Morbidelli 1993) in order
to elucidate the two primary high-order secular resonances that
drive chaotic diffusion. While the overlap of non-linear secular
resonances had already been conjectured to drive Mercury’s
stochastic motion (see, e.g., Laskar 1989, 1996; Lithwick & Wu
2011), this marks the first explicit identification of the specific
angles primarily responsible for irregular dynamics.

The overlap of the aforementioned resonances is in essence
perfectly non-adiabatic (Chirikov 1959, 1979). Accordingly,
taking advantage of a near-unity stochasticity parameter (i.e.,
marginal overlap of the resonances), we utilized the perturbative
model to analytically obtain the Lyapunov time and the chaotic
diffusion coefficient (Lichtenberg & Lieberman 1983) inherent
to Mercury’s orbit (see also Holman & Murray 1996; Murray &
Holman 1997). The resulting estimates are in good agreement
with numerical determinations and qualitatively illustrate the
origin and properties of Mercury’s secular evolution. Moreover,
the calculations are of considerable pedagogical value, as
they demonstrate a successful reduction of a rather complex
gravitational N-body problem to a tangible one.

In a subsequent effort, we extended the model to account for
transitions between bounded (stable) and unbounded (unstable)
chaotic states, thereby illuminating the dynamical architecture
that underlies the onset of large-scale instabilities. Specifically,
we showed that the acquisition of catastrophic orbital parame-
ters is facilitated by a topological transition in the structure of the
governing Hamiltonian and it is the diffusion of the Hamiltonian
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itself that dictates the commencement of orbital disintegration.
Accordingly, in this work we have provided the first purely an-
alytical estimate of the inner solar system’s dynamical lifetime.

The characteristics of the slow diffusion inherent to Mercury’s
orbit bear some resemblance to Arnold diffusion (Arnold
1964, 1978; Chirikov et al. 1971; Lichtenberg & Lieberman
1983). That is, initially the system resides in a particular high-
order (¢ — ) secular resonance that is perturbed by a yet
higher order resonance, namely (¢ — 2v). In due course, as
the value of H evolves stochastically the high-order resonant
structure is maintained until the trajectory enters a distinct,
doubly resonant domain characterized by the overlap of the
(lower-order) (¢) and () resonances (see Nekhoroshev 1977).
Still, the parallel between the typically quoted Nekhoroshev
structure (e.g., Morbidelli & Giorgilli 1995) and the perturbative
system described here is imperfect, as the former considers
a single resonance perturbed by a higher-order remainder that is
exponentially small in the perturbation parameter, where as the
system at hand is ubiquitously chaotic.

Of course, Mercury is not the only solar system object whose
orbit is susceptible to dynamical instabilities. For example, by
now it is well know that there exist numerous unstable mean-
motion resonant orbits within the Asteroid belt (Wisdom 1980,
1983; Morbidelli & Giorgilli 1990a, 1990b). Generally, the
unstable resonances are devoid of objects, as chaotic diffusion
of eccentricity allows asteroids to eventually acquire planet-
crossing orbits and escape the solar system (Lecar et al. 1992).
To this end, it is worthwhile to notice that the dynamical
processes by which ejection is brought about for solar system
small bodies and planets are distinct. That is, asteroids are
removed directly as a result of eccentricity diffusion (Murray
& Holman 1997, see also Murray & Holman 1999), while
Mercury’s instability is triggered by a change in the dynamical
structure of the Hamiltonian and the associated diffusion of the
Hamiltonian itself. This difference highlights a certain diversity
inherent to chaotic evolution and the emergence of instabilities
in planetary systems.

Although the focus of this work weighs heavily on the
dynamics of the inner solar system, the developed model builds
on the general Lagrange—Laplace secular theory (Murray &
Dermott 1999) and should be applicable to a wide array of
planetary systems dominated by secular interactions (Wu &
Lithwick 2011). Indeed, Laplace-Lagrange theory has already
found wide-spread applications to the study of the dynamics
of extrasolar planetary systems (Michtchenko & Malhotra
2004; Veras & Armitage 2007; Migaszewski & GoZdziewski
2009a, 2009b) and the extension of the theory delineated here
may play a significant role in clarifying the origins of the
known extrasolar orbital architectures as well as their future
evolutionary sequences.

The keen importance of understanding orbital instabilities in
a general context is highlighted by the orbital distribution of
extrasolar planets that do not reside in close proximity to their
host stars. In particular, the continuous radial velocity and tran-
sit monitoring of the local galactic neighborhood has shown that
severely excited orbits are not uncommon in typical planetary
systems. In turn, this observational fact has been invoked as
evidence for planet—planet scattering as a dominant mechanism
responsible for sculpting the dynamical architectures (Juri¢ &
Tremaine 2008; Ford & Rasio 2008; Chatterjee et al. 2008;
Raymond et al. 2009b). At present, the process by which newly
formed planetary systems acquire unstable orbits remains elu-
sive (Batygin & Morbidelli 2011; Lega et al. 2013) and an
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analysis much like the one performed in this work may be re-
quired to shed light on the early dynamical transmutation of
orbital states. Consequently, the theoretical analysis performed
herein is likely to find far ranging consequences for the inter-
pretation of instability-driven dynamical evolution of generic
planetary systems.

We are grateful to Norm Murray, Greg Laughlin, Fred
Adams, Gongjie Li, and Daniel Tamayo for useful discussions.
Additionally, we are thankful to Molei Tao for sharing his
expertise in stochastic calculus with the authors. Finally, we
thank the anonymous referee, whose insightful report led to a
substantial improvement of the paper.

APPENDIX A
CONSTANTS OF THE HAMILTONIAN

The constants of the Hamiltonian, f, utilized in this work are
exclusive functions of the semi-major axis ratio « = a/a’ < 1,
where @’ is the perturbing body’s semi-major axis. The particular
expansion of the gravitational potential we adopt here (Ellis &
Murray 2000) utilizes Laplace coefficients, defined as

b(k) B l/Zn
. =
T Jo

as well as their derivatives. Adopting the 9, = 9/d« notation
for the differential operator, the expressions for the coefficients
take on the following form:

cos(ky)
(1 — 2a cos(gp) + a?)t

de (AD)

1
1
1) 1) O]
£2 = Z(an/z — 2adaby — a’3.1))
1 © (0)
O = % — (4’ b)) + ' 0b{)))
1
()] O]
fi = — E()lb3/2
2 1)
o= bs/z
f(3) _ iazb(—Z) Eazb(O) 2b(2)
TS 512 7 4 52t 16 5/2
1
( 1) (=1 (1)
fei = 16( 2O“U(bz/z +b55) — 40‘2(80!173/2 +0ab3 )
— @b, + 9b5))- (A2)
APPENDIX B

EQUATIONS OF MOTION

The equations of motion arising from Hamiltonians (17)
and (41) as written in action-angle variables posses coordinate
singularities at null actions and are thus unfavorable for practical
use. Fortunately, this inconvenience can be remedied by a
canonical change of variables. In terms of global Cartesian
coordinates (Morbidelli 2002)

@ sin(¢),

X = @cos(@ y=
z W sin(y),

s
W = 2% cos() V2¥s

(BI)
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Hamiltonian (41) takes on the following form:
. £2 4 52 22432\ 2
H= (Fer+ F" +gs) AR PO
2 2
= -2, 22
@ * (D w+z
F: <E> +(F 7+ 1) ( 5
)
+FY <—w2 i Z2) +FY <i>
2 * V2

S22, 52 =2, 52
L F, X“+y W +Z
2 2

FO X cos(wr +ABas) 3 ysin(a)t+Aﬂ2,5)>- B2
+ < > > (B2)

Note that in the above expression, we have adopted the notation
used in Section 4: w = (g2 — gs) and ABa 5 = (B2 — Bs).

Expression (B2) can be made more succinct by introducing
complex canonical variables (Strocchi 1966)

X+1y w417
n=—= W=—0=,
V2 V2

where 1 = +/—1. Accordingly, the Hamiltonian is rewritten as
follows:

(B3)

y n+n"
H = (For + F" +gs)0m*) + FO0m*) + F(Y (T)

+(FV + fo) () + FO(upy?
W+ .
+F? (T) + For (™) (™)

et(wt+Aﬁz‘5) + *eft(a)t+Af32_5)
4 FO (’7 i .

(B4)

An additional advantage of introducing complex coordinates
(Equation (B3)) is that instead of integrating four real equations
of motion, one needs only to integrate two complex ones.

In complex form, Hamilton’s equations become (Strocchi
1966)

d oH d OH
&, dp _ o1 (B5)
dt an* dt au*

Correspondingly, the equations of motion read

dn
= = (For+ F[V + gs) n+2Fninl®
1 _
S F + Fanlpl® + FD e
du 1
— = (FV+ p)u+ 267wl + S F7 + Faplnl. - (B6)

Naturally, the above expressions can be reduced to the equations
of motion of the autonomous system (Equation (17)) by setting
F? =0.
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