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ABSTRACT

In the recent years, the “Nice” model of solar system formation has attained an unprecedented level of success in
reproducing much of the observed orbital architecture of the solar system by evolving the planets to their current
locations from a more compact configuration. Within the context of this model, the formation of the classical
Kuiper Belt requires a phase during which the ice giants have a high eccentricity. An outstanding question of this
model is the initial configuration from which the solar system started out. Recent work has shown that multi-
resonant initial conditions can serve as good candidates, as they naturally prevent vigorous type-II migration. In
this paper, we use analytical arguments, as well as self-consistent numerical N-body simulations to identify fully
resonant initial conditions, whose dynamical evolution is characterized by an eccentric phase of the ice giants,
as well as planetary scattering. We find a total of eight such initial conditions. Four of these primordial states
are compatible with the canonical “Nice” model, while the others imply slightly different evolutions. The results
presented here should prove useful in further development of a comprehensive model for solar system formation.
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1. INTRODUCTION

The question of how the solar system formed dates back
centuries. The last decade, however, has seen a considerable
amount of progress made on this issue. Notably, the development
of the Nice model (Tsiganis et al. 2005) has proven to be a
milestone. The scenario foretold by the Nice model is as follows:
the giant planets form in a compact configuration, and driven by
planetesimal scattering (Fernandez & Ip 1984; Malhotra 1995),
begin migrating divergently. Eventually, Jupiter and Saturn cross
their mutual 2:1 mean-motion resonance (MMR), which results
in an acquisition of eccentricities for both planets. Subsequently,
the whole outer solar system undergoes a brief period of
dynamical instability, during which Uranus and Neptune are
scattered to their current orbits.

There are a few aspects to the success of the Nice model.
First and foremost, it has been able to replicate the architecture
of the secular dynamics of the outer solar system (Morbidelli
et al. 2009a). Second, it provides a semi-quantitative description
of the formation of the Kuiper Belt (Levison et al. 2008). Third,
the inward flux of planetesimals during the phase of dynamical
instability allows for chaotic capture of Jupiter’s and Neptune’s
Trojan populations (Morbidelli et al. 2005; Nesvorny et al.
2007). Finally, if the resonance crossing between Jupiter and
Saturn is timed appropriately, the global mayhem provides a
natural trigger for late heavy bombardment (LHB; Gomes et al.
2005). There are other observational constraints that should
be reproduced in a model for the solar system’s formation,
such as the dynamical structure of the inner solar system, and
considerable progress has already been made in this direction
(Brasser et al. 2009; Morbidelli et al. 2009b). At the same time,
itis also crucial to explore the unobservable aspect of the model,
namely the initial conditions. This is the purpose of our study.

In this paper, we consider various multi-resonant configu-
rations as possible initial conditions for the Nice model. We
investigate the early stages of dynamical evolution for a large
number of candidate systems and show that only eight configu-
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rations appear to be consistent with the formation of the Kuiper
Belt in the framework of the Nice model. It is noteworthy that
running simulations of the Nice model to completion is com-
putationally expensive. Consequently, as we seek to examine a
large array of initial conditions, we are forced to utilize early
dynamical events, namely planetary scattering, as proxies for
successful formation of the solar system. In this manner, we
limit the duration of each simulation to only a few tens of mil-
lions of years. Within the context of our integrations, this is
long enough for the system to pass through the epoch of dy-
namical instability, but not long enough to scatter away all of
the planetesimals which end up on long-term unstable orbits.

The plan of the paper is as follows. In Section 2, we explain
how multi-resonant configurations prevent type-II migration,
and our approach to their assembly. In Section 3, we discuss
the evolution scenarios of the considered systems, estimate the
amplitudes of eccentricity jumps in relevant cases, and present
the results of N-body simulations. We discuss our results and
conclude in Section 4.

2. MULTI-RESONANT CONFIGURATIONS

One of the important differences between the solar system and
the majority of the detected aggregate of extra-solar planetary
systems is the lack of a close-in giant planet. This difference
suggests that while it is common for planets to migrate to
small orbital radii, some mechanism was at play in the early
solar system that prevented vigorous orbital decay. One such
mechanism, which is both efficient and reasonable, is resonant
capture (Masset & Snellgrove 2001).

When a newly formed gaseous planet reaches a critical
mass of ~1 Mj, it opens a gap in the proto-planetary disk.
Incidentally, the planet continues to interact with the disk via
various resonances. Summed together, the resonant torques from
a given side of the disk, somewhat counterintuitively, push the
planet away from that side. As a result, the planet positions
itself at a point in the gap where all torques cancel, and moves
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inward together with the disk on the viscous timescale, in a
process termed Type-II migration (Morbidelli & Crida 2007).
Simultaneously if another planet, whose semimajor axis is
larger, is migrating inward faster, it will eventually encounter
an MMR. Under a large spectrum of circumstances, converging
orbits can lead to capture into an MMR, ensuring that the two
planets’ period ratio remains constant for extended periods of
time. In fact, for slow enough migration rates and low enough
eccentricities, resonant capture is certain (Peale 1986). When
this happens, the gas between the two planets drains as the gaps
overlap. Consequently, the torque balance on the resonant pair
results from gas interior to the inner planet and that exterior
to the outer planet. This leads to a drastic reduction of the
migration rate (Lee & Peale 2002). Furthermore, if the inner
planet is more massive than the outer planet, as is the case with
Jupiter and Saturn, the migration of the resonant pair can be
halted altogether or even reversed (Morbidelli & Crida 2007).

Numerical studies of Jupiter and Saturn submerged in a
gaseous proto-planetary disk suggest precisely the above sce-
nario. Indeed, Saturn’s migration is considerably faster than
Jupiter’s because of its lower mass and inability to fully open
a clean gap. The pioneering results of Masset & Snellgrove
(2001) showed that locking Jupiter and Saturn in the 3:2 MMR
can effectively halt the pair’s migration. The somewhat more
precise numerical experiments of Morbidelli & Crida (2007)
confirmed this and also showed that capture into 2:1 and 5:3'
MMRs are viable outcomes, depending on where Saturn forms
relative to Jupiter. The work of Pierens & Nelson (2008) how-
ever suggests that while capture into the 2:1 and 5:3 MMRs is
certainly possible, in a number of cases Saturn eventually breaks
away and continues its inward migration until it is captured in
the 3:2 MMR. Collectively, the above-mentioned results suggest
that 3:2 MMR is indeed a likely initial configuration of Jupiter
and Saturn, although there is not enough evidence to decisively
rule out the 2:1 MMR or the 5:3 MMR as initial conditions.
Consequently, for the sake of completeness, we consider all
three of these resonances as possible starting configurations for
Jupiter and Saturn.

By extension of the above scenario, the ice giants, which
are believed to form after Jupiter and Saturn, behave in a
qualitatively similar way. Namely, as they migrate from the outer
disk inward, they too become trapped in MMRs. Consequently,
at the epoch of the disappearance of the gas, we are left
with a multi-resonant system, in which each planet is in
resonance with its neighbors. Morbidelli et al. (2007) performed
hydrodynamical simulations of this process with the purpose
of identifying such configurations that are long-term stable.
Considering only systems where Jupiter and Saturn are locked
in a 3:2 MMR, they were able to find two stable fully resonant
states.

Our approach to assembling multi-resonant systems follows
that of Lee & Peale (2002). In addition to Newtonian N-body
interactions, each planet is subject to semimajor axis decay
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It must be noted that capture into the 5:3 MMR is less probable, since it is a
second-order resonance. Furthermore, even if Jupiter and Saturn are captured,
subsequent motion can be unstable (Morbidelli & Crida 2007).
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Table 1
Multi-resonant Initial Conditions
J:S S:U U:N
3:2 2:1 3:2
3:2 2:1 4:3
3:2 3:2 3:2
3:2 3:2 4:3
3:2 3:2 5:4
3:2 4:3 3:2
3:2 4:3 4:3
5:3 2:1 3:2
5:3 2:1 4:3
5:3 2:1 5:4
5:3 2:1 6:5
5:3 3:2 3:2
5:3 3:2 4:3
5:3 3:2 5:4
5:3 3:2 6:5
5:3 4:3 3:2
5:3 4:3 4:3
5:3 4:3 5:4
2:1 2:1 3:2
2:1 2:1 4:3
2:1 3:2 3:2
2:1 3:2 4:3
2:1 4:3 3:2
2:1 4:3 4:3

Notes. All of the stable multi-resonant initial
conditions considered in this study. The bold
lines represent the configurations that proved
to be compatible with a Nice model-like
evolution.

where a is semimajor axis, e is the eccentricity, and K is an
adjustable migration frequency. In our simulations, we keep K
the same for all planets, ensuring always convergent migration.
In accord with Lee & Peale (2002), a Bulirsch—Stoer integration
method (Press et al. 1992) was used. In contrast with the
full hydrodynamical simulations, this method is simpler and
computationally cheaper, allowing us to sample a large array
of systems. Additionally, given the problem’s straightforward
nature, it is unlikely that a configuration found using this
approach cannot be obtained using other methods.

In the context of these simulations, all four giant planets were
introduced simultaneously on planar circular orbits, slightly
outside of their desired resonant locations, with the more
massive ice giant on the outermost orbit. If capture into the
desired resonances did not occur, we varied K. As pointed
out in Morbidelli et al. (2007), the sequence in which planets
get captured may be important, since changing the order can
change the librating resonant angles. To avoid this degeneracy,
we always set the initial orbits such that Saturn would get
captured first and Neptune last. To avoid confusion, we shall
always refer to the outermost planet as Neptune, although
in the Nice model, the orbits of the ice giants may switch
places. After each desired configuration was achieved, the five-
body system was subjected to a 100 Myr dynamical stability
test, using the mercury6 software (Chambers 1999). Note that
100 Myr is highly conservative, given that our full dynamical
evolution simulations only last ~30 Myr. However, these
stability integrations show that the same initial conditions are
also applicable for scenarios where the global instability occurs
somewhat later than what is considered in this work. Table 1
lists all stable multi-resonant configurations that we generated.
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3. DYNAMICAL EVOLUTION

Having found a large array of stable multi-resonant systems,
we now need to determine which of these configurations
can resemble the current state of the solar system, having
dynamically evolved. There are two constraints of interest here.
First is the structure of the secular dynamics of the giant
planets. Recently, Morbidelli et al. (2009a) showed that a smooth
migration scenario, such as the one envisioned by Malhotra
(1995), is incompatible with the observed eccentricities and
inclinations of the giant planets. An MMR crossing event
by itself is also insufficient because it does not excite the
inclinations to a necessary degree or reproduce the amplitudes
of the gs and g¢ secular eigenmodes correctly. To create the
current eccentricities, inclinations, and eigenmode amplitudes,
encounters must have happened between an ice giant and a gas
giant. Furthermore, if the instability took place after the inner
solar system was already intact, encounters must have taken
place between an ice giant and both gas giants to cause Jupiter
to “jump,” in order to prevent slow secular resonance sweeping
of the inner solar system (Brasser et al. 2009).

The second criterion of interest is the formation of the Kuiper
Belt, particularly the classical region. The transport mechanism
of planetesimals to this region, proposed by Levison et al.
(2008) relies on overlapping MMRs. Namely, when Neptune’s
eccentricity exceeds ~0.2, its exterior MMRs widen enough to
overlap, and motion of all particles in the region becomes highly
chaotic. This allows for planetesimals to execute a random
walk and invade the classical Kuiper Belt region. With time, as
Neptune’s eccentricity decays due to dynamical friction (Stewart
& Wetherill 1988), the resonances become narrower, and the
particles occupying the classical region, no longer chaotic,
remain on their orbits forever.

Using the two constraints described above as proxies for a
successful formation scenario, we look for a subset of our gener-
ated initial conditions that result in evolutions which encompass
both a scattering event and a transient high-eccentricity phase of
the outer ice giant. In the Nice model, these two constraints are
practically always satisfied simultaneously, since the ice giants
tend to switch places and the scattering event is intimately tied
to the high eccentricities.

Our dynamical evolution simulations include the four outer
planets and a disk of ~3000 equal-mass planetesimals, while
the mass of the inner solar system is added to the Sun. The radial
surface density of the planetesimal swarm was assumed to have a
power-law structure: ¥ oc ¥, where k € (1, 2). Consequently,
the set of initial-value problems at hand is controlled by three
parameters: Jupiter’s semimajor axis, which due to resonant
relations controls the semimajor axes of the other planets, the
planetesimal disk’s mass, mgis, and k. As it turns out, the actual
value of k has little effect on whether a given initial condition
gives rise to a scattering event and an eccentric Neptune. Rather,
it controls how fast the planets grind through the disk. As aresult,
we allow it to float randomly from simulation to simulation.
Also, an advantage of multi-resonant initial conditions lies in
that with enough simulations, it is possible to determine a unique
combination of (a;, mgis), since Jupiter and Saturn must scatter
enough particles to arrive to their current 5:2 commensurability.

In our simulations, the inner edge of the planetesimal disk
was placed ~1 AU outside of Neptune’s orbit. This forces
migration, driven by planetesimal scattering, to begin shortly
after the start of the simulation. In other words, we do not
attempt to time the onset of instability with LHB, as was done in
Gomes et al. (2005). There is another implication of a relatively
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close inner edge. If the planetesimal swarm is nearby when the
instability begins, the planetary orbits penetrate deeply into the
disk, and the resulting dynamical friction plays a stabilizing
effect (H. F. Levison 2009, private communication). Intuitively,
it makes sense to place the inner edge of the disk where the
dynamical lifetime of planetesimals equals the lifetime of the
gaseous nebula. While a 1 AU separation is approximately
correct (Gomes et al. 2005), in the future it may be a worthwhile
exercise to determine this boundary precisely for each multi-
resonant initial condition. The outer edge of the disk was placed
at 30 AU with the purpose of eventually halting Neptune’s
migration (Tsiganis et al. 2005; Levison et al. 2008).

In order to not force the scattering-driven migration ficti-
tiously, but still keep the computational cost down, we ignore
self-gravity of the planetesimal disk. The resulting Hamiltonian
takes the form:

HoY Gy Y )
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where p is momentum, x is position, m is mass, and G
is the universal gravitational constant. To further diminish
the computational cost, after a particle was scattered beyond
500 AU, it was removed from the simulation. It must be
noted that planetesimal—planetesimal interactions may in reality
be important, since they give rise to an effective viscosity
in the swarm (H. F. Levison 2009, private communication).
Thus, more careful validation of our results should preferentially
include these thorny effects. We used a hybrid Bulisch—Stoer/
Wisdom-Holman algorithm of the mercury6 software for all
integrations. We consistently used a time step of T = 300 days,
and checked all successful simulations with a smaller T =
60 days time step to ensure that the observed instability is not
a numerical artifact. In all such checks, the evolutions were
practically indistinguishable, which assures that integrals of
motion are sufficiently conserved. Finally, our simulations only
cover a few tens of millions of years, since the focus here is
on distinguishing between initial conditions that give rise to
gas-giant/ice-giant scattering and ones that do not. As a result,
the long-term evolution of the system after the instability is
unexplored.

3.1. Initial Conditions with Jupiter and Saturn in a 3:2 MMR

Let us first consider a family of initial conditions, listed in
Table 1, where Jupiter and Saturn are in a 3:2 MMR. This family
of initial conditions was previously studied in some detail by
Morbidelli et al. (2007). Consequently, this section’s results
are partially reproductions. Using a hydrodynamical model,
Morbidelli et al. (2007) found six multi-resonant configurations,
two of which they determined to be long-term stable. These
are the configurations listed in Table 1 where both Jupiter and
Saturn, and Saturn and Uranus pairs are in 3:2 MMRs while
Uranus and Neptune are in either 4:3 or 5:4 MMRs. There
are two more compact configurations listed in Table 1 which
we determined to be stable, although the counterparts of these
configurations put together by Morbidelli et al. (2007) were
unstable.? These configurations are the two where Jupiter and
Saturn are in a 3:2 MMR, Saturn and Uranus are in a 4:3 MMR,
and Uranus and Neptune are either in a 3:2 MMR or 4:3 MMR.

2 Note that our simplified migration model is computationally cheaper than
that of Morbidelli et al. (2007), allowing us to run more trials to arrive at stable
configurations.
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Figure 1. Dynamical evolution of the initial configuration where initially Jupiter
and Saturn are in a 3:2 MMR, Saturn and Uranus are in a 3:2 MMR, and Uranus
and Neptune are in a 5:4 MMR (as labeled). Curves depicting the semimajor
axes, perihelion, and apohelion of each planet are labeled. The current semimajor
axes, perihelia, and apohelia of the current solar system are plotted as gray points
for comparison. In this model, the global instability is brought forth by Jupiter
and Uranus encountering a mutual 5:3 MMR.

(A color version of this figure is available in the online journal.)
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Figure 2. Same as Figure 1 except initially, Saturn and Uranus are in a4:3 MMR
and Uranus and Neptune are in a 3:2 MMR.
(A color version of this figure is available in the online journal.)

As discussed in Morbidelli et al. (2007), if Jupiter and
Saturn start out in a 3:2 MMR, the instability is triggered by
their encounter with the 5:3 MMR. While this is a second-order
resonance, small jumps in Jupiter’s and Saturn’s eccentricities
go a long way, especially in highly compact configurations. Un-
fortunately, in this case it is difficult to conclusively determine
which configurations will result in evolutions with scattering
events a priori. Thus, we must rely solely on numerical inte-
grations to explore the various evolutionary outcomes of these
initial conditions.

After an initial run of 20 integrations for each initial condition
of the family listed in Table 1, we ruled out the configurations
where Saturn and Uranus are in a 2:1 MMR as well as the
configuration where all planet pairs are in 3:2 MMRs because
all evolutions were characterized by smooth migration. We
subjected the remaining four configurations to 30 additional
integrations and found that the only configuration that does not
result in ice-giant/gas-giant scattering is the one where Saturn
and Uranus are in a 3:2 MMR, and Uranus and Neptune are in
a 4:3 MMR. The evolutions of the remaining initial conditions
are presented in Figures 1-3, and their final orbital parameters
are entered into Table 2.
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Figure 3. Same as Figure 1 except initially, both Saturn and Uranus, and Uranus
and Neptune are in 4:3 MMRs.

(A color version of this figure is available in the online journal.)

For the initial condition in which Saturn and Uranus are in a
3:2 MMR, 10% of the integrations were successful with 57% of
them exhibiting close encounters between an ice giant and both
gas giants. The same fractions for the two configurations where
Saturn and Uranus are initially in a 4:3 MMR are 20% and 30%,
and 27% and 50% for the case where Uranus and Neptune are
in a 3:2 MMR and 4:3 MMR, respectively.

3.2. Initial Conditions with Jupiter and Saturn in a 5:3 MMR

We now move on to the next family of initial conditions.
To begin with, we take the same approach as above. Stable
multi-resonant configurations of this family are listed as the
second set of entries in Table 1. We simulated the evolutions
of these systems with 20 integrations each. After completion, a
clear boundary between initial conditions that result in smooth
migration and those that result in scattering developed. Namely,
all setups where Saturn and Uranus are initially in a 2:1 MMR
were characterized by smooth evolutions. A similar scenario
describes the fate of initial conditions where Saturn and Uranus
are in a 3:2 MMR while Uranus and Neptune are in a 3:2 or a
4:3 MMR. However in the same context, if Uranus and Neptune
start out in a 5:4 or a 6:5 MMR, ice giant/gas giant scattering
as well as transient phases of high eccentricities are present.
Particularly, for the configuration where Uranus and Neptune
start out in a 5:4 MMR, 20% of the integrations were successful
with 50% of them exhibiting close encounters between an ice
giant and both gas giants. For the configuration where Uranus
and Neptune start outin a 6:5 MMR, also 20% of the integrations
were successful, but none of the solutions exhibited ice-giant
encounters with both gas giants.

In the subset of initial conditions where Saturn and Uranus
are in a 4:3 MMR, the configurations with Uranus and Neptune
in a 3:2 MMR and a 4:3 MMR can serve as good candidates
for solar system formation, but the configuration with Uranus
and Neptune in a 5:4 MMR consistently leads to ejections. Ten
percent of the integrations with Uranus and Neptune initially in a
3:2 MMR were successful, all of them exhibiting scattering with
both ice giants. In the context of the configuration with Uranus
and Neptune initially in a 4:3 MMR, 15% of the integrations
were successful, while 33% of them lead to encounters of an ice
giant with both gas giants.

Examples of successful evolutions that start from the initial
conditions described above are presented in Figures 4-7, with
final orbital parameters entered into Table 2. Note that the
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Table 2 T T T T T T
Orbital Elements at the End of Simulations a0l 5:3 32 54 )
Planet a (AU) e i (deg) | ~
3:2 3:2 5:4 Configuration k = 1.93 mgix = 91 Mg 20 'll
= - = -
Jupiter 52 0.013 0.17 2 " |l
Saturn 11.2 0.025 0.18 st L '; 4
Uranus 19.2 0.017 0.9 < 0 “ " "
Neptune 315 0.018 1.3 g 0 A §
3:24:33:2 CconﬁgurationT k =1.0mgisx = 82 Mg - | R
;."
Jupiter 5.2 0.027 0.31 1o s
Saturn 10.5 0.068 0.5 1< Jupiter & Saturn 2:1 MMR encounter
Uranus 21.5 0.022 0.9 E 1 s = N T n T
Neptune 325 0.011 0.85 0.0x100 1.0x107 2.0x107 3.0x107
3:2 4:3 4:3 Configuration k = 1.41 mgig = 75 Mg Time (years)
Jupiter 5.15 0.018 0.55 Figure 4. Dynamical evolution of the initial configuration where initially Jupiter
Saturn 10.8 0.05 1.15 and Saturn are in a 5:3 MMR, Saturn and Uranus are in a 3:2 MMR, and Uranus
Uranus 19.6 0.036 1.63 and Neptune are in a 5:4 MMR. In this model, the global instability is brought
Neptune 26.7 0.043 2.95 forth by Jupiter and Saturn encountering a mutual 2:1 MMR, just as in the
- - - - classical Nice model. All else is as in Figure 1.
5:3 3:2 5:4 Configuration k = 1.50 maisk = 60 Mg (A color version of this figure is available in the online journal.)
Jupiter 5.22 0.073 0.37
Saturn 9.9 0.109 1.24 T T T T T
Uranus 20.39 0.122 2.66 5:3 32 6:5
Neptune 34.89 0.034 0.65
5:3 3:2 6:5 Configuration k = 1.35 mgisx = 63 Mg
Jupiter 5.3 0.011 0.07 5
Saturn 9.28 0.016 0.27 <
Uranus 19.23 0.008 0.08 o
Neptune 28.51 0.022 0.57 Q
5:3 4:3 3:2 Configuration k = 1.85 mgisx = 64 Mg ®
Jupiter 5.29 0.004 0.49
Saturn 9.64 0.013 1.5 K -
Uranus 18.99 0.016 0.69 <«—— Jupiter & Saturn 2:1 MMR encounter
Neptune 27.38 0.022 0.22 - L L L —
N - 0.0x10 1.0x10 2.0x10 3.0x10
5:34:34:3 ConhguratlonT k= 1.75 mgisk = 58 Mg .
- Time (years)
Jupiter 5.3 0.02 0.25
Saturn 3.8 0.09 0.14 Figure 5. Same as Figure 4 except initially, Saturn and Uranus are in a 3:2 MMR,
Neptune 19.7 0.01 0.65 and Uranus and Neptune are in a 6:5 MMR.
Neptune 30.4 0.007 1.86 (A color version of this figure is available in the online journal.)
2:14:34:3 ConﬁgurationT k=19 mgisx =51 Mg i i , i ,
Jupiter 5.16 0.016 0.08 5:3 4:3 3:2
Saturn 9.48 0.029 0.13 30L 5 i
Uranus 17.57 0.06 0.76
Neptune 34.34 0.004 0.6 L J
g
Notes. Orbital elements of solar system analogs, resulting from = 20} |
o B!
different initial conditions, at the end of the dynamical evolution a
simulations, presented in Figures 1-8. Simulations where the ice < N ]
giants switched places are labeled with a . The disk mass used in
each simulation, as well as the disk’s power-law index k is also given. 10 _ i
<«—— Jupiter & Saturn 2:1 MMR encounter
. . . . C L L L T 1
scattering event in the evolution of the configuration where 0.0x10° 1_0;1 o7 2_0;1 o7 3.0x107

Saturn and Uranus are initially in a 3:2 MMR, and Uranus
and Neptune are in a 5:4 MMR (Figure 4) is considerably
more violent than that in most other examples. This is because
majority of close encounters here is between Jupiter and Uranus,
while in most other simulations, Saturn is responsible for
scattering. It is important to understand that this is not a unique
feature of the particular initial condition. We have observed
similar phenomena in simulations of other setups as well.

Note that in a scenario where Jupiter and Saturn start out in
a 5:3 MMR, the instability is brought on by their crossing of
the 2:1 MMR, just as in the classical Nice model. Much effort
has been put into fine-tuning the classical Nice model’s initial

Time (years)
Figure 6. Same as Figure 4 except initially, Saturn and Uranus are in a4:3 MMR,
and Uranus and Neptune are in a 3:2 MMR.
(A color version of this figure is available in the online journal.)

conditions (Tsiganis et al. 2005; Morbidelli et al. 2005; Gomes
et al. 2005; Levison et al. 2008). What matters most, however,
are the locations of the planets when Jupiter and Saturn are
crossing the 2:1 MMR. Let us now examine if the classical Nice
model is compatible with any multi-resonant initial conditions
from this family.
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Figure 7. Same as Figure 4 except initially, both Saturn and Uranus, and Uranus
and Neptune are in 4:3 MMRs.
(A color version of this figure is available in the online journal.)

We begin our calculation by measuring the semimajor axes
of the four planets at the Jupiter/Saturn 2:1 MMR crossing in
Figure 2(a) of Levison et al. (2008). The values are listed in the
second column of Table 3. Between encounters with MMR’s,
migrations of Jupiter and Saturn are mostly due to scattering
of planetesimals. Malhotra (1995) showed from conservation
of angular momentum that this process obeys a relation, which
upon integration can be written as

L )

Mplanet

Aloga >~ f

where f is an empirically determined “efficiency,” listed in
Table 3, and my is the total scattered mass. When applied to
Jupiter and Saturn simultaneously, this relation can be used
to “backtrace” the system’s migration, by roughly estimating
the starting semimajor axes of Jupiter and the scattered mass
m. Settmg Aas = (5/3)*3d), (2)2/3 and Aa; = a; —dj
w1th al 7 = 5.45 AU yields a total scattered mass of 37 mg and
a’; =5.69 AU.

Neglecting high-order resonant encounters, we then use the
calculated scattered mass and apply Equation (4) to Uranus
and Neptune to determine their original positions. The back-
traced initial conditions are listed in the third column of
Table 3. Incidentally, these initial conditions are close to a
multi-resonant configuration where Saturn and Uranus, and
Uranus and Neptune are both in 4:3 MMRs. Recall that this
initial condition is indeed one of the setups that consistently
exhibit scattering. However, given the similarities in dynamical
evolutions among the successful initial conditions of this family,
at this level of accuracy, it is probably safe to say that all four
of them are compatible with the classical Nice model results.

3.3. Initial Conditions with Jupiter and Saturn in a 2:1 MMR

Let us now consider the final family of initial conditions, listed
in Table 1, where Jupiter and Saturn are initially in a 2:1 MMR.
Unlike the scenario of the classical Nice model (Tsiganis et al.
2005), there are no major resonances to cross for Jupiter and
Saturn between the 2:1 and the 5:2 MMRs. Consequently, a
different mechanism, involving different resonances, is needed
to create the instability. Thommes et al. (2008) considered the
dynamical evolution of a system where Jupiter and Saturn are in
a 2:1 MMR, Saturn and Uranus are in a 3:2 MMR, and Uranus
and Neptune are in a 4:3 MMR. In such a system, the instability
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Table 3
Analytical Calculation of Planetesimal-driven Migration

Planet f a(AU) (J:S2:1) a(AU)(J:S5:3) a(AU) (5:44:34:3)
Jupiter  0.35 5.45 5.69 5.7

Saturn 0.2 8.74 7.97 8.02
Uranus  0.08 12.61 9.84 9.71
Jupiter  0.15 18.36 12.34 11.77

Notes. Inputs and results of the analytical calculations of planetesimal-driven
migration (Section 3.2). f is the effective scattering efficiency, inferred from
numerical simulations. Although it varies from run to run, the variation is not
too great. The second column, a (AU) (J:S 2:1), lists the positions of the planets
at the time of Jupiter/Saturn 2:1 MMR crossing, as inferred from the results of
Levison et al. (2008). The next column, a (AU) (J:S 5:3), list the semimajor axes
of the planets with Jupiter and Saturn nominally in the 5:3 MMR, traced back
using Equation (4) from the previous column. The last column, a (AU) (5:4 4:3
4:3), lists the semimajor axes of the 5:4 4:3 4:3 multi-resonant configuration,
assembled as discussed in Section 2. Note the quantitative similarity between
the two rightmost columns. This leads us to believe that the 5:4 4:3 4:3 multi-
resonant configuration, as well as other compact configurations from the same
family are compatible with the classical Nice model.

is triggered by Uranus and Neptune crossing a 7:5 MMR. Due to
a weaker, second-order nature of this resonance, the eccentricity
increase is rather small. Incidentally in this particular system,
this is enough for the ice giants to cross orbits and scatter off
of each other, but not off of one of the gas giants.? It appears
that somewhat larger eccentricities are needed. Testing each
initial condition with a large number of numerical simulations,
as discussed above, is rather time consuming. Consequently, it
is worthwhile to quantify the amplitudes of eccentricity jumps
due to various resonance crossings beforehand if possible. For
this set of initial conditions, under the assumption of adiabatic
migration, the eccentricity jumps are deterministic and can be
estimated analytically (Henrard 1982).

Following the treatment of Peale (1986, see also Murray
& Dermott 1999), we consider the planar internal first-order
Jj : (j — 1) resonant Hamiltonian

G2m®m3 G2m®m
Hres = 272 27
szémm’3 . [2T o )
— T fafan| < cos(X + (1= Dr+y)
- FJ./SBC + A}\sec - F/ys/ec + A/}‘gec’ (5)
where A is the mean longitude, y = @ is the longitude of

perihelion, A = (m mg)/(m+mg)/Gmg +m)a &' = A(1 —
+/1 — €?) are their respective Poincaré conjugate momenta, and
the prime designates the outer planet. The secular changes in
mean longitude and longitude of perihelion are accounted for
by the last four terms, while f(a/a’) arises from the classical
expansion of the planetary disturbing potential and is a function
of Laplace coefficients and their derivatives. The expressions
for f(a/a’) are presented in Appendix B of Murray & Dermott
(1999). Under a series of variable transformations (see Peale
1986 for derivation), this Hamiltonian can be rewritten to take
a simpler form. Let us introduce the constants «, 8, and €:

a=(— l)n*_jn/*+)}ser (6)

3 Another scenario present in the integrations of Thommes et al. (2008) is the
escape of one of the ice giants. In this case, the remaining ice giant is left with
a high eccentricity, but there are only three planets left in the system.
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3G 17 Table 4
B=—=-|—"—+ , @) Analytical Estimates of Eccentricities After a Resonant Encounter
2| ma? m'a’?
Resonance eN ey
a’ m' 32 0.031 0.037
_ 32 nG- m- : : :
e=n""fla/a)_ mo ¥ (®) 43 0.027 0.031
) ) ) 5:4 0.024 0.028
where n* is sum of the Keplerian mean motion and the secular
change in mean longitudes. It is important to note that these Resonance eu es
expressions are not strictly constant, since semimajor axis 2:1 0.062 0.022
changes. However, $ is only weakly dependent on semimajor 32 0.098 0.018
axis (Peale 1976), and in the case of e, variations due to the 43 0.084 0.016
5:4 0.075 0.015

cosine term dominate, so the assumption of constant coefficients
is sound (Murray & Dermott 1999). Relative to the original
Hamiltonian, we scale the momentum as

2/3
®=T <§) . )

€

The corresponding conjugate angle ¢ is simply the cosine
argument in Equation (5), although if ¢ > 0, we also need
to add 7 to the expression (Murray & Dermott 1999). That said,
the transformed Hamiltonian takes the form

Hyes = 8@ + @ — 24/20 cos(¢). (10)

This Hamiltonian is parameterized by

4 \'/3
8:0:(%) , (11)

which is a measure of the perturbed object’s proximity to exact
resonance. Finally, we note that this Hamiltonian is most easily
visualized in terms of polar coordinates, so we introduce the new
mixed canonical variables x = +/2® cos ¢ and y = /2P sin ¢
(Henrard & Lamaitre 1983). The Hamiltonian now takes the
form

S(x%2+y?) . (x> +y

2 4

Upon application of Hamilton’s equations, we see that the
stationary points of the above Hamiltonian are described by
the equation

2)2

Hiy, = 2x. (12)

X +8x—2=0. (13)

For resonant encounters aided by divergent migration, § < 3
initially. In this case, the existence of a separatrix is ensured,
and there are three real fixed points, all of which lie on the
x-axis. Two of these points are always negative, and the more
negative one is unstable, as it lies on the intersection of the inner
and the outer branches of the separatrix. This is crucial to the
estimation of eccentricity jumps during resonant encounters.

If migration is slow enough for § to be approximately constant
over one period of motion, the action, defined as

J:f@d(ﬁ:%xdy (14)

is an adiabatic invariant (Peale 1986). In other words, it is
constant except during separatrix crossing. Furthermore, when
the separatrix is far away, the trajectories of the circulating
orbits in (x, y) space are circles to a good approximation.
Consequently, we can write J = 27 ® (Murray & Dermott
1999).

When two planets approach commensurability, a wide sep-
aratrix is seen as shrinking down on the orbit of the perturbed

Notes. Results of analytical estimations of eccentric-
ity jumps during first-order resonant encounters. The
top three lines represent resonant encounters between
Uranus and Neptune, while the bottom four lines are
that between Saturn and Uranus. All planets were
taken to have initial eccentricities of ejpj; = 0.01.

planet in (x, y) space. When the inner branch of the separatrix
engulfs the planetary orbit, the process of resonance crossing is
characterized by the planet switching to the separatrix’s outer
circulating branch. The outer branch has a wider radius, thus the
increase in action. However, during this switch, the perturbed
planet must necessarily pass through the unstable stationary
point described above. Consequently, the calculation is as fol-
lows: knowing the action prior to the resonant encounter, we can
determine the value of § at the transition using Equation (13).
Recall however that § also parameterizes the Hamiltonian and
therefore determines the shape of the separatrix, while the area
engulfed by the outer branch corresponds to the new action (see
supplemental material of Tsiganis et al. 2005 for an intuitive
discussion). It can be shown that the actions before and after
resonance crossing are related by

Ji+ 7 = =273, (15)

Thus, the new eccentricity can be easily backed out.

The above analysis can also be applied to external resonances.
In this case, y in the cosine argument of the Hamiltonian (5) is
replaced by y’, and its factor /2I'/A is replaced by /2I"/A’,
since we are now concerned with an ¢’ resonance. Accordingly,
we change the scaling factors to

o= (] - l)n* - J n" + )}.ﬂ/ec’ (16)
e =™ f(a)ad)d S, 17)
me

while 8 remains the same. Note also that any indirect terms in
the expansion of the disturbing function must be accounted for
in f(a/a’). Under these transformations, Hamiltonian (10) still
applies, and so does the subsequent analysis (Murray & Dermott
1999).

The resulting estimates of eccentricity jumps for various first-
order resonant encounters between Uranus and Neptune, and
Saturn and Uranus are listed in Table 4. As can be seen from
these calculations, all first-order resonant encounters between
Uranus and Neptune produce rather small eccentricity jumps.
Therefore, we disfavor them as good options for triggering
instability scenarios in which encounters with Saturn take
place. Numerical integrations performed in the two previous
sections are suggestive of this as well. We therefore rule out
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Figure 8. Dynamical evolution of the initial configuration where initially Jupiter
and Saturn are in a 2:1 MMR, while both Saturn and Uranus, and Uranus and
Neptune are in a 4:3 MMRs. In this model, the global instability is brought
forth by Saturn and Uranus encountering a mutual 3:2 MMR. All else is as in
Figure 1.

(A color version of this figure is available in the online journal.)

the configurations where Saturn and Uranus are in a 2:1 MMR.
Resonant encounters between Saturn and Uranus, however, are
a different story: in all cases, Uranus acquires an eccentricity
comparable to 0.1. Simulations reveal that the configurations
where Saturn and Uranus are in a 3:2 MMR do not result in
strong instabilities. This is because the system is given a chance
to encounter high-order MMRs between Uranus and Neptune
and spread out before crossing the 2:1 MMR between Saturn
and Uranus. Furthermore, in order to increase the chances of
Uranus/Saturn orbital crossing, it helps to start the two planets
in the most compact stable resonance—namely the 4:3. From
here, the degeneracy lies in whether Uranus and Neptune start
out in a 3:2 or 4:3 MMR. Out of 30 numerical simulations
performed for each configuration, we only observed ice-giant/
gas-giant scattering events in the evolutions of the system where
Uranus and Neptune are in the 4:3 MMR. Particularly, 23% were
successful, and in 57% of the successful integrations, an ice
giant exhibited encounters with both gas giants. Figure 8 shows
the dynamical evolution of this configuration with time, while
Table 2 lists the final values of semimajor axes, eccentricities,
and inclinations for the planets.

Aside from Saturn’s close encounter with an ice giant,
Jupiter’s and Saturn’s migration is dominated by scattering
of planetesimals. As a result, Equation (4) approximates their
evolution well. Similarly to the previous section, when applied
to Jupiter and Saturn simultaneously, this relation can be used to
roughly estimate the starting semimajor axis of Jupiter and the
initial mgg. Setting Aag = (2)2/3a3 — (5/2)2/3af and Aa; =
a{ - aﬂ witha f = 5.2 AU yields a total scattered mass of 49 mg
and a’, = 5.5 AU. These values are in good agreement with
numerical integrations. For instance, the evolution presented
in Figure 1 started had the parameters: a;, = 5.5 AU and
mgisk = 51 mg.

4. DISCUSSION

The calculations presented in this work aim to place con-
straints on the early dynamical state of the solar system. We
began by constructing a large array of multi-resonant systems.
We then considered each one of these systems individually and
tested them against two inter-related constraints: scattering of
an ice giant from a gas giant and the outer ice giant undergoing
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a transient phase of high eccentricity. Both events are needed
to reproduce the current dynamical architecture of the solar
system.

We showed numerically that three configurations in which
Jupiter and Saturn start out in a 3:2 MMR follow evolutionary
tracks which are compatible with our constraints. The three
systems are those in which (1) Saturn and Uranus are in a
3:2 MMR while Uranus and Neptune are in a 5:4 MMR, (2)
Saturn and Uranus are in a 4:3 MMR while Uranus and Neptune
are in a 3:2 MMR, and (3) Saturn and Uranus are in a 4:3 MMR
while Uranus and Neptune are also in a 4:3 MMR. Two of
these configurations were previously thought to be unstable
(Morbidelli et al. 2007).

We showed that the classic Nice model can be reproduced
from multi-resonant initial conditions where Jupiter and Saturn
start outin a 5:3 MMR. The four particular primordial states that
we found were those where initially, (1) Saturn and Uranus are
in a 3:2 MMR while Uranus and Neptune are in a 5:4 MMR, (2)
Saturn and Uranus are in a 3:2 MMR while Uranus and Neptune
are in a 6:5 MMR, (3) Saturn and Uranus are in a 4:3 MMR
while Uranus and Neptune are in a 3:2 MMR, and (4) Saturn and
Uranus are initially in a 4:3 MMR while Uranus and Neptune
are also in a 4:3 MMR.

Finally, we used an analytical technique to rule out a large
portion of the generated multi-resonant systems, in which
Jupiter and Saturn are initially in the 2:1 MMR, based on
an argument that the eccentricities generated by any Uranus/
Neptune resonant encounters are too small. Simultaneously, we
showed that the considered constraints can be satisfied by the
dynamical evolution whose initial condition has Jupiter and
Saturn locked in a 2:1 MMR, and the other pairs of the planets
in 4:3 MMRs.

The calculations presented here are intended in part as a point
of departure for future research. There is indeed a large array of
unexplored issues. For instance, in the case of the system where
Jupiter and Saturn start out in a 2:1 MMR, it is not clear if a
single scattering event alone is enough to correctly reproduce
the secular dynamics of Jupiter and Saturn, or if a resonant
encounter is also required. In the initial condition where Jupiter
and Saturn start out in a 5:3 MMR, dynamical stability may
pose an issue (Morbidelli & Crida 2007). A further criterion of
interest is LHB. While we do not attempt to time the onset of
instability with LHB in these simulations, it is certainly fair to
ask if the dynamical evolutions presented here are compatible
with a long quiescent period preceding any resonant encounters.
Two related issues immediately follow. First, will changing the
placement of the inner boundary of the planetesimal swarm
qualitatively change the process responsible for the onset of the
instability of the dynamical evolutions? Second, how will the
effective viscosity that arises from the self-gravity of the disk
affect our results? A large-scale numerical modeling effort will
be instrumental in providing these answers.

There is certainly room for broader study of the current setup
of the problem as well. In this work, we have restricted ourselves
to four-planet multi-resonant configurations. Certainly, the idea
of initially forming more than two ice giants is not unreasonable
(Ford & Chiang 2007; see however Levison & Morbidelli
2007). Although the results of Morbidelli et al. (2007) suggest
that additional planets in a compact multi-resonant system
compromise dynamical stability, more work is needed to obtain
a good handle on this part of the problem.

In conclusion, the determination of a small subset of initial
conditions allows for a much more efficient survey of the
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parameter space. In this work, we have taken a step in this
direction. We must keep in mind that the system at hand is highly
chaotic and must in the end be studied numerically. The resulting
determinations are often probabilistic rather than conclusive;
however, the results are certainly bound to gain statistical weight
as the number of completed simulations increases. Thus, while
much progress is yet to be made, additional research carries
great value since a solid understanding of initial conditions
plays an unavoidably important role in further development of
a comprehensive model for solar system’s formation.

We thank Hal Levison, Alessandro Morbidelli, Ramon
Brasser, Gregory Laughlin, and Darin Ragozzine for useful
discussions.

REFERENCES

Brasser, R., Morbidelli, A., Gomes, R., Tsiganis, K., & Levison, H. F.
2009, A&A, 507, 1053

Chambers, J. E. 1999, MNRAS, 304, 793

Fernandez, J. A., & Ip, W.-H. 1984, Icarus, 58, 109

Ford, E. B., & Chiang, E. I. 2007, ApJ, 661, 602

Gomes, R., Levison, H. F,, Tsiganis, K., & Morbidelli, A. 2005, Nature, 435,
466

Henrard, J. 1982, Celest. Mech., 27, 3

INITIAL CONDITIONS OF THE NICE MODEL 1331

Henrard, J., & Lamaitre, A. 1983, Celest. Mech., 30, 197

Lee, M. H., & Peale, S. J. 2002, ApJ, 567, 596

Levison, H. E., & Morbidelli, A. 2007, Icarus, 189, 196

Levison, H. F., Morbidelli, A., Vanlaerhoven, C., Gomes, R., & Tsiganis, K.
2008, Icarus, 196, 258

Malhotra, R. 1995, AJ, 110, 420

Masset, F., & Snellgrove, M. 2001, MNRAS, 320, L55

Morbidelli, A., Brasser, R., Tsiganis, K., Gomes, R., & Levison, H. 2009a,
AAS /Division for Planetary Sciences Meeting Abstracts, 41, 55.03

Morbidelli, A., & Crida, A. 2007, Icarus, 191, 158

Morbidelli, A., Levison, H. F., Tsiganis, K., & Gomes, R. 2005, Nature, 435,
462

Morbidelli, A., Tsiganis, K., Crida, A., Levison, H. F., & Gomes, R. 2007, AJ,
134, 1790

Morbidelli, A., Brasser, R., Tsiganis, K., Gomes, R., & Levison, H. F.
2009b, A&A, 507, 1041

Murray, C. D., & Dermott, S. F. 1999, Solar System Dynamics (Cambridge:
Cambridge Univ. Press)

Nesvorny, D., Vokrouhlicky, D., & Morbidelli, A. 2007, AJ, 133, 1962

Peale, S. J. 1976, ARA&A, 14, 215

Peale, S. J. 1986, in Satellites, ed. J. A. Burns & M. S. Matthews (Tucson, AZ:
Univ. Arizona Press), 159

Pierens, A., & Nelson, R. P. 2008, A&A, 482, 333

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992,
Numerical Recipes in Fortran: The Art of Scientific Computing (2nd ed.;
New York: Cambridge Univ. Press)

Stewart, G. R., & Wetherill, G. W. 1988, Icarus, 74, 542

Thommes, E. W., Bryden, G., Wu, Y., & Rasio, F. A. 2008, ApJ, 675, 1538

Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. F. 2005, Nature, 435,
459


http://dx.doi.org/10.1051/0004-6361/200912878
http://adsabs.harvard.edu/abs/2009A&A...507.1053B
http://adsabs.harvard.edu/abs/2009A&A...507.1053B
http://dx.doi.org/10.1046/j.1365-8711.1999.02379.x
http://adsabs.harvard.edu/abs/1999MNRAS.304..793C
http://adsabs.harvard.edu/abs/1999MNRAS.304..793C
http://dx.doi.org/10.1016/0019-1035(84)90101-5
http://adsabs.harvard.edu/abs/1984Icar...58..109F
http://adsabs.harvard.edu/abs/1984Icar...58..109F
http://dx.doi.org/10.1086/513598
http://adsabs.harvard.edu/abs/2007ApJ...661..602F
http://adsabs.harvard.edu/abs/2007ApJ...661..602F
http://dx.doi.org/10.1038/nature03676
http://adsabs.harvard.edu/abs/2005Natur.435..466G
http://adsabs.harvard.edu/abs/2005Natur.435..466G
http://dx.doi.org/10.1007/BF01228946
http://adsabs.harvard.edu/abs/1982CeMec..27....3H
http://adsabs.harvard.edu/abs/1982CeMec..27....3H
http://dx.doi.org/10.1007/BF01234306
http://adsabs.harvard.edu/abs/1983CeMec..30..197H
http://adsabs.harvard.edu/abs/1983CeMec..30..197H
http://dx.doi.org/10.1086/338504
http://adsabs.harvard.edu/abs/2002ApJ...567..596L
http://adsabs.harvard.edu/abs/2002ApJ...567..596L
http://dx.doi.org/10.1016/j.icarus.2007.01.004
http://adsabs.harvard.edu/abs/2007Icar..189..196L
http://adsabs.harvard.edu/abs/2007Icar..189..196L
http://dx.doi.org/10.1016/j.icarus.2007.11.035
http://adsabs.harvard.edu/abs/2008Icar..196..258L
http://adsabs.harvard.edu/abs/2008Icar..196..258L
http://dx.doi.org/10.1086/117532
http://adsabs.harvard.edu/abs/1995AJ....110..420M
http://adsabs.harvard.edu/abs/1995AJ....110..420M
http://dx.doi.org/10.1046/j.1365-8711.2001.04159.x
http://adsabs.harvard.edu/abs/2001MNRAS.320L..55M
http://adsabs.harvard.edu/abs/2001MNRAS.320L..55M
http://adsabs.harvard.edu/abs/2009DPS....41.5503M
http://adsabs.harvard.edu/abs/2009DPS....41.5503M
http://dx.doi.org/10.1016/j.icarus.2007.04.001
http://adsabs.harvard.edu/abs/2007Icar..191..158M
http://adsabs.harvard.edu/abs/2007Icar..191..158M
http://dx.doi.org/10.1038/nature03540
http://adsabs.harvard.edu/abs/2005Natur.435..462M
http://adsabs.harvard.edu/abs/2005Natur.435..462M
http://dx.doi.org/10.1086/521705
http://adsabs.harvard.edu/abs/2007AJ....134.1790M
http://adsabs.harvard.edu/abs/2007AJ....134.1790M
http://dx.doi.org/10.1051/0004-6361/200912876
http://adsabs.harvard.edu/abs/2009A&A...507.1041M
http://adsabs.harvard.edu/abs/2009A&A...507.1041M
http://dx.doi.org/10.1086/512850
http://adsabs.harvard.edu/abs/2007AJ....133.1962N
http://adsabs.harvard.edu/abs/2007AJ....133.1962N
http://dx.doi.org/10.1146/annurev.aa.14.090176.001243
http://adsabs.harvard.edu/abs/1976ARA&A..14..215P
http://adsabs.harvard.edu/abs/1976ARA&A..14..215P
http://adsabs.harvard.edu/abs/1986sate.conf..159P
http://dx.doi.org/10.1051/0004-6361:20079062
http://adsabs.harvard.edu/abs/2008A&A...482..333P
http://adsabs.harvard.edu/abs/2008A&A...482..333P
http://dx.doi.org/10.1016/0019-1035(88)90120-0
http://adsabs.harvard.edu/abs/1988Icar...74..542S
http://adsabs.harvard.edu/abs/1988Icar...74..542S
http://dx.doi.org/10.1086/525244
http://adsabs.harvard.edu/abs/2008ApJ...675.1538T
http://adsabs.harvard.edu/abs/2008ApJ...675.1538T
http://dx.doi.org/10.1038/nature03539
http://adsabs.harvard.edu/abs/2005Natur.435..459T
http://adsabs.harvard.edu/abs/2005Natur.435..459T

	1. INTRODUCTION
	2. MULTI-RESONANT CONFIGURATIONS
	3. DYNAMICAL EVOLUTION
	3.1. Initial Conditions with Jupiter and Saturn in a 3:2 MMR
	3.2. Initial Conditions with Jupiter and Saturn in a 5:3 MMR
	3.3. Initial Conditions with Jupiter and Saturn in a 2:1 MMR

	4. DISCUSSION
	REFERENCES

