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ABSTRACT

Aims. We investigate the evolution of protoplanetary discs (PPDs) with magnetically driven disc winds and viscous heating.
Methods. We considered an initially massive disc with ∼0.1 M� to track the evolution from the early stage of PPDs. We solved the
time evolution of surface density and temperature by taking into account viscous heating and the loss of mass and angular momentum
by the disc winds within the framework of a standard α model for accretion discs. Our model parameters, turbulent viscosity, disc
wind mass-loss, and disc wind torque, which were adopted from local magnetohydrodynamical simulations and constrained by the
global energetics of the gravitational accretion, largely depends on the physical condition of PPDs, particularly on the evolution of
the vertical magnetic flux in weakly ionized PPDs.
Results. Although there are still uncertainties concerning the evolution of the vertical magnetic flux that remains, the surface densities
show a large variety, depending on the combination of these three parameters, some of which are very different from the surface density
expected from the standard accretion. When a PPD is in a wind-driven accretion state with the preserved vertical magnetic field, the
radial dependence of the surface density can be positive in the inner region <1−10 au. The mass accretion rates are consistent with
observations, even in the very low level of magnetohydrodynamical turbulence. Such a positive radial slope of the surface density
strongly affects planet formation because it inhibits the inward drift or even causes the outward drift of pebble- to boulder-sized solid
bodies, and it also slows down or even reversed the inward type-I migration of protoplanets.
Conclusions. The variety of our calculated PPDs should yield a wide variety of exoplanet systems.

Key words. accretion, accretion disks – ISM: jets and outflows – magnetohydrodynamics (MHD) – protoplanetary disks –
stars: winds, outflows – turbulence

1. Introduction

The evolution of protoplanetary disks (PPDs) is one of the keys
to understand planet formation. There are still several unsolved
problems, one of which is the dispersal of PPDs (Haisch et al.
2001; Hernández et al. 2008; Takagi et al. 2014, 2015). The evo-
lution and dispersal of PPDs have been extensively studied in the
framework of viscously accreting discs that undergo photoevap-
oration by the irradiation from the central star (e.g., Shu et al.
1993; Hollenbach et al. 2000; Alexander et al. 2006; Kimura
et al. 2016).

In addition to the viscous accretion and the photoevapora-
tion, the role of magnetically driven disc winds has recently been
received new attention. Suzuki & Inutsuka (2009) and Suzuki
et al. (2010) proposed that vertical outflows driven by magne-
tohydrodynamical (MHD) turbulence might be a viable mech-
anism that disperses the gas component of PPDs; turbulence is
triggered by magnetorotational instability (MRI; Velikhov 1959;
Chandrasekhar 1961; Balbus & Hawley 1991), and the Poynting
flux associated with the MHD turbulence drives vertical out-
flows. The idea of MHD turbulence-driven outflow has also been
extended by considering various effects, such as a stronger mag-
netic field (Bai & Stone 2013a), a large-scale magnetic field

(Lesur et al. 2013), and the dynamics of dust grains (Miyake
et al. 2016), whereas its mass flux is still quantitatively uncertain
(Fromang et al. 2013).

Although Suzuki et al. (2010) considered mass loss to be the
sole role of the disc wind, the disc wind in reality also carries
off the angular momentum (Blandford & Payne 1982; Pelletier
& Pudritz 1992; Ferreira et al. 2006; Salmeron et al. 2011). In
particular, a dead zone, which is an MRI-inactive region be-
cause of the insufficient ionization, is supposed to form in a PPD
(Gammie 1996; Sano et al. 2000). In a dead zone the level of
the excited turbulence is low, and it is not sufficient to sustain
the observed mass accretion onto the central star. In these cir-
cumstances, the extraction of the angular momentum by the disc
wind possibly plays a primary role in driving mass accretion (Bai
& Stone 2013b; Simon et al. 2013). Bai et al. (2016) and Bai
(2016) investigated the global evolution of PPDs in such a wind-
driven accretion state, by also taking the effect of external heat-
ing into account, and reported that a large portion of the mass is
removed by the disc wind in comparison to the accreting mass.

A critical open question concerning the disc wind from PPDs
is that the mass-loss rate. At the later stage of the evolution,
a wind footpoint that is determined by the irradiation from a
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central star is expected to primarily control the mass-loss rate
(Bai et al. 2016; Bai 2016). On the other hand, at the earlier
stage when the surface density is high, viscous heating plays
an essential role in determining the thermal properties of PPDs
(e.g., Ruden & Lin 1986; Nakamoto & Nakagawa 1994; Hirose
& Turner 2011; Oka et al. 2011; Bitsch et al. 2015). To inves-
tigate the time evolution from the early epoch, we here take the
effect of viscous heating in the global evolution of PPDs into ac-
count in addition to the loss of mass and angular momentum by
the disc wind. We focus in particular on the conditions that cre-
ate a density structure that is very different from the structure of
classic viscously accreting discs, which may help solving long-
standing problems such as the radial migration of pebbles, boul-
ders, and protoplanets. For this goal, we evaluate the mass-loss
rate from the global energetics of PPDs; the kinetic energy of the
vertical outflow is mainly supplied from the gravitational accre-
tion energy. This strategy is different from the method adopted
by Bai (2016), in which the mass-loss rate was estimated based
on the local profile of magnetically driven wind with external
heating. A comparison between the two models is provided in
Sect. 4.4.

2. Model

2.1. Basic definitions

We investigated the time evolution of PPDs with magnetically
driven disc winds. Suzuki et al. (2010) solved the evolution of
PPDs with MRI-triggered disc winds under simplified assump-
tions: the temperature is locally constant with time, and the disc
wind only contributes to the mass loss without removing addi-
tional angular momentum. In this paper, we relaxed these as-
sumptions to treat more realistic evolution of PPDs. We con-
sidered the heating by viscous accretion (Shakura & Sunyaev
1973; Nakamoto & Nakagawa 1994; Hueso & Guillot 2005) and
the effect of disc wind torque on mass accretion (Blandford &
Payne 1982; Pelletier & Pudritz 1992; Salmeron et al. 2011; Bai
& Stone 2013b)

Throughout this paper, we assume that each annulus at ra-
dial distance r from a central star almost rotates with Keplerian
frequency, ΩK

Ω ≈ ΩK =

√
GM?

r3 , (1)

where G is the gravitational constant and M? is the mass of the
central star. We considered a central star with solar mass, M? =
M�. We defined a vertical scale height, H, of a disc

H =

√
2cs

Ω
, (2)

where cs is the sound speed. Temperature T and cs are related
through

c2
s =

kBT
µmH

, (3)

where kB is the Boltzmann constant, mH is the proton mass, and
we assume mean molecular weight, µ = 2.34 (Hayashi 1981).
A different definition for the scale height from ours, cs/Ω (with-
out
√

2), is sometimes used in literatures.

2.2. Evolution of surface density

We treated the time evolution of the radial profile of surface den-
sity, Σ =

∫
dzρ, of a disc (1 + 1 D model), while basic formula

transformation is done in cylindrical coordinates, (r, φ, z). The
time evolution of Σ(r) can be expressed as (see Appendix A for
the derivation)

∂Σ

∂t
−

1
r
∂

∂r

[
2

rΩ

{
∂

∂r

(
r2

∫
dz

(
ρvrδvφ −

BrBφ
4π

))
+r2

(
ρδvφvz −

BφBz

4π

)
w

}]
+ (ρvz)w = 0, (4)

where δvφ = vφ − rΩ is the deviation from the background rota-
tion, and the subscript w stands for disc wind (see below). The
[· · · ] parenthesis of the second term represents radial mass flow,

−rΣvr =
2

rΩ

{
∂

∂r

(
r2

∫
dz

(
ρvrδvφ −

BrBφ
4π

))
+r2

(
ρδvφvz −

BφBz

4π

)
w

}
, (5)

which is derived from the radial balance of angular momentum
(Appendix A), and the third term of Eq. (4) denotes the mass
loss by the disc wind. The second term consists of the rφ and φz
components of Reynolds and Maxwell stresses. The rφ compo-
nent represents the mass accretion (or decretion) induced by the
transport of angular momentum through MHD turbulence. We
used the following parametrization based on the α-prescription
introduced by Shakura & Sunyaev (1973):∫

dz
(
ρvrδvφ −

BrBφ
4π

)
≡

∫
dzραrφc2

s ≡ Σαrφc2
s , (6)

where αrφ is the mass-weighted vertical average of αrφ. αrφ is
a nondimensional parameter normalized by gas pressure (ρc2

s )
that describes the transport of angular momentum. We consid-
ered αrφ to originate from the MHD turbulence induced by MRI.
αrφ(<∼1) depends on physical conditions of PPDs, such as the ion-
ization and the strength of poloidal magnetic field; see Sect. 2.6
for our adopted values. Although we did not separate the contri-
butions from the Reynolds stress (ρvrδvφ) and from the Maxwell
stress (−BrBφ/4π > 0), the latter usually dominates the former
by a factor of ∼4 in accretion discs with MRI turbulence (Sano
et al. 2004; Pessah et al. 2006; Hawley et al. 2011) .

αrφ is an effective turbulent viscosity, and it is mathemat-
ically related to viscosity, ν, appeared in a hydrodynamical
equation,

αrφc2
s = −νr

∂Ω

∂r
≈

3
2
νΩ, (7)

where the second equality comes from the condition of the
Keplerian rotation. The definition of α is not consistent through-
out the literature; for example, ν ≈ αtHcs, is often used conven-
tionally (e.g., Balbus & Hawley 1998). These two α’s are related
by αt ≈

√
2

3 αrφ, where note again that the definition of H (Eq. (2))
is also not consistent in the literatures.

The φz component of the second term of Eq. (4) indicates
the mass accretion induced by the angular momentum loss with
magnetized disc winds, which was not taken into account in
Suzuki et al. (2010). The term of (· · · )w represents the sum of
the angular momentum flux density carried away by the magne-
tized outflows from the top and bottom surfaces of a disc. While
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Reynolds (ρδvφvz) and Maxwell (−BφBz/4π(>0)) stresses con-
tribute to the φz stress as well, the latter usually dominates in
magnetized accretion discs (e.g., Pelletier & Pudritz 1992), sim-
ilarly to the rφ component. This magnetic braking effect needs
to be evaluated in the wind region where it operates; this is the
reason why the subscript w is necessary in this term. To incor-
porate the effect of the wind torque into the 1+1D (t–r) model,
αφz needs to be evaluated by physical quantities at the midplane,
and we adopted a similar parametrization to the rφ component,(
ρδvφvz −

BφBz

4π

)
w
≡ (ρc2

sαφz)w ≡ (ρc2
s )midαφz, (8)

where we define the nondimensional stress, αφz, normalized by
density, ρmid(= Σ/(

√
πH)), at the midplane,

The third term, (ρvz)w, of Eq. (4) represents the sum of the
mass loss by the vertical outflows from the upper and lower disc
surfaces. Suzuki et al. (2010) introduced the nondimensional
mass flux normalized by the density and the sound speed at the
midplane:

(ρvz)w = Cw(ρcs)mid. (9)

We model Cw in Sect. 2.3.
Substituting Eqs. (6), (8), and (9) into Eq. (4), we finally have

∂Σ

∂t
−

1
r
∂

∂r

[
2

rΩ

{
∂

∂r
(r2Σαrφc2

s ) + r2αφz(ρc2
s )mid

}]
+Cw(ρcs)mid = 0. (10)

We solved this equation for different sets of the three parameters,
αrφ, αφz, and Cw. We note that Bai (2016) recently derived essen-
tially the same equation in a different form using mass-loss rate
and mass accretion rate instead of the above three-dimensionless
parameters.

2.3. Mass-loss rate by disc winds: energetics

We assumed that the energy of the disc wind originates from
gravitational accretion. Then, the mass flux of the disc wind, Cw,
is constrained by αrφ and αφz. A starting point for this energet-
ics constraint is the conservation equation of total MHD energy
(e.g., Balbus & Hawley 1998),

∂

∂t

[
1
2
ρv2 + ρΦ +

p
γ − 1

+
B2

8π

]
+ ∇·

[
u

(
1
2
ρv2 + ρΦ +

γp
γ − 1

)
+

B
4π
× (u × B) + Fot

]
= 0, (11)

where p is the gas pressure, γ is a ratio of specific heats,
Φ = −GM?/r = −r2Ω2

K ≈ −r2Ω2 is the gravitational po-
tential by a central star, and Fot is other contributions to en-
ergy flux in addition to the MHD energy, such as thermal con-
duction and radiative heating or cooling. We considered thin
discs with nearly Keplerian rotation (Eq. (1)), and hence, we
can assume rΩ � vr, δvφ, vz, cs, B/

√
4πρ, and safely neglect

the terms concerning gas pressure. Leaving dominant terms in
Eq. (11) we finally obtained an approximated energy equation as
(Appendix B; Eq. (B.8))

∂

∂t

(
−Σ

r2Ω2

2

)
+

1
r
∂

∂r

[
rΩ

{
∂

∂r
(r2Σαrφc2

s ) + r2αφz(ρc2
s )mid

}
+r2ΩΣαrφc2

s

]
+ (ρvz)wEw + Frad = 0, (12)

where Ew is the specific total energy of the gas in the disc wind;
(ρvz)wEw is the energy carried away by the disc wind. Frad is
radiation loss from the top and bottom surfaces,

Frad = 2σSBT 4
surf , (13)

where σSB is the Stefan-Boltzmann constant and Tsurf is the
temperature at the disc surfaces. We here neglected the energy
gain by the irradiation from a central star (Kusaka et al. 1970;
Dullemond et al. 2002; Davis 2005) and other external sources.
The effect of stellar irradiation was taken into account later when
we estimated the temperature.

Equation (12) contains two terms with αrφ; the first term in
{· · · } denotes the liberated gravitational energy by mass accre-
tion, and second term outside {· · · } represents heating by turbu-
lent dissipation, which phenomenologically corresponds to vis-
cous heating. The wind torque, αφz, does not contribute to this
effective viscous heating because the disc wind does not trans-
port angular momentum within the disc but simply removes it,
although αφz contributes to the mass accretion.

Using Eq. (10), we can eliminate the time derivative term
of Eq. (12) to derive an energetics constraint on the disc wind
(Appendix B):

(ρvz)w

(
Ew +

r2Ω2

2

)
+ Frad =

Ω

r

[
∂

∂r
(r2Σαrφc2

s ) + r2αφz(ρc2
s )mid

]
−

1
r
∂

∂r

(
r2ΣΩαrφc2

s

)
(14)

=
3
2

ΩΣαrφc2
s + rΩαφz(ρc2

s )mid. (15)

The physical meaning of Eq. (14) is that the energy carried
away by disc winds (first term on the left-hand side; l.h.s. here-
after) and radiation (second term on the l.h.s.) is determined
by the gravitational energy liberated by accretion (first term on
the right-hand side; r.h.s. hereafter) and effective viscous heat-
ing (second term on the r.h.s.). We used the Keplerian rotation
(Eq. (1)) to transform Eqs. (14) to (15). The term with αrφ in-
cludes contributions from the gravitational accretion and from
the effective viscous heating.

Suzuki et al. (2010) assumed that Ew ≥
3
2 v

2
z is the condi-

tion to drive the vertical outflow to a large distance (Eq. (22) of
Suzuki et al. 2010). However, we adopt Ew ≥ 0, because this is
the sufficient condition for the wind material to reach z ⇒ ∞
(v2

z > 0 in Eq. (B.5)). Following this consideration, we derived
the mass flux of the disc wind that satisfies the energetics con-
straint with Ew = 0 from Eqs. (14) and (15) in a nondimensional
form:

Cw,e +
2Frad

r2Ω2(ρcs)mid
=

2
r3Ω(ρcs)mid

∂

∂r
(r2Σαrφc2

s ) +
2cs

rΩ
αφz

−
2

r3Ω2(ρcs)mid

∂

∂r
(r2ΣΩαrφc2

s ) (16)

=
3
√

2πc2
s

r2Ω2 αrφ +
2cs

rΩ
αφz (17)

= 3
√
π/2h2αrφ +

√
2hαφz,

where Cw,e stands for the mass flux constrained by the energet-
ics. We here used ΣΩ =

√
2π(ρcs)mid, and for the last equality

we introduced an aspect ratio, h ≡ H/r =
√

2cs/rΩ.
It is crucial to determine the fractions of the energy trans-

ferred to the disc winds (first term on the l.h.s. of Eq. (16)) and
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to the radiation loss (second term). Following the standard ac-
cretion disc model (Shakura & Sunyaev 1973), the available en-
ergy from the viscous accretion is transferred to the radiation. In
the magnetocentrifugal driven wind model (Blandford & Payne
1982), the angular momentum carried by disc winds is directly
related to the wind mass-loss rate. Based on these models, we
may infer that the αrφ term in Eq. (17) regulates the Frad term
and the αφz term determines Cw,e. However, the situation is not
this simple, because disc winds can be launched solely by the
αrφ term, which was shown by local shearing box simulations
with zero-wind torque, αφz = 0 (Suzuki & Inutsuka 2009). MRI
excites MHD turbulence and the associated Poynting flux drives
vertical outflows. The original energy source in this mechanism
is the energy released by the gravitational accretion.

Despite these complicated problems, we adopted two differ-
ent strategies to determine Cw,e and Frad in this paper. The first
strategy is that Frad is equal to the effective viscous heating and
all the liberated gravitational energy is transferred to the disc
winds. The first corresponds to the first line on the right-hand
side of Eq. (16), and the second corresponds to the second line,
and then,

Cw,e = max
(

2
r3Ω(ρcs)mid

∂

∂r
(r2Σαrφc2

s ) +
2cs

rΩ
αφz, 0

)
(18)

Frad = max
(
−

1
r
∂

∂r
(r2ΣΩαrφc2

s ), 0
)
, (19)

where we avoided negative values of Cw,e and Frad.
In the second choice we left the uncertainty to a parameter,

εrad, that determines the fractional energy to the radiation loss:

Cw,e = (1 − εrad)
3
√

2πc2
s

r2Ω2 αrφ +
2cs

rΩ
αφz

 (20)

= (1 − εrad)
[
3
√
π/2h2αrφ +

√
2hαφz

]
Frad = εrad

[
3
2

ΩΣαrφc2
s + rΩαφz(ρc2

s )mid

]
. (21)

Since the first method is an extreme limit for the maximum disc
wind flux, we sought the other extreme limit of great radiation
loss in the second method; we adopted εrad = 0.9. We name the
first case (Eqs. (18) and (19)) strong DW and the second case
(Eqs. (20) and (21) with εrad = 0.9) weak DW from here on; DW
stands for disc wind.

On the other hand, local MHD shearing box simulations
also give the mass flux of disc winds (Suzuki & Inutsuka 2009;
Suzuki et al. 2010). We constrained the mass flux of the local
simulations, Cw,0, by the energetics of the global accretion to
give the Cw that we use in our calculations,

Cw = min(Cw,0,Cw,e), (22)

where the adopted Cw,0 is presented in Sect. 2.6.

2.4. Temperature: viscous heating and radiative equilibrium

By referring to the terms concerning αrφ in Eq. (14), the viscous
heating rate can be scaled as ∼ΣΩc2

s . Since Σ decreases with t
and Ωc2

s has a negative dependence on r, the viscous heating is
anticipated to play a primary role in determining the temperature
in the inner region (<∼10 au) and at the early stage of the evolu-
tion of a PPD. As Σ decreases with the dispersal of the gas com-
ponent, the disc evolves passively by the illumination from the
central star. A number of works have been published that treat

this problem with detailed models that include viscous heating
and stellar irradiation (e.g., Garaud & Lin 2007; Oka et al. 2011;
Bitsch et al. 2015).

If the viscous heating is more effective in a PPD than stellar
irradiation, then the temperature at the midplane, Tmid, will be
higher than Tsurf in Eq. (13). On the other hand, if the viscous
heating is ineffective and the stellar irradiation dominates, then
Tsurf will be higher than Tmid. The radiative transfer needs to be
solved to determine the vertical temperature profile. However,
since our main focus here is to investigate the roles of magnet-
ically driven disc winds, we adopt the simple prescription for
the temperature that was introduced by Nakamoto & Nakagawa
(1994). We defined Tvis as the temperature at the midplane de-
termined by viscous heating,

2σSBT 4
vis =

(
3
8
τR +

1
2τP

)
Frad (23)

where τR and τP are the Rosseland mean optical depth and the
Planck mean optical depth measured at the midplane. τR is esti-
mated from the surface density and the Rosseland mean opacity,
κR, (Hueso & Guillot 2005) as

τR = κRΣ/2, (24)

where we use

κR =


4.5

(
T

150 K

)2
cm2 g−1 T < 150 K

4.5 cm2g−1 150 K ≤ T ≤ 1500 K,
0 cm2g−1 T > 1500 K

(25)

based on the opacity of dust grains (Nakamoto & Nakagawa
1994, see also Baillié et al. 2015). The Planck mean optical depth
can be approximated as

τP = max(2.4τR, 0.5) (26)

(Nakamoto & Nakagawa 1994; Hueso & Guillot 2005), where
we give the lower bound on τP to obtain the pre-factor of
Eq. (23),

(
3
8τR + 1

2τP

)
⇒ 1, for the optically thin limit.

We can also define the temperature under the radiation equi-
librium, which is determined by the irradiation from the central
star,

Treq = T1au

( r
1 au

)p
· (27)

We adopted T1au = 280 K and p = −1/2 based on the sim-
ple radiative equilibrium for the original minimum mass solar
nebula (MMSN) (Hayashi 1981; Hayashi et al. 1985). We note
that a slightly different scaling is derived, when the geometry of
a flared disc is taken into account (Chiang & Goldreich 1997;
Chiang & Youdin 2010).

When a PPD becomes optically thin and the viscous heating
is ineffective, not only Tsurf but also Tmid approaches Treq. To
take both viscous heating and stellar irradiation into account, we
tool the sum of these two temperatures,

T 4 = T 4
vis + T 4

req, (28)

for the representative z-averaged temperature, T , to estimate cs
in Eq. (3).
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2.5. Initial and boundary conditions

We calculated the evolution of Σ of the initial profile, ∝r−3/2

(Hayashi 1981; Hayashi et al. 1985), with a cut-off radius rcut

Σint = Σ1au

( r
1 au

)−3/2
exp

(
−

r
rcut

)
· (29)

The original MMSN by Hayashi (1981) considered Σ1au = 1.7 ×
103 g cm−2 with a sharp cut-off at 36 au, which gives the initial
disc mass, Mdisc,int = 0.013 M�. We adopted a ten times larger
Σ1au = 1.7 × 104 g cm−2 but slightly smaller rcut = 30 au in
this paper, which gives Mdisc,int = 0.11 M�. Mass accretion rates
are observationally obtained as a function of time (Gullbring
et al. 1998; Hartmann et al. 1998; Ricci et al. 2010; Manara
et al. 2016), which corresponds to the age of the central stars,
while the MMSN corresponds to a late stage of the evolution.
Therefore, we chose the massive initial disc to directly compare
our results to these observations.

We solved Eq. (10) to track the time evolution of Σ in the
region from rin = 0.01 au to rout = 104 au with grid spacing,
∆r ∝

√
r. At the inner and outer boundaries, r = rin and = rout,

we imposed ∂
∂r (Σr3/2) = 0, which corresponds to the zero-torque

boundary condition (Lynden-Bell & Pringle 1974); the αrφ term
in Eq. (10), ∂

∂r (r2Σαrφc2
s ), is zero for a constant αrφ and c2

s ∝ r−1/2

(Eq. (27) with p = −1/2).

2.6. Parameters

The free parameters of our model are turbulent viscosity, αrφ,
disc wind mass flux, Cw,0, and disc wind torque, αφz. We would
like to note that, although we here call αrφ turbulent viscosity,
large-scale magnetic fields possibly contribute to αrφ in realistic
situations (Turner & Sano 2008; Johansen et al. 2009).

2.6.1. Turbulent viscosity – αrφ

We compared two cases with spatially uniform αrφ = 8 × 10−3,
and 8 × 10−5. αrφ = 8 × 10−3 was adopted from the result of
local shearing box MHD simulations with sufficient ionization
(Suzuki et al. 2010, see also e.g. Sano et al. 2004; Sai et al. 2013)
in which MHD turbulence is fully developed by the MRI. When
the ionization is not sufficient and non-ideal MHD effects such
as resistivity, Hall diffusion, and ambipolar diffusion are impor-
tant, a magnetically inactive dead zone forms (Gammie 1996)
and αrφ is smaller (Sano et al. 1998; Lesur & Longaretti 2007;
Simon et al. 2011; Okuzumi & Hirose 2011; Flock et al. 2012;
Gressel et al. 2015). We adopted αrφ = 8 × 10−5 for such MRI-
inactive circumstances. Although we assumed constant αrφ for
simplicity, αrφ would be spatially dependent on r and evolve with
time in realistic situations, because a dead zone generally forms
only in the inner region and its size shrinks with time (e.g., Sano
et al. 2000; Suzuki et al. 2010; Dzyurkevich et al. 2013). For
future elaborate studies, we need to take this spatially and time-
dependent αrφ into account.

2.6.2. Disc wind mass flux – Cw,0

The mass flux of disc winds, Cw,0, was also adopted from the
local simulations. Cw,0 is controlled by the density at the wind
onset region, which is located at the upper regions where the
magnetic energy becomes comparable to the thermal energy. For
the MRI turbulence, depending on the net vertical magnetic field,
the density at the wind footpoint is ≈10−5−10−4 times the density

at the midplane, which gives Cw,0 ≈ 10−5−10−4. Here, we add
a note of caution: the local simulations might overestimate the
mass-loss rate of the disc winds because the returning mass to
the simulation box cannot be properly taken into account. Suzuki
et al. (2010) reported that the mass flux is reduced by a factor
of 2–3 in simulations with a larger vertical box size. Fromang
et al. (2013) also pointed out that the reduction factor could be
as large as ∼10, but their numerical scheme and other detailed
set-up were different from those used in Suzuki et al. (2010).
These results show that we must choose Cw,0 carefully from the
local simulations.

When we take the face value of the local simulations assum-
ing the ideal MHD condition, Cw,0 ≈ 4 × 10−5 for the weak
vertical magnetic field (Suzuki & Inutsuka 2009). We here set
a more conservative value, Cw,0 = 2 × 10−5, for the MRI-active
cases with αrφ = 8×10−3. If a dead zone is formed, then the mass
flux of the disc winds is slightly reduced, but it does not become
as low as αrφ because the disc winds are driven from the sur-
face regions with sufficient ionization; Cw,0 is only moderately
weakened by a factor of a few. We adopted Cw,0 = 1 × 10−5 for
αrφ = 8×10−5. Moreover, the actual mass flux, Cw, is constrained
by the energetics, Eq. (22). We also assumes, in the same way as
αrφ, constant Cw,0 for simplicity. While in realistic situations it
would depend on r and vary with time, it does not change as
much as αrφ.

2.6.3. Disc wind torque – αφz

We tested two types of the parametrization for the wind torque:
(i) constant αφz = 1 × 10−4; and (ii) density dependent with a
cap,

αφz = min

10−5
(

Σ

Σint

)−0.66

, 1

 . (30)

We name (i) constant torque and (ii) Σ-dependent torque from
now on. αφz was estimated by local MHD simulations by Bai
(2013), who reported αφz ∼ 10−5−10−3 with a positive depen-
dence on the strength of the net vertical magnetic field, αφz ∝

(B2
z/8π(ρc2

s )mid)0.66. ρmid is proportional to Σ, while Bz is deter-
mined by the inward dragging and outward diffusion of magnetic
flux (Lubow et al. 1994; Okuzumi et al. 2014; Guilet & Ogilvie
2014, see also Sect. 4.4). If Bz decreases with the dispersal of
gas (decrease of Σ), then αφz will stay approximately constant,
which corresponds to (i) constant torque; if Bz does not decrease
that much, then αφz has a negative dependence on Σ and will in-
crease with time, which corresponds to (ii) Σ-dependent torque.
We tested these two extreme limits for the effect of the wind
torque affected by the evolution of the vertical magnetic flux.

3. Results

In this section, we present the properties of the time evolution of
PPDs in the MRI-active and MRI-inactive conditions.

3.1. MRI-active cases

In this subsection we show results of four cases of MRI-active
PPDs, which are summarized in Table 1. The first three cases
take disc winds into account. The magnetic braking by the disc
winds is only considered in the first case. The last case (no DW)
does not take disc winds into account by substituting εrad = 1
and Cw,0 = 0 in Eqs. (20)–(22).
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Fig. 1. Comparison of time evolutions of four MRI-active PPDs with
αrφ = 8 × 10−3. The four cases are (i) strong DW + Σ-dependent torque
(red); (ii) strong DW + zero-torque (green); (iii) weak DW + zero-
torque (purple); and (iv) no DW (black), summarized in Table 1. Top:
radial profiles of temperatures, T , at t = 0 (dotted lines), 105 (dashed
lines), and 106 (solid lines) years. We note that the initial temperatures
of the four cases are almost the same and that the red and green solid
lines at t = 106 yr overlap at T = Treq (Eq. (27)). Bottom: radial profiles
of surface densities, Σ, at t = 0 (dotted lines), 105 (long dashed lines),
106 (solid lines), and 107 (short dashed lines) years. We note that the
radial range of the top panel is more zoomed-in than the radial range of
the bottom panel.

Figure 1 compares radial profiles of T and Σ of these four
cases. The top panel compares the evolution of the tempera-
tures of these four cases. The initial temperature profiles in
0.1 au <∼ r <∼ 5 au, are kept more or less constant <∼1500−2500 K
because dust grains sublimate and the opacity drops above that
temperature (Eq. (25); see also Baillié et al. 2015). Furthermore,
the initial profiles are almost the same for the four cases, except
for different energetics constraints on Cw and wind torques, αφz.
In particular, the weak DW case (adopting Eqs. (20) and (21);
purple dotted line) gives a very similar profile to those of the
strong DW cases (adopting Eqs. (18) and (19); red and green dot-
ted line), which needs explanation. In the inner region, <∼10 au,
T ≈ Tvis (Eq. (28)) in these cases, and then T is mainly deter-
mined from Frad by Eq. (23). Recalling Σint ∝ r−3/2, we derive
− 1

r
∂
∂r (r2ΣΩαrφc2

s ) ≈ 3
2 ΣΩαrφc2

s for c2
s ∼ r−1/2. Since the αφz(0

or =10−5) term in Eq. (21) is negligible in comparison to the
αrφ(=8 × 10−3) term, both strong DW and weak DW conditions
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Fig. 2. Comparison of nondimensional mass flux of disc winds, Cw, of
the three MRI-active cases except for the no DW case in Table 1. at
t = 0 (dotted lines) and 106 yr (solid lines).

give similar Frad in Eqs. (19) and (21), and accordingly, the ini-
tial temperatures of these cases are similar each other.

In the no DW case (black lines) the viscous heating region
(Tvis > Treq) survives until a later time although its size shrinks.
In contrast, the temperatures decrease more rapidly in the other
cases with disc winds. In the two strong DW cases (red and green
lines), the temperatures are mainly determined by Treq in the en-
tire region after t >∼ 106 yr because the surface densities decrease
rapidly by the disc winds in the inner region to give Treq � Tvis,
while Tvis is no longer negligible in the weak DW case (purple
lines) at t = 106 yr.

The bottom panel of Fig. 1 compares the evolution of the sur-
face densities. The disc winds reduce Σ particularly in small r re-
gions (Suzuki et al. 2010). A comparison between the two zero-
torque cases (green and purple lines) shows the difference be-
tween the strong DW and weak DW conditions. As expected, the
strong DW case shows faster decrease of Σ because of the higher
disc wind mass flux, Cw, which is shown in Fig. 2. At t = 0 the
strong DW case (green dotted line) gives quite small Cw ≈ 0
below the displayed range of Fig. 2 because ∂

∂r (r2Σαrφc2
s ) ≈ 0

for Σint ∝ r−3/2 in Eq. (18). However, as Σ decreases in an
inside-out manner and the Σ profile changes, Cw increases and
at t = 106 yr this case (green solid line) yields larger Cw than
the weak DW case (purple solid line), in which Cw instead de-
creases with time owing to the decrease in temperature (∝c2

s ;
Eq. (21)). We note that Cw = 0 in the outer region, r > 90 au,
of the strong DW + zero-torque case because the gas moves out-
ward ( ∂

∂r (r2Σαrφc2
s ) < 0 in Eq. (18)) in the outer region and the

gravitation energy is not released. In realistic situations, how-
ever, a moderate level of external heating by stellar irradiation or
other sources would cause disc winds to be launched by relaxing
the energetics constraint (see Sect. 4.1), because the gas is only
weakly bound by the gravity in the outer region.

The non-zero wind torque also reduces Σ faster (red lines in
the bottom panel of Fig. 1) by the enhanced accretion and disc
wind mass-loss. A comparison between the red and green lines
in Fig. 2 indicates that the removal of angular momentum by the
φz stress additionally contributes to the gravitational energy by
the accretion to enhance Cw (Eq. (18)). As a result, Cw is not
constrained by the energetics, Cw,e, in the almost entire region
but is determined by Cw,0(= 2 × 10−5) at t = 106 yr (red solid
lines). The constant Cw = Cw,0 implies faster dispersal of Σ for
smaller r because the mass-loss timescale becomes proportional
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Table 1. Parameters for MRI-active cases.

Case αrφ Cw,0 αφz Energetics

Strong DW + Σ-dependent torque 8 × 10−3 2 × 10−5 10−5(Σ/Σint)−0.66 Eqs. (18) and (19)
Strong DW + zero-torque 8 × 10−3 2 × 10−5 0 Eqs. (18) and (19)
Weak DW + zero-torque 8 × 10−3 2 × 10−5 0 Eqs. (20) and (21) with εrad = 0.9

No DW 8 × 10−3 0 0 Eqs. (20) and (21) with εrad = 1
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Fig. 3. Mass-loss rate by disc wind, Ṁz, (solid lines) and mass accretion
rate induced by the rφ stress, Ṁr,rφ (dashed lines) and by the φz stress,
Ṁr,rφ (dotted lines) at t = 106 yr of the four MRI-active cases in Table 1.
Ṁz = 0 for the no DW case and Ṁr,φz = 0 for the zero-torque cases.

to the Keplerian time (Suzuki et al. 2010; Ogihara et al. 2015a,b),
and the slope of Σ is positive in the inner region. The slope of Σ
is again negative in the very inner region, r < 0.1 au, at later
time, t >∼ 107 yr. This is because αφz is constrained by the cap
value = 1 (Eq. (30) there.

Figure 3 presents the radial profile of the mass-loss rate by
disc winds (solid lines),

Ṁz(r) = 2π
∫ rout

r
rdr(ρvz)w = 2π

∫ rout

r
rdrCw(ρcs)mid, (31)

and the mass accretion rate,

Ṁr(r) = −2πrΣvr, (32)

at t = 106 yr. Here, Ṁr can be separated into two parts, Ṁr =
Ṁr,rφ + Ṁr,φz, following Eq. (5) with help of Eqs. (6) and (8) (see
also Simon et al. 2013): mass accretion induced by the rφ stress
(dashed lines),

Ṁr,rφ(r) = −
4π
rΩ

∂

∂r

(
r2Σαrφc2

s

)
, (33)

and that by the φz stress (dotted line)

Ṁr,φz(r) = −
4π
Ω

rαφz(ρc2
s )mid. (34)

We note that Ṁz(r) in our definition is the total mass loss out-
side r, while the disc wind mass loss at r is sometimes defined
as the mass lost inside r (e.g., Owen et al. 2011; Bai et al. 2016;
Bai 2016). We chose our definition to show how Ṁr is converted
into Ṁz as mass accretes inward.

The no DW case shows a spatially uniform accretion rate,
Ṁr,rφ = 1.5 × 10−8 M� yr−1 in r < 10 au (black dashed line).
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Fig. 4. Time evolution of Ṁz (solid) and Ṁr = Ṁr,rφ + Ṁr,φz (dashed) at
r = 0.0225 au of the four MRI-active cases in Table 1.

When disc winds are taken into account, the mass accretion
rate decreases with decreasing r as the mass is lost by the disc
winds. When we evaluate Ṁ at r = 0.0225 au (≈4.8 R�),
which is one grid point outside rin = 0.01 au and approxi-
mately twice the radius of typical T Tauri stars, Ṁr,rφ is re-
duced to 2.5 × 10−9 M� yr−1 in the weak DW case (purple
dashed line). Instead, the mass is largely lost by the disc winds,
Ṁz = 1.0 × 10−8 M� yr−1 at r = 0.0225 au (purple solid line).
This situation is more drastic in the strong DW + zero-torque
case, and Ṁz ≈ 100Ṁr,rφ (green lines) at r = 0.0225 au. We
note that Ṁ might have to be evaluated at a slightly outer loca-
tion when the inner disc is truncated by the magnetosphere of the
central star (e.g., Shu et al. 1994; Hirose et al. 1997; Dyda et al.
2015); in this case, Ṁr is not as small as the above evaluated
values.

The strong DW + Σ-dependent torque case (red lines) gives
very small Ṁr,rφ at r = 0.0225 au because Σ is small there
(Fig. 1). On the other hand, the accretion by the φz stress is non-
zero only in this case of the four cases displayed in Fig. 3, and
Ṁr,φz is still kept = 2.4 × 10−9 M� yr−1 at r = 0.0225 au be-
cause αφz increases to ≈0.1 in the inner region; the disc is in a
wind-driven accretion phase.

Figure 4 compares the time evolutions of Ṁz (solid) and
Ṁr = Ṁr,rφ + Ṁr,φz (dashed) at r = 0.0225 au of these four cases.
The obtained t − Ṁr trends can be directly compared to the ob-
served distribution in the t − Ṁr plane (Gullbring et al. 1998;
Hartmann et al. 1998; Ricci et al. 2010; Manara et al. 2016).
Although Ṁr of the strong DW + zero-torque case is smaller
than the observed lower edge (Ṁr ∼ 10−9 M� yr−1 at t = 106 yr),
Ṁr of the other three cases are well inside the observed range.

3.2. MRI-inactive cases

We present results of four MRI-inactive cases, which are sum-
marized in Table 2. We focus on effects of the wind torque on the
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Table 2. Parameters for MRI-inactive cases.

Case αrφ Cw,0 αφz Energetics
Weak DW + Σ-dependent torque 8 × 10−5 10−5 10−5(Σ/Σint)−0.66 Eqs. (20) and (21) with εrad = 0.9
Strong DW + Σ-dependent torque 8 × 10−5 10−5 10−5(Σ/Σint)−0.66 Eqs. (18) and (19)

Strong DW + constant torque 8 × 10−5 10−5 10−4 Eqs. (18) and (19)
Strong DW + zero-torque 8 × 10−5 10−5 0 Eqs. (18) and (19)
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Fig. 5. Same as Fig. 1 but for four MRI-inactive cases with αrφ = 8 ×
10−5. The four cases are (i) strong DW + Σ-dependent torque (red);
(ii) weak DW + Σ-dependent torque (blue); (iii) strong DW + constant
torque (grey); and (iv) strong DW + zero-torque (green), summarized
in Table 2. The initial temperatures of the three strong DW cases (red,
grey, and green dotted lines) are the same and the red and grey solid
lines at t = 106 yr overlap at T = Treq (Eq. (27)).

evolution of PPDs in this subsection. Figure 5 compares radial
profiles of T and Σ. The temperatures (top panel) of these cases
are systematically lower than the temperatures of the MRI-active
cases (the top panel of Fig. 1) because smaller αrφ gives smaller
Frad (Eqs. (19) and (21)) and accordingly lower Tvis (Eq. (23)).

Smaller αrφ also leads to slower evolution; when the MRI-
active and MRI-inactive cases are compared, which adopt the
same strong DW + zero-torque parameters (green lines in Figs. 1
and 5), the decrease of Σ is much slower in the MRI-inactive
case. This is first because the accretion itself is slower owing to
the smaller αrφ and second because the disc wind mass flux is
strongly constrained by the energetics to give smaller Cw (Fig. 6
in comparison to Fig. 2).
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Fig. 6. Same as Fig. 2 but for the MRI-inactive cases of Table 2.
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Fig. 7. Comparison of αφz at t = 0 (dotted lines), 105 (long dashed
lines), 106 (solid lines), and 107 (short dashed lines) years of the non-
zero-torque cases of Table 2.

The evolution of Σ is largely affected by non-zero wind
torque αφz, because its effect is relatively important for lower
turbulent viscosity, αrφ. The addition of the spatially constant
αφz = 10−4 (constant torque, grey lines) greatly reduces Σ. The
two Σ-dependent torque cases (red and blue lines) give positive
slopes of Σ in the inner region, which we explain below.

Figure 7 presents the time evolution of αφz for the Σ-
dependent torque cases. αφz increases with time from the inside
to the outside as Σ decreases in an inside-out manner. As a result,
the disc wind mass flux, Cw, is not constrained by the energetics
(Eqs. (18) and (20)) but is chosen to be the constant Cw,0(=10−5)
in Eq. (22) (Fig. 6), which leads to the inside-out dispersal of the
gas. In addition, the accretion is faster for smaller r because αφz
is larger for smaller r. The positive slopes of Σ can be explained
by the combination of these effects.
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Fig. 8. Same as Fig. 3 but for the MRI-inactive cases of Table 2.
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Fig. 9. Same as Fig. 4 but for the MRI-inactive cases of Table 2.

Although we assumed spatially uniform αrφ and Cw,0, they
are also anticipated to depend on the strength of net vertical
magnetic field, B2

z/8π(ρc2
s )mid. In this case, αrφ and Cw,0 could

inversely correlate with Σ (Suzuki et al. 2010), which addition-
ally enhances the positive slopes of the surface densities.

Figure 8 compares Ṁz (Eq. (31); solid), Ṁr,rφ (Eq. (33);
dashed), and Ṁr,φz (Eq. (34); dotted) of the MRI-inactive four
cases at t = 106 yr. In the zero-torque case (green lines) the
mass is dominantly lost by the disc winds, Ṁz ≈ 100Ṁr,rφ at
r = 0.0225 au. In the constant torque case (grey lines) the mass
accretion is mainly driven by the φz stress, the total accretion rate
is also largely dominated by the mass loss by the disc winds.
Adopting the Σ-dependent torque condition changes the situa-
tion; the mass accretion is driven by the φz stress, and the accre-
tion rate is well above 10−9 M� yr−1, that is, the weak DW case
gives Ṁr,φz ≈ Ṁz ≈ 5 × 10−9 M� yr−1 at r = 0.0225 au.

Figure 9 shows the time evolution of Ṁz (solid) and Ṁr =
Ṁr,rφ + Ṁr,φz (dashed) at r = 0.0225 au of the same four cases.
Ṁr(0.0225 au) of the cases of zero or constant torque (green and
grey dashed lines) are smaller than the observed range of t − Ṁr
(Gullbring et al. 1998; Hartmann et al. 1998; Ricci et al. 2010;
Manara et al. 2016). On the other hand, Ṁr(0.0225au)’s of the Σ-
dependent torque cases (red and blue dashed lines) are consistent
with the observed t − Ṁr. Although the mass accretion rate of

the strong DW case is lower than the wind mass-loss rate (red
lines), it is not so small; Ṁr(0.0225 au) = 6.0 × 10−9 M� yr−1 at
t = 105 yr, 1.7× 10−9 M� yr−1 at 106 yr, and 5.2× 10−10 M� yr−1

at 107 yr.

4. Discussion

4.1. Uncertainties

Our model has the three free parameters, αrφ, Cw,0, and αφz.
Since these parameters are not yet tightly constrained by obser-
vations or theoretical calculations, we calculated the evolution of
PPDs in the wide ranges of the parameters to test various possi-
bilities (Sect. 3). Uncertainties of the three parameters is largely
attributed to the uncertainty of the initial distribution and to the
evolution of the poloidal magnetic flux because these three pa-
rameters depend on the vertical magnetic field strength (Suzuki
et al. 2010; Okuzumi & Hirose 2011; Bai & Stone 2013b).

The evolution of poloidal magnetic flux in accretion discs
has been studied by a number of groups (Lubow et al. 1994;
Rothstein & Lovelace 2008; Guilet & Ogilvie 2012; Suzuki &
Inutsuka 2014) and has recently been specifically applied to
PPDs (Okuzumi et al. 2014; Guilet & Ogilvie 2014; Takeuchi
& Okuzumi 2014). Accreting gas drags the vertical magnetic
field inward, while the vertical field also possibly diffuses out-
ward by magnetic diffusivity, which consists of both effective
turbulent resistivity and non-ideal MHD effects (Sect. 2.6). The
radial motion of the vertical magnetic flux is determined by the
balance between these inward dragging and outward diffusion.
The direction of the magnetic flux itself is still uncertain, which
depends on the initial configuration of the poloidal magnetic
field, in addition to the combination of accretion and magnetic
diffusion.

One future possibility is that we finally obtain a universal
tendency for the time evolution of vertical magnetic fields. In
this case, we can constrain our free parameters, and evolutions
of surface densities will not show a variety but converge to a
unified trend. On the other hand, if the evolution of the poloidal
magnetic flux is different in different PPDs, depending on phys-
ical circumstances, such as initial magnetic flux and disc mass,
and stellar irradiation, which controls the non-ideal MHD ef-
fects through the ionization, then the evolutions of surface den-
sities are also different in different PPDs as shown so far, which
should lead to a wide variety of the subsequent planet formation
processes and final exoplanet systems.

At present, the unified picture of the evolution of the poloidal
magnetic field is not well understood at all, and therefore it
is worth pursuing various possibilities. Our calculations took
the effect of the evolution of the vertical magnetic field in the
wind torque into account; the two cases of constant αφz and Σ-
dependent αφz correspond to the case in which the magnetic en-
ergy decreases in the same manner as the decrease of the surface
density and the case with the preserved magnetic flux, respec-
tively. The Σ-dependent torque cases show a runaway behavior
of the gas dispersal in an inside-out manner; once the gas is dis-
persed, αφz increases, which further accelerates the dispersal of
the gas. This is the main reason why the positive slope of Σ is
produced. Although we did not consider this effect, αrφ and Cw,0
depend similarly on Σ, which causes an additional runaway dis-
persal of the gas (Suzuki et al. 2010, see also Sect. 3.2). The case
with constant αφz even gives the moderately positive slope (Fig.
5). Within the two cases we tested, the positive slope of Σ on r
is not peculiar, but a common feature. However, we should note
that our calculations do not cover all the possible distributions
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and evolutions of the vertical magnetic field. Therefore, it would
be premature to conclude that the positive slope of Σ is a natural
outcome of the accretion induced by the magnetically driven disc
wind. For example, when the outward diffusion of vertical mag-
netic field is effective and the magnetic flux is dispersed more
rapidly than the gas, the effect of the wind torque is suppressed
with time. In this case, the Σ profile would maintain a normal
negative slope.

We now discuss other ambiguities of the mass flux of the
disc winds, in addition to the uncertainty of the vertical magnetic
field. At the moment, the mass flux, Cw,0, is available only from
local MHD simulations (e.g. Suzuki & Inutsuka 2009; Fromang
et al. 2013; Bai & Stone 2013a). As discussed in Sect. 2.6, these
local simulations may overestimate the mass flux. Although we
adopted the conservative Cw,0 by reducing the simulation results
by half (see Sect. 2.6), it might be even lower (Fromang et al.
2013). We here briefly discuss how the results are affected and
particularly focus on the slope of the surface density when Cw,0
is smaller.

As shown in Figs. 2 and 6,Cw is already constrained by the
energetics. In most cases except for the MRI-inactive cases with
Σ-dependent torque, the energetics constraint already suppresses
Cw in the inner region. Therefore, adopting a smaller Cw,0 does
not affect Cw in the inner region but reduces Cw in the outer re-
gion, which suppresses the gas dispersal there. Hence, the slope
of Σ would be more positive in these cases. On the other hand,
in the MRI-inactive cases with Σ-dependent torque, the ener-
getics constraint suppresses Cw at the relatively outer location,
r ∼ 10 au. In these cases, a smaller Cw,0 reduces Cw in the inner
region. As a result, the obtained large positive Σ slopes in these
cases (Fig. 6) would be reduced to moderately positive ones.

When we determined the mass flux of the disc winds, we
applied the energetics constraint from the gravitational accre-
tion without external heating or momentum inputs (Sect. 2.3;
Eq. (22)). This treatment is expected to give a reasonable con-
straint at the early phase when viscous heating dominates the ra-
diative heating or other effects from the central star. However, at
the later time this is not the case because the surface density de-
creases and the viscous heating becomes relatively unimportant.
Effects of external heating or momentum inputs need to be con-
sidered. They weaken the energetics constraint to give a larger
Cw in the region with Cw,e < Cw,0 (see Sect. 4.5).

4.2. Radial drift of pebbles and boulders

Although calculations still include uncertainties that mainly stem
from the ambiguity of the evolution of poloidal magnetic fields,
the positive slopes of the surface densities obtained in Sect. 3
are a possible consequence of the evolution of PPDs with disc
winds, as discussed in Sect. 4.1. These positive slopes raise vari-
ous interesting implications for planet formation. In this and the
next subsections, we demonstrate how the obtained Σ profiles
affect the solid component of PPDs by studying cases that show
large positive slopes of Σ.

The first example is the radial drift of solid bodies through
gas drag. In general the rotation velocity of the gas in PPDs is
slightly slower than the local Keplerian velocity because of the
radial pressure gradient force. On the other hand, solid particles
rotate with Keplerian velocity without the support from the gas
pressure. As a result, the solid particles feel a head wind from
the gas, which causes them to drift inward. Considering the mo-
mentum balance, solid particles with nondimensional stopping
time ≈1, which corresponds to a meter-sized spherical boulder
at 1 au of the MMSN, experience the radial drift most severely
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Fig. 10. Comparison of normalized pressure gradient force,
−

(
1

ρmid

∂pmid
∂r

)
/(2rΩ2), of MRI-inactive PPDs at t = 0 (dotted),

105 (solid), and 106 yr (dashed). The MRI-inactive cases with Σ-
dependent torque in Table 2, blue lines for weak DW and red lines
for strong DW, which corresponds to the red and blue lines in Fig. 5,
are compared to the MRI-inactive no DW case with Cw,0 = 0 and
αrφ = 8 × 10−5 (black lines).

(Weidenschilling 1977; Nakagawa et al. 1986), and their drift
timescale in the midplane is given by

τdr,max ≈
1

ηΩK
, (35)

where η is pressure gradient force normalized by the twice of
centrifugal force,

η = −
1
ρmid

∂pmid

∂r
1

2rΩ2
K

· (36)

In the usual condition, η ∼ 10−3−10−2 > 0, which causes solid
particles to drift inward. Smaller η leads to slower inward drift;
if η < 0, the direction of the drift is opposite and solid particles
move outward.

Figure 10 shows η of the two MRI-inactive (αrφ = 8 × 10−5)
cases with Σ-dependent torque of Table 2 (red and blue lines; the
same as in Figs. 5–9) in comparison to the no disc wind (no DW)
case with the same αrφ = 8 × 10−5 (black lines). We here derive
pmid from Σ by

pmid = ρmidc2
s =

ΣΩcs
√

2π
· (37)

The no DW case shows η remains within 10−3−10−2, which
implies fast inward drift. In contrast, η’s are considerably re-
duced in the Σ-dependent torque cases. In particular, the red lines
(strong DW case) show negative η in part (red lines are truncated
between 0.04–0.4 au at t = 105 yr and 1–2 au at t = 106 yr),
which indicates that solid particles move outward in this region.
As a result, the solid component will accumulate around the
outer edge of the negative η region, which offers suitable condi-
tions for planet formation (Kobayashi et al. 2012). Furthermore,
this location moves outward with time; the suitable site for the
planet formation also moves outward.

4.3. Type I migration

Another interesting implication of the positive Σ slopes is that an
inward migration of low-mass planets (type I migration) can be
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slowed down or even reversed. The torque for type I migration
can be expressed by the sum of Lindblad and corotation torques.
The corotation torque is more sensitive to the slope of the gas
surface density and can be positive for positive slopes.

Here we estimate the migration rate of Earth-mass plan-
ets embedded in MRI-inactive PPDs with the surface densities
shown in Fig. 5. We used the formulae of Paardekooper et al.
(2011) to calculate the migration timescale, ta (see Eqs. (8)–(16)
in Ogihara et al. (2015a) for details of the formulae). We in-
troduced a parameter of the efficiency of inward type I migra-
tion, CI ≡ −ta,TTW/ta, where ta,TTW is the migration time in a
locally isothermal disc derived by a linear analysis by Tanaka
et al. (2002). The migration timescale is defined as ta ≡ a/(−ȧ);
positive migration time means inward migration.

Figure 11 shows the migration efficiency for the Σ-dependent
torque case (the red and blue curves in Fig. 5) at t = 106 yr
in comparison to the no DW case (black line). The migration
rate depends on the planetary mass and the orbital eccentricity;
Earth-mass planets with zero eccentricity were considered here.
The blue curve shows that the type I migration is slowed down
inside a few au by several factors from ta,TTW. The migration
is even reversed (outward migration) between 0.1–0.5 au in the
red curve (strong DW case). Thus the disc wind would also play
important roles in the late stage of planet formation.

4.4. Comparison to previous work

Recently, Bai (2016) also presented a global evolution model for
PPDs with magnetically driven disc winds. However, none of
the cases in his model calculations resulted in a surface density
with a drastic positive slope relative to r as some of our cases
have shown. The two main differences between his setup and
ours is the mass-loss rate by the disc wind and the evolution of
the vertical magnetic field.

Our calculations, which started from a relatively massive ini-
tial disc (Mdisc,int = 0.11 M�) to study the evolution from the
early stage, neglected the heating by the irradiation from a cen-
tral star but considered viscous heating, and the mass-loss rate
was constrained by the global energetics of the viscous accre-
tion. In contrast, the initial disc mass adopted by Bai (2016) is
lower, =0.035 M�, to focus on the later stage of the evolution,
and the location of the wind base in the inner region r <∼ 10−30

au is determined from heating by far-ultraviolet (FUV) irradia-
tion from a central star. Here, the penetration depth of the FUV
was assumed to be spatially constant. Since the surface density
decreases with r, the penetration depth normalized by the scale
height is deeper for larger r. Therefore, the mass loss by the
disc wind affects the depletion of the gas at outer locations more
severely than in our model setting, and consequently a positive
slope of Σ was not obtained in the results of Bai (2016).

As for the evolution of the vertical magnetic field, Bai (2016)
considered two cases: in the first case the total magnetic flux
is preserved with time, and in the second case it decreases in
the same manner as the total mass. In both cases, the plasma
β = (B2

z/8π(ρc2
s )mid)−1 at the midplane was assumed to be spa-

tially uniform. Even in the first case, the vertical magnetic field
was redistributed to follow the density profile (Armitage et al.
2013). This spatially uniform β was also adopted in our constant
torque setting. In contrast, our Σ-dependent torque assumed the
preserved vertical magnetic field at each location, which led to a
runaway inside-out dispersal and produced a large positive slope
of Σ (Sect. 3), compared to the above-mentioned cases with the
spatially uniform β.

4.5. Stellar wind and photoevaporation

We did not take the effects of a central star into account except to
determine the radiative equilibrium temperature, Treq (Eq. (27)).
However, the stellar wind and irradiation affect the evolution of
PPDs.

In our calculations, the mass flux of the disc wind is Cw,e
constrained by the energetics of accretion, and it can be smaller
than Cw,0 determined by the mass loading expected from the lo-
cal MHD simulations. When this is the case, gaseous clouds are
lifted up by vertical upflows but cannot stream out to large z;
they float in the disc atmosphere or return to the disc because
they are bound by the gravity of the central star. The stellar wind
from the central star would change this situation.

The mass flux of the stellar wind from pre-main sequence
stars is much higher, by an order of 4–6, than that of the cur-
rent solar wind partly because of the energy supply from accre-
tion (Hirose et al. 1997; Matt & Pudritz 2005; Cranmer 2009).
Even after the accretion terminates, the mass flux of the stellar
wind is expected to be still high because of the high magnetic
activity (Wood et al. 2005; Cranmer & Saar 2011; Suzuki et al.
2013). The strong stellar wind would blow away the clouds that
are lifted up by the disc winds (see Suzuki et al. 2010, for the en-
ergetics). In the framework of our model, the contribution from
the stellar wind would increase Cw,e in Eqs. (16) and (17), in the
small r region. The increase of Cw in the inner region reduces Σ
there, which also produces a larger positive slope of Σ.

In this discussion, we neglected the roles of global magnetic
fields that are rooted in the central star and in the PPD. When the
field strength is strong enough, the stellar wind region and the
disc wind region are separated by a boundary layer formed by
magnetospheric ejections (Zanni & Ferreira 2013). In this case
the stellar winds will not contribute to driving the disc winds. It
depends on the relative strength of the magnetic energy to the
sum of the dynamic pressure and the gas pressure whether the
interaction between the stellar winds and the disc winds is ef-
ficient. When the magnetic energy is weaker, the interaction is
stronger, and vice versa.

Photoevaporation by irradiation from the central star or
neighbouring stars has been extensively studied as a viable
source for dispersing PPDs (e.g., Shu et al. 1993; Hollenbach
et al. 2000; Adams et al. 2004). The mass-loss rate by the
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photoevaporation, which depends on the flux in different spec-
tral ranges, FUV, extreme UV, and X-rays, yields a wide vari-
ety of ∼10−10−10−8 M� yr−1 (Alexander et al. 2006; Ercolano
et al. 2008; Gorti & Hollenbach 2009; Owen et al. 2010; Tanaka
et al. 2013). After the mass accretion rate or the mass-loss rate
by the disc wind decreases below this level, the photoevaporation
would quickly disperse PPDs (e.g. Armitage 2011); our results
would be affected at the late stage of the evolution.

However, we expect that the evolution of the Σ profile of a
photoevaporating PPD is qualitatively different from our results
with the magnetically driven disc wind because the photoevapo-
ration mostly affects the disc dispersal in the outer region where
the sound speed of the heated gas exceeds the local escape ve-
locity from the central star. Although the photoevaporation could
create an inner hole by the combination with the viscous accre-
tion, the local slope of Σ remains negative except at the inner
edge of the hole (e.g. Alexander et al. 2006; Owen et al. 2011).
This is in clear contrast to the evolution with the magnetically
driven disc wind.

5. Summary

We have studied the global evolution of PPDs by considering
viscous heating and magnetically driven disc winds. We con-
structed a global model from fundamental MHD equations for
the time-evolution of PPDs. One of the key features of our model
is that the mass-loss rate by the disc wind is derived from both
the local MHD shearing box simulations and the global energet-
ics of the gravitational accretion. Our model has three dimen-
sionless parameters, which are turbulence viscosity, αrφ, disc
wind mass flux, Cw, and disc wind torque, αφz, and these three
parameters are constrained by the above-mentioned global en-
ergetics. We performed model calculations in a wide parameter
range to cover both MRI-active PPDs and MRI-inactive PPDs
with dead zones.

We started our calculations from the relatively massive disc,
Mdisc.int = 0.11 M�. Initially, the viscous heating dominantly de-
termines the temperature in the inner region <10 au; for instance,
T ' 1500 K at 1 au, which is much higher than the temperature
estimated from the radiative equilibrium. As the surface density
decreases with time, the temperature approaches the radiative
equilibrium temperature. In the cases that consider the disc wind
mass loss, the gas in the inner region is rapidly dispersed before
106 yr, and the viscous heating is negligible in determining the
temperature after t >∼ 106 yr, whereas in the no disc wind cases
the viscous heating is not negligible even up to several 106 yr.

The mass accretion rates decrease with time as the surface
densities decrease, regardless of whether the accretion is in-
duced by turbulent viscosity or wind torque. The obtained ac-
cretion rates are consistent with observed accretion rates for a
wide range of the adopted parameters.

The three free parameters, αrφ, Cw,0, and αφz still contain am-
biguities, arising mainly from the uncertainty of the evolution of
vertical magnetic fields. We have pursued various possibilities
by testing different combinations of these parameters. The de-
tailed profiles of the temperatures and the surface densities show
a wide variety. Since physical properties of a PPD affect planet
formation processes that take place in the disc (e.g., Kobayashi
et al. 2016), the obtained variety of our PPD calculations would
be a source of the observed variety of exoplanet systems (e.g.
Howard et al. 2012).

The wind-driven accretion can promote an increase in disc
surface density with r in the inner region; this is the case in
our calculations for MRI-inactive PPDs when the distribution

of the vertical magnetic flux is preserved with time evolution
(Sect. 3.2). This large positive slope of the surface density sup-
presses or reverses the inward drift of pebble- or boulder-sized
solids through gas drag (Sect. 4.2) and the inward migration of
protoplanets (Sect. 4.3), which is a favourable condition for the
planet formation.
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Appendix A: Derivation of the equation
for the surface density

In this appendix, we derive Eq. (10) from the conservation equa-
tions for angular momentum and mass. Under the axisymmetric
approximation, a general MHD expression of the conservation
of angular momentum (e.g., Balbus & Hawley 1998) is

∂

∂t
(ρrvφ) +

1
r
∂

∂r

[
r2

(
ρvrvφ −

BrBφ
4π

)]
+
∂

∂z

[
r
(
ρvφvz −

BφBz

4π

)]
= 0. (A.1)

The azimuthal velocity, vφ, is decomposed into the mean
Keplerian flow and perturbation,
vφ = rΩ + δvφ. (A.2)
We use the α prescription (Shakura & Sunyaev 1973) for the
second and third terms of Eq. (A.1):

ρvrvφ −
BrBφ
4π

= ρvrrΩ + ρ

(
vrδvφ −

BrBφ
4πρ

)
≡ ρvrrΩ + ραrφc2

s , (A.3)

and

ρvφvz −
BφBz

4π
= ρrΩvz + ρ

(
δvφvz −

BφBz

4πρ

)
≡ ρrΩvz + ραφzc2

s . (A.4)

We integrate Eq. (A.1) along the vertical direction, z, with
Eqs. (A.3) and (A.4) from the bottom surface to the top surface
of a disc, and we have
∂

∂t
(Σr3Ω) +

∂

∂r

[
r2Σ

(
vrrΩ + αrφc2

s

)]
+r2

[
(ρvz)wrΩ + αφz(ρc2

s )mid

]
= 0, (A.5)

where αrφ =
∫
ραrφdz/Σ is the mass-weighted vertical average.

The third term, which represents the angular momentum loss
from both surfaces, is derived from[
ρrΩvz + ραφzc2

s

]
w

= [ρvz]wrΩ + (ρc2
s )midαφz, (A.6)

where the subscript w stands for disc wind. αφz is the angular
momentum loss by the φz component of the stress normalized
by the density and the sound speed at the midplane, Eq. (8).

The equation of mass conservation is
∂Σ

∂t
+

1
r
∂

∂r
(rΣvr) + (ρvz)w = 0. (A.7)

By combining Eq. (A.7) multiplied by r3Ω and Eq. (A.5), we
have

rΣvr
∂

∂r
(r2Ω) +

∂

∂r
(r2Σαrφc2

s ) + r2αφz(ρc2
s )mid = 0, (A.8)

which determines the accretion rate,

rΣvr = −
2

rΩ

[
∂

∂r
(r2Σαrφc2

s ) + r2αφz(ρc2
s )mid

]
, (A.9)

where we here assumed the Keplerian rotation to derive
∂
∂r (r2Ω) = rΩ

2 .
By substituting Eq. (A.9) into Eq. (A.7), we finally have the

equation for the time evolution of Σ (Eq. (10)):

∂Σ

∂t
−

1
r
∂

∂r

[
2

rΩ

{
∂

∂r
(r2Σαrφc2

s ) + r2αφz(ρc2
s )mid

}]
+(ρvz)w = 0,

Appendix B: Energetics of accretion discs

A general MHD expression of the total energy conservation un-
der the axisymmetric approximation is

∂

∂t

[
1
2
ρv2 + ρΦ +

p
γ − 1

+
B2

8π

]

+
1
r
∂

∂r

r
vr

1
2
ρv2 + ρΦ +

γ

γ − 1
p +

B2
φ + B2

z

4π


−

Br

4π
(vφBφ + vzBz) + Fot,r

}]
+
∂

∂z

vz

1
2
ρv2 + ρΦ +

γ

γ − 1
p +

B2
r + B2

φ

4π


−

Bz

4π
(vrBr + vφBφ) + Fot,z

]
= 0, (B.1)

where we refer to Eq. (11) for the definition of each vari-
able. Decomposing vφ by Eq. (A.2) and assuming rΩ �

vr, δvφ, vz, cs, B/
√

4πρ in a disc, we rewrite Eq. (B.1) with leav-
ing dominant terms. The time-derivative term becomes

∂

∂t

[
1
2
ρv2 +

p
γ − 1

+ ρΦ +
B2

8π

]
≈
∂

∂t

[
1
2
ρv2 + ρΦ

]

≈
∂

∂t

[
1
2
ρ(rΩ + δvφ)2 − ρr2Ω2

]
≈
∂

∂t

(
−

1
2
ρr2Ω2

)
, (B.2)

where we set rΩδvφ = 0 after the azimuthal average. The r-
derivative term, except for Fot,r, can be approximated as

∂

∂r

r
vr

1
2
ρv2 + ρΦ +

γ

γ − 1
p +

B2
φ + B2

z

4π


−

Br

4π
(vφBφ + vzBz)

}]
≈

∂

∂r

[
r
{
vr

(
1
2
ρv2 + ρΦ

)
−

Br

4π
vφBφ

}]
≈

∂

∂r

[
r
{
−ρvr

r2Ω2

2
+ ρrΩ

(
vrδvφ −

BrBφ
4πρ

)}]

=
∂

∂r

[
r
{
−ρvr

r2Ω2

2
+ ρrΩαrφc2

s

}]
, (B.3)

where the second ≈ is derived from vr

(
v2

2 + Φ
)
≈

vr

[
(rΩ+δvφ)2

2 − r2Ω2
]
≈ −vr

r2Ω2

2 + ρrΩvrδvφ, and for the last
equality Eq. (A.3) is used. We set the z-derivative term, except
for Fot.z, to be

∂

∂z

vz

1
2
ρv2 + ρΦ +

γ

γ − 1
p +

B2
r + B2

φ

4π


−

Bz

4π
(vrBr + vφBφ)

]
≡
∂

∂z
(ρvzEw). (B.4)

In the wind region, the kinetic energy will eventually dominate
(Pelletier & Pudritz 1992),

Ew ≈
v2

z

2
(z⇒ ∞), (B.5)
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provided that the disc wind is accelerated with increasing z.
By substituting Eqs. (B.2)–(B.4) into Eq. (B.1), we obtain

∂

∂t

(
−ρ

r2Ω2

2

)
+

1
r
∂

∂r

[
r
{
−ρvr

r2Ω2

2
+ ρrΩαrφc2

s + Fot,r

}]
(B.6)

+
∂

∂z
(ρvzEw + Fot,z) = 0.

We integrate Eq. (B.7) from the bottom surface to the top surface
along z:

∂

∂t

(
−Σ

r2Ω2

2

)
+

1
r
∂

∂r

[
r
{
−Σvr

r2Ω2

2
+ ΣrΩαrφc2

s

}]
+(ρvz)wEw + Frad = 0, (B.7)

where (ρvz)wEw and Frad are the energy loss by disc winds and
radiation from the top and bottom surfaces. Here Frad is from
Fot. By substituting Eq. (A.9) into Eq. (B.7), we have

∂

∂t

(
−Σ

r2Ω2

2

)
+

1
r
∂

∂r

[
rΩ

{
∂

∂r
(r2Σαrφc2

s ) + r2αφz(ρc2
s )mid

}
+r2ΩΣαrφc2

s

]
+ (ρvz)wEw + Frad = 0, (B.8)

By multiplying Eq. (10) by r2Ω2/2, we have

∂

∂t

(
Σ

r2Ω2

2

)
− r2Ω2 ∂

∂r

[
1

rΩ

{
∂

∂r
(r2Σαrφc2

s ) + r2αφz(ρc2
s )mid

}]
+(ρvz)w

r2Ω2

2
= 0. (B.9)

By combining Eqs. (B.8) and (B.9), we finally obtain a simple
relation for the energetics of disc wind, Eqs. (14) and (15)

(ρvz)w

(
Ew +

r2Ω2

2

)
+ Frad

=
Ω

r

[
∂

∂r
(r2Σαrφc2

s ) + r2αφz(ρc2
s )mid

]
−

1
r
∂

∂r
(r2ΣΩαrφc2

s )

=
3
2

ΩΣαrφc2
s + rΩαφz(ρc2

s )mid.

When the disc wind is neglected, (ρvz)w = 0, αφz = 0, Eq. (15) is
simplified to

σSBT 4 =
3
4

ΩΣαrφc2
s , (B.10)

where we use Eq. (13). Since the mass accretion rate is approxi-
mated as Ṁr = −2πΣrvr ≈ 2πΣr(αrφc2

s/rΩ), Eq. (B.10) is rewrit-
ten as

σSBT 4 =
3

8π
ṀrΩ

2 =
3

8π
GM?Ṁr

r3 , (B.11)

which is consistent with the expression for the standard accretion
disc in the outer region (Shakura & Sunyaev 1973).
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