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Abstract

The orbital structure of the asteroid belt holds a record of the Solar System’s dynamical history. The current
belt only contains ~ 10~ Earth masses yet the asteroids’ orbits are dynamically excited, with a large spread
in eccentricity and inclination. In the context of models of terrestrial planet formation, the belt may have
been excited by Jupiter’s orbital migration. The terrestrial planets can also be reproduced without invoking a
migrating Jupiter; however, as it requires a severe mass deficit beyond Earth’s orbit, this model systematically
under-excites the asteroid belt. Here we show that the orbits of the asteroids may have been excited to their
current state if Jupiter and Saturn’s early orbits were chaotic. Stochastic variations in the gas giants’ orbits
cause resonances to continually jump across the main belt and excite the asteroids’ orbits on a timescale of tens
of millions of years. While hydrodynamical simulations show that the gas giants were likely in mean motion
resonance at the end of the gaseous disk phase, small perturbations could have driven them into a chaotic but
stable state. The gas giants’ current orbits were achieved later, during an instability in the outer Solar System.
Although it is well known that the present-day Solar System exhibits chaotic behavior, our results suggest that

the early Solar System may also have been chaotic.

1. INTRODUCTION

The distribution of asteroids strongly constrains planet for-
mation models. While the terrestrial planets’ orbits are nearly
circular and coplanar, the orbital eccentricities of asteroids are
excited, filling parameter space from e = 0 to 0.3, and incli-
nation ¢ = 0 to 20°. The asteroid belt total mass is also only
~ 1073 Earth masses.

There are two basic views on how the inner solar system
was built, with different implications for the asteroid belt. In
one view, the asteroid belt contained a few Earth masses in
solid material but was rapidly depleted and excited by dy-
namical mechanisms. Gravitational scattering of asteroids by
a population of Moon- to Mars-sized planetary embryos orig-
inally in the belt can promote significant depletion and exci-
tation of the belt (Wetherill| (1978/1992);|Agnor et al.|(1999);
Wetherill| (1986)); |(Chambers & Wetherill (1998)); Petit et al.
(1999); (Chambers| (2001)); [Petit et al.| (2001}, |2002)); |O’Brien
et al.[(2007)). One problem with this scenario in the context
of terrestrial planet formation is that Mars analogs produced
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in these simulations are far more massive than the actual one
(e.g., Raymond et al.| (2004, |2006)); Morishima et al.| (2008);
Raymond et al.| (2009); |(O’Brien et al.| (2006); [Izidoro et al.
(2013); Lykawka & Ito| (2013)); [Izidoro et al.| (2014); [Fischer|
& Cieslal (2014)). The Grand Tack scenario (Walsh et al.
2011) — which invokes the inward-then outward migration
of Jupiter through the asteroid belt region — removes enough
mass beyond 1 AU to explain why Mars is much smaller than
Earth and to sculpt the asteroid belt in a way that will become
consistent with its current structure via subsequent dynamical
evolution (Roig & Nesvorny|[2015} |Deienno et al.|2016). In
the opposite view, the asteroid belt was low-mass even at early
times (Izidoro et al.|2015bj [Levison et al.|[2015; [Moriarty &
Fischer[2015; Drazkowska et al.|2016)), and Jupiter and Saturn
did not migrate across the asteroid belt. In this framework, a
primordial low mass asteroid belt should be far less dynami-
cally excited than the observed one (Izidoro et al.[2015b), and
what remains to be explained is the belt’s dynamical excita-
tion (for a recent review see [Morbidelli et al.|(2015)).

In this paper we propose a novel mechanism for explaining
the dynamical excitation of the asteroid belt. The mechanism
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relies on the chaotic evolution of Jupiter and Saturn’s orbits at
early times. In section 2 we present an example for the origin
of chaos in Jupiter and Saturn’s early orbits. In section 3 we
present our results for the chaotic excitation of the asteroid
belt. In section 4 we more fully address the possible origins
of chaos in the giant planets’ orbits, and present alternative
scenarios to trigger chaos. In section 5 we discuss on the im-
plication of our results for models of solar system formation.
Finally, in section 6 we briefly summarize our findings.

2. AN EXAMPLE OF CHAOS IN JUPITER AND
SATURN’S EARLY ORBITS

The excitation of the asteroid belt took place after the
gaseous protoplanetary disk had dissipated, yet it is during
the disk phase that the gas giants’ orbits could have changed
most dramatically due to orbital migration. Embedded in the
gaseous disk, Jupiter and Saturn systematically migrate into
mean motion resonance (MMR), where their orbital periods
are related by a ratio of small integers (Masset & Snellgrove
2001; Morbidelli & Cridal 2007; Pierens & Nelson| 2008
D’ Angelo & Marzari|[2012} [Pierens et al.|[2014). The most
common are the 3:2 and 2:1 MMRs. The present-day orbits
of the giant planets were achieved later, after the gaseous disk
was gone, during a dynamical instability (Nesvorny & Mor-
bidelli[2012)). In our model, the asteroids were excited be-
tween the dissipation of the disk and the instability.

In hydrodynamical simulations Jupiter and Saturn’s migra-
tion typically leads to deep capture in resonance, with orbits
characterized by regular motion. However, very small per-
turbations may push them into chaos (Sandor & Kley|[2006;
Batygin & Morbidelli[2013). Perturbations come from (i) dis-
persal of the gaseous disk and the corresponding loss of its
damping (Papaloizou & Larwood|2000; |Cresswell & Nelson
2008); (ii) gravitational forcing from the ice giants, both dur-
ing their inward migration (Izidoro et al.[2015a) and after the
dissipation of the gaseous disk; and (iii) gravitational scatter-
ing of small remnant planetary embryos and planetesimals in
the giant planet region.

We performed a suite of numerical experiments to show
that seemingly trivial perturbations can trigger chaos in the
gas giants’ orbits. Figure 1 shows one simulation in which
a regularly-evolving configuration of Jupiter and Saturn (the
JSREG simulation), locked in 2:1 resonance, became chaotic
as a result of the ejection of a Mars-sized embryo from the
system. To perform this simulation we used the Mercury in-
tegrator (Chambers||1999). The system was composed by the
central solar mass star, the fully formed Jupiter and Saturn in
the 2:1 MMR, and a Mars-mass planetary embryo. Jupiter
was initially at 5.25 AU, Saturn at ~8.33 AU, and the plane-
tary embryo at 12 AU. The gas giants eccentricities were ini-
tially 0.025 and their mutual orbital inclination 0.5 degrees.
The planetary embryo started with zero orbital eccentricity
and inclination. We used an integration timestep of 100 days
and assumed that the gaseous disk was already fully dissi-
pated.

While the planetary embryo in Fig. 1 was only 1/4000-th
the combined mass of the gas giants, it triggered chaos. The
gas giants’ orbits were chaotic but dynamically stable for long
timescales, consistent with a late dynamical instability that re-
arranged their orbits (Tsiganis et al.|[2005; Morbidelli et al.
2007 Levison et al.[2011). The perturbed giant planets even
remained in 2:1 resonance with modest (but chaotic) eccen-
tricities and inclinations ( see for example Fig. 2). Depend-
ing on the nature and strength of the perturbation, chaos was

generated in up to 100% of our simulations starting from a
regular, resonant configuration (see also section 3.2). In fact,
stochastic forcing from turbulent density fluctuations during
the disk phase may have pushed the planets out of (deep) res-
onance (Adams et al.|2008; Lecoanet et al.[2009; Pierens et al.
2011)), onto nearby orbits where the density of chaos is high
(see Appendix).
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FIG. 1.— The onset of chaos in a characteristic dynamical simulation.
Jupiter and Saturn started in the JSREG configuration, locked in 2:1 MMR
with low eccentricities (starting eccentricities of 0.025 for both planets)
and exhibiting regular motion. The evolution of their orbital eccentrici-
ties/inclinations are shown in the top/bottom panel. Gravitational scattering
of a Mars-mass embryo initially at 12 AU triggered chaos in the giant planets’
orbits. The planets remained in resonance, as confirmed by libration of the
2:1 MMR critical angle 2A54¢ — A jup — @ jup, ON chaotic but long-term
stable orbits. Agq¢, Ajup, and @ .y are Saturn’s mean longitude, Jupiter’s
mean longitude and longitude of pericenter, respectively. The initial condi-
tions of this simulation are provided in the Appendix.

This simulation (Fig. 1) represents a simple proof of con-
cept; a regular orbital configuration of Jupiter and Saturn can
easily be converted into a chaotic one. The perturbation re-
quired must be strong enough to transition the system to a
new dynamical state but not so strong as to make the sys-
tem dynamically unstable. The magnitude of the perturba-
tion in the simulation from Fig 1 is entirely plausible, as it
is likely that some leftovers remained when the protoplane-
tary disk dissipated. Indeed, the so-called “late veneer” repre-
sents geochemical evidence that planetary leftovers remained
scattered throughout the inner Solar System after the Moon-
forming impact on Earth, long after the dissipation of the disk
(e.g., Day et al.|(2007); [Walker| (2009)); Bottke et al.| (2010);
Jacobson et al.| (2014)). In section 4 we present additional
scenarios for generating chaos in Jupiter and Saturn’s early
orbits.

3. CHAOTIC EXCITATION OF THE ASTEROID BELT

We now turn our attention to showing how the asteroids’
orbits may have been excited by chaos in the orbits of Jupiter
and Saturn. We used the Symba (Duncan et al.|{1998) and
Swift (Levison & Duncan|1994), Mercury (Chambers| 1999)
and Rebound (Rein & Spiegel|2014; Rein & Tamayo|2015)
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integrators to perform our simulations of the belt excitation.
Asteroids were modeled as massless test particles. The in-
tegration timestep in all our simulations was at most 1/20th
the orbital period of the innermost body in the system. We
stress that we are aware of an issue with Symba5 which com-
promises the performance of the integrator in the case where
planets have close-encounters every orbital period. When this
kind of evolution takes place it degrades the symplectic na-
ture of the integrator causing large errors. This may be the
case for example when Jupiter and Saturn evolve in a compact
resonant configuration (e.g. 3:2 mean motion resonance). To
make sure the chaos observed in our simulations have no nu-
meric origin we have tested an ample number of integrators
over different simulations presented here. In Rebound we test
both the WHFAST and IAS15 integrators and in Mercury we
performed tests with the Bulirsch—Stoer and “Hybrid” inte-
grators.

Figure 2 shows the dynamical evolution of Jupiter and Sat-
urn in the JSREG and JSCHA simulations, which we use as
fiducial cases to illustrate and contrast mechanisms of exci-
tation of the asteroid belt. These two simulations were gen-
erated from almost identical initial orbital arrangements; the
only difference is that Jupiter and Saturn’s eccentricities were
each set to 0.025 in the JSREG simulation (resulting in regular
motion) and to 0.03 in the JSCHA simulation (which triggered
chaos). In both simulations, Jupiter and Saturn’s semi-major
axes are initially 5.4 and about ~8.57 AU, respectively. Their
mutual initial orbital inclinations are 0.5 degrees. Their ar-
gument of pericenter and longitude of the ascending node are
set zero. Jupiter’s mean anomaly is initially zero and Saturn’s
mean anomaly is initially 180 degrees.

Figure 2 shows the evolution of the gas giant’s period ra-
tio, eccentricities, orbital inclinations, and an angle associ-
ated with the 2:1 mean motion resonance between the plan-
ets. In both simulations the planets are in 2:1 resonance
since the critical angle ¢ = 2Agqt — Ajup — @Wup librates
around zero degree, where Ay, and Agq are the mean lon-
gitudes of Jupiter and Saturn, respectively. The critical angle
?1 = 2A5at — AJjup — @Wsat circulates, where wgg, is Sat-
urn’s longitude of pericenter. Thus, the planets are not in ap-
sidal corotation resonance — in which the planets undergo ap-
sidal libration as well as libration of both resonant arguments
(Michtchenko et al.|2008)) — as shown by the circulation of the
angles wgq; — @ jyp (Figure 2, bottom panels). Yet the ec-
centricity and inclination evolution of Jupiter and Saturn are
quite different in the the two simulations. In particular, there
are larger variations of eccentricity and inclination over 100
Mpyr in the chaotic case. These variations are linked with pre-
cession of longitudes which translate to shifting resonances
and gravitational perturbations in the belt.

We now show how, once the gaseous disk was gone, chaos
in Jupiter and Saturn’s early orbits may have excited the as-
teroids’ orbits even if the belt’s primordial mass was very low
(comparable to its current mass). The asteroid belt is speck-
led with resonances, locations where there is an integer match
between characteristic orbital frequencies of asteroids and the
giant planets. MMRs are located where an asteroid’s orbital
period forms an integer ratio with a planet’s period (Jupiter
in this case). In secular resonances (SRs), a quantity related
to the precession of an asteroid’s orbit matches one of the gi-
ant planets. The most important SRs in the main belt are the
vg and v resonances, where an asteroid’s apsidal and nodal
precession rate (or frequency), respectively, match that of Sat-
urn (Froeschle & Scholl|[1989; Morbidelli & Henrard!|[1991)).

When Jupiter and Saturn’s orbits evolve in a regular fashion,
MMRs and SRs are stationary, so asteroids in certain parts of
the belt are excited whereas asteroids in other parts are not
(Morbidelli & Henrard![1991)).

When the giant planets evolve chaotically, their orbital
alignments undergo stochastic jumps, i.e, they may precess
at many different frequencies and their orbits may even have
its direction of apsidal precession temporarily reversed. The
location of SRs within the belt undergo corresponding jumps
(MMRs are much less sensitive to such variations). When a
resonance jumps to the location of a given asteroid its orbit
is significantly excited on a relatively short (~ 10*~6 year)
timescale. Figure 3 shows how the 14 and 116 SRs pump the
eccentricity and orbital inclinations, respectively, of two as-
teroids. Note that the time intervals shown in both plots of
Figure 3 were purposely chosen to clearly illustrate the effect
of the respective resonances. The lifetime of a particle in the
belt depends on the chaotic evolution of the gas giants and the
particle’s initial orbit. We discuss and show in the Appendix
that the effects of the chaotic excitation can also eject particles
from the system and even empty parts of the belt.

In addition to the vg and 16 other resonances also play a
role in pumping asteroids’ eccentricities and/or inclinations
(see Appendix). These include resonances resulting from the
linear combination of principal secular frequencies (nonlin-
ear secular resonances), mean motion resonances, secondary
resonances (linear combination between the main secular and
short period frequencies associated with orbital period) and
Kozai resonances. Another factor is that, unlike MMRs which
are linked to a given orbital radius, the locations of SRs are a
function of an asteroid’s proper inclination and eccentricity
(Froeschle & Scholl|1989; [Morbidelli & Henrard|1991).

We can understand the chaotic excitation of asteroids using
a Fourier analysis of Saturn’s longitude of pericenter wg,+
(Fig. 4; top panels). When Jupiter and Saturn undergo reg-
ular motion, the power spectrum of wg,; is peaked, domi-
nated by characteristic frequencies (in particular the gg fre-
quency at ~1/62000 yr~—!, which controls the location of the
6 SR) and their harmonics (Laskar|1990,|1993; Michtchenko
& Ferraz-Mello|1995). The peaked nature of the power spec-
trum indicates that Saturn’s precession frequency — and thus
the location of the vg and other resonances — is fixed. This ex-
plains why eccentricities and inclinations of asteroids are only
strongly excited at specific locations in the belt (Fig. 4). In
contrast, the power spectrum of a simulation in which Jupiter
and Saturn’s orbits evolve chaotically (the JSCHA simulation)
shows a broad band of frequencies instead of a few strong
peaks. In this case the SR vg jumps across the entire belt
because wg,; precesses at many different frequencies due
to Saturn’s chaotic interactions with Jupiter. Note from the
frequency analysis in Fig. 4 that in the JSREG simulation
the longitude of pericenter of Saturn precesses (slowly) pos-
itively while the longitude of pericenter of Jupiter precesses
(quickly) backwards. If planets were in apsidal corotation that
would imply both their longitudes of pericenter would precess
in the same direction (negative). Because asteroids suffering
secular perturbation precesses always positively, the vg could
not exist in the belt if asteroids’ and Saturn’s longitude of peri-
center precess in different directions.

During the gas giants’ chaotic evolution the vg secular res-
onance jumps across the entire asteroid belt. To estimate the
radial extent of the jumps of the v we first compute the pre-
cession frequency that an asteroid would have with Jupiter
and Saturn in the 2:1 resonance. Using linear secular theory
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FIG. 2.— Dynamical evolution of regular Jupiter and Saturn in the JSREG and JSCHA simulations. In both cases the planets are in the 2:1 mean motion
resonance (the critical angle ¢2 = 2Ag4¢ — Ajup — @ jup associated with the 2:1 mean motion resonance librate around zero degree while the ¢1 =
2ASat — AJjup — @Wsat circulates). Agq¢ and wgq¢ are Saturn’s mean longitude and longitude of pericenter. A j,p, and @ j,,p, are Jupiter’s mean longitude
and longitude of pericenter. The initial conditions of these two simulations are provided in the Appendix
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FIG. 3.— Chaotic excitation of the orbits of two asteroids (modeled as massless test particles) in a dynamical simulation. Left: The eccentricity of an asteroid
at 3 AU increases rapidly during a short interval while it is locked in the vg secular resonance. The vg occurs when the angle g,y — wagt librates, where wgay
and wag are the longitudes of pericenter of Saturn and the asteroid, respectively. Right: The inclination of an asteroid at 2.7 AU is pumped during temporary
capture in the v16 secular resonance. The v16 occurs when the angle Qg — 245t librates, where Qg,¢ and 44 are the longitudes of ascending node of
Saturn and the asteroid, respectively. The asteroids’ semi-major axes remain roughly constant.

(see Murray & Dermott| (1999)), this frequency is given by:

2
My a st 1 M apst )2
- ( st) bi(s/)z(o‘Jup>+ Sat ( ASt) bél/)z(“Sat) )
agup Mg @Sat

(1

where nag, aasy are the mean motion and semi-major axis
of the asteroid. Mg, Mjyp and Mg, are the solar mass,
Jupiter’s mass and Saturn’s mass, respectively. ajup and agat

are Jupiter and Saturn semi-major axes, respectively. bél/)Q is

the Laplace coefficient which is computed in function of oz,
and ag,¢ which are given by

A Ast
QqJup =

a Jup

A Ast
QGat = ——

aSat

If we assume that wg,; precesses with frequencies between
~ 1075 and ~ 10~*/year the vs location varies from about
1.4 to 3.5 AU (Fig. 5). Asteroids’ eccentricities are thus ex-
cited across the entire main belt. An analogous process acts
to pump asteroids’ inclinations. In the JSCHA simulation, al-
though the 114 is much stronger and wider than in the JSREG
simulation, it does not jump across the entire belt. However,
other resonances contribute to exciting the asteroids’ inclina-
tions across the entire belt (see Appendix).

The timescale for chaotic excitation of the full asteroid belt
is a few million years to hundreds of millions of years de-
pending on the evolution of the gas giants (additional exam-
ples in the Appendix). The surviving asteroids broadly match
the observed distribution (Fig. 4; right-hand, middle and bot-
tom panels). In simulations that successfully excited the aster-
oid belt two conditions were typically observed. First, Jupiter
and Saturn’s orbits were chaotic in both their eccentricities
and inclinations (Barnes et al.|[2015). The hardest aspect of
the asteroid belt to reproduce is its broad inclination distri-
bution (Izidoro et al.[|2015b). Second, Jupiter’s eccentricity
was not too high. In simulations in which Jupiter’s eccentric-
ity remained much larger than its current value of ~0.05 for
longer than 100 Myr, parts of the belt were emptied. Finally,

although we have illustrated this mechanism with Jupiter and
Saturn in 2:1 MMR, we observe chaotic excitation in a num-
ber of resonant (or near resonant) orbits, including the 2:1,
3:2, 7:4 and 5:3 (see Appendix).

4. PATHS TO CHAOS IN JUPITER AND SATURN’S
EARLY ORBITS

We have argued that Jupiter and Saturn’s orbits may have
evolved chaotically at early times. In this section we further
justify this argument. We first map the prevalence of chaotic
motion in the phase space in the orbits of Jupiter and Saturn.
Next we perform a series of numerical experiments to mimic
the orbital migration and resonant capture of Jupiter and Sat-
urn while they were embedded in the gaseous disk. After
the disk’s dissipation, a large number of simulations exhib-
ited chaotic behavior. Finally, we show the long-term dynam-
ical stability between the giant planets evolving in a chaotic
resonant configuration.

4.1. A map of chaos in Jupiter and Saturn’s orbits

To get a sense of the presence of chaos across the phase
space of Jupiter and Saturn’s orbital configuration we per-
formed about 9000 simulations to build a dynamical map
for a wide range of orbital period ratios between Jupiter and
Saturn. The MEGNO (Mean Exponential Growth factor of
Nearby Orbits; |Cincotta & Simo| (2000)) chaos indicator is a
powerful tool used to identify chaos in dynamical systems.
Chaotic orbits are characterized by a large MEGNO value
((Y) > 2) while regular or quasi-period orbits are associ-
ated with (Y') — 2 (e.g. (Cincotta & Simo|2000)).

Our initial conditions were set as follows. Jupiter was
placed at 5.25 AU while Saturn’s semi-major axis was sam-
pled from about 6.25 to 8.6 AU (period ratio between 1.3 and
2.1). Their mutual inclination was sampled randomly from 0
to 0.5 degrees. The eccentricity of Jupiter was randomly se-
lected between 0 and 0.01. Saturn’s initial eccentricity ranges
from O to 0.1. Note that although the initial eccentricity of
Jupiter in this set of simulations is smaller than the corre-
sponding initial values in Figures 1 and 2 this quantity does
not remain constant over time. Jupiter and Saturn (secular)
interaction leads to eccentricity oscillations which imply that
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FI1G. 4.— Fourier analysis and excitation of the asteroid belt by the gas giants in two N-body simulations. In both cases Jupiter and Saturn
are locked in 2:1 MMR, with starting semimajor axes of 5.25 AU and ~8.33 AU. In the JSREG simulation (left panels) the gas giants’ initial
eccentricities are 0.025 and their orbits exhibit regular motion. In the JSCHA simulation (right) the giants’ initial eccentricities are 0.03 and
their orbits are chaotic. Their mutual orbital inclination is initially 0.5 degrees. Each system was integrated for 136 Myr, and to perform the
Fourier analysis we used an output timestep of 2 years; the top panels show the power spectra for wgq+ for each case. The middle and bottom
panels show the dynamical excitation of the main belt in the two simulations, using a snapshot at 40 Myr. Some asteroids in the JSCHA
simulation have larger eccentricities and inclinations than those observed. This does not mean that our results are inconsistent with the present-
day asteroid belt. Highly eccentric and inclined objects are removed from the system during the later evolution of the Solar System: during the
dynamical instability between the giant planets (Morbidelli et al.|2010) and over the subsequent 3.8 billion years (Minton & Malhotral[2010).
These simulations also do not take into account the gravitational influence of the growing terrestrial planets, which may remove a large fraction
of dynamically overexcited asteroids. In the JSCHA simulation, asteroids with low orbital inclination are also observed between 1.8 and 2 AU.
Equally, these objects do not exist in the real belt today. It is highly likely that these objects will be also removed from this region during the
accretion of the terrestrial planets and by the effects of secular resonances when Jupiter and Saturn reach their current orbits (e.g. the v1¢ is at

~1.9 AU today; (Froeschle & Scholl|1989)).

Jupiter’s eccentricity may reach values comparable to or even
values larger than 0.025-0.03 . Angular orbital elements of
both planets were all sampled randomly between 0 and 360
degrees. Simulations were integrated for 50 Myr using the
REBOUND integrator (Rein & Tamayo|2015) computing the
MEGNO value of each of these dynamical states.

Figure 6 shows a dynamical map of the behavior of Jupiter
and Saturn’s orbits at different orbital separations. The sim-
ulations were integrated for fifty million years and the results
are color-coded by the MEGNO value. Black regions are
potentially unstable; they show orbital configurations where
Jupiter and Saturn undergo close encounters. Orange regions
exhibit chaotic motion (with (Y) Z 4) while blue regions
encloses regular motion (with (Y) = 2). Chaotic regions
are generally confined in orbital period ratio and are associ-
ated with specific mean motion resonances. There is a broad
chaotic region near the 2:1 mean motion resonance and nar-

rower regions close to the 5:3 (period ratio of 1.66) and 7:4
(period ratio of 1.75) resonances, with some chaos present
just exteriod to the 3:2 resonance (period ratio of 1.5).

The dynamical map in Figure 6 shows that chaos is com-
mon in the phase space available for Jupiter and Saturn’s or-
bits. Yet their actual orbits at early times were not chosen at
random. Rather, the gas giants’ orbital configuration was gen-
erated by interactions between the growing planets and the
gaseous protoplanetary disk, in particular by a combination
of orbital migrationLin & Papaloizou| (1986)); [Ward| (1997)
and eccentricity and inclination damping (e.g., [Papaloizou &
Larwood| (2000); Bitsch et al.|(2013)). The dynamical evolu-
tion of Jupiter and Saturn in the gas disk depends on the disk
properties [Masset & Snellgrove| (2001); Morbidelli & Crida
(2007); [Zhang & Zhou| (2010); [Pierens & Raymond| (2011).
To study chaos in Jupiter and Saturn’s orbits in the context
of orbital migration we perform N-body simulations using ar-
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FIG. 6.— A dynamical map of chaos in Jupiter and Saturn’s orbits as a
function of their initial orbital period ratio. The vertical axes show the ini-
tial eccentricity of Saturn (Jupiter’s initial eccentricity was randomly chosen
between zero and 0.01). The horizontal axes show the initial period ratio be-
tween Jupiter and Saturn. Each dynamical state is color-coded showing the
MEGNO value after 50 Myr of integration. The black color is used to de-
note orbits where Jupiter and Saturn mutual distance get smaller than 1 AU.
Because we use a symplectic integrator, these orbits would not be solved
properly in this case. Blue-ish colors show regular or quasi-periodic motion
while orange-ish colors show chaotic orbits.

tificial forces to mimic the effects of the gas and also pure
hydrodynamical simulations. We present these results next.

4.2. Chaos in Jupiter and Saturn’s orbits in the context of
orbital migration

In our simulations of Jupiter and Saturn migrating in a
gaseous disk Jupiter was initially at 5.25 AU and Saturn was
placed initially exterior to the 2:1 mean motion resonance
with Jupiter (beyond 8.33 AU). Following [Baruteau et al.
(2014) Jupiter was assumed to migrate in a type-II mode with

migration timescale computed by

2
b Jup = 28945 ¢ min (1, Maish ) ¢)
3v mJup
where a ., and m j,,, are Jupiter’s semi-major axis and mass,
respectively. v is the gas viscosity and M g; s is the gas disk
mass. We modeled the disk viscosity using the standard “al-
pha” prescription given by v = acs,H (Shakura & Sunyaev
1973)), where c; is the isothermal sound speed and H is the
disk scale height. In our simulations oo = 0.002 and the disk
aspect ratio is h~0.07. To account for the damping of eccen-
tricity and inclination on Jupiter’s orbit we assume the fol-
lowing relationship between migration timescale and eccen-
tricity/inclination damping Crida et al.| (2008)

te,Jup — ti,Jup = tm,JUP/K' (3)

In our simulations, we generally adopted the typical value of
K =10, although we also performed simulations with K =1
and K = 100.

To mimic the migration of Saturn in the gas disk for sim-
plicity we use the type-I migration/damping approach Tanaka
et al.| (2002); [Tanaka & Ward|(2004); [Papaloizou & Larwood
(2000); ICresswell & Nelson| (2006, 2008). Since Saturn’s
gap is not fully open this is an acceptable approximation.
We stress that our goal here is only to have convergent and
smooth migration of Jupiter and Saturn such we can access
the plausibility of chaos origin in this kind of simulation.
The initial gas surface density at the location of Saturn is
YSat = 9007’5&'5 g/ em?. To implement migration, eccen-
tricity and inclination damping on Saturn, we use the follow-
ing formulas:

5
tm. Sat = # @ ( Mg ﬁ 21+ (1e§h) Q!
m,Sat 2.7+1-1ﬁ m Zga2 r 17( er )4 k

¢ _twave (0 o002 Y b6 (=) 108
eSet = 5780 A\ hyr P\ h/r

and

ti gar = fwave (a1 2+024<L 3+014<i i
B8t = 0 544 ( ' (h/r) : h/r) : h/r) (h/r
©)

M, M, R\*
o= (50) (53) () 2t 0

and Mg, a, m, i, and e are the solar mass, planet’s semi-
major axis, planet’s mass, orbital inclination and eccentricity,
respectively. r is the planet’s heliocentric distance. 3, and 3
are the gas disk surface density and gas surface profile index
at the planet’s location, respectively. In our simulations, in the
case of Saturn, 8 was calibrated from hydrodynamical simu-
lations. The synthetic accelerations to account for the effects
of the gas on the planet were modeled as:

where

A"
iy = - ®)
g tnL,pla
a. = —27(2V T)r )
r te,pla
a; = ——k, (10)

ti,pla
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where k is the unit vector in the z-direction. The label “pla”,
which appears in Eq. 8-10 takes the form “Jup” or “Sar” to re-
fer to accelerations applied to Jupiter and Saturn, respectively.

To ensure the robustness of this method we compared se-
lected simulations with true hydrodynamical simulations us-
ing similar disks setup and they agree in terms of the final
period ratio, eccentricities and orbital inclination of Jupiter
and Saturn.

In simulations in which the ice giants were also included
they were assumed to migrate inward in the type-I mode de-
scribed above.

We performed 1000 simulations that differed only in the
initial surface density of the disk. In each case the gas disk
was assumed to dissipate exponentially in 1 Myr (744, = 100
kyr). After the gas disk dissipation simulations were inte-
grated for another 50 Myr. To compute how chaotic the or-
bits of the giant planets are in each simulation we again used
the MEGNO chaos indicator incorporated in the REBOUND
integrator (Rein & Tamayo|2015)).

Figure 7 shows the results of these simulations. The verti-
cal axis shows the relative initial surface density of the disk
and the horizontal axis shows the final orbital period ratio be-
tween Jupiter and Saturn. Each final dynamical state of our
simulation is represented with a circle whose color shows the
MEGNO value of the final dynamical state of Jupiter and Sat-
urn.

3.0 . . . .
A 2.0
25l 13.8
> 13.6
2 2.0t 13.4
3 =
§ 13.2 &
‘g 1.5¢ 130 %
0 w
2 128 =
2 1.0f
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2.2
0.0 ‘ ‘ h 2.0

14 15 16 17 18 19 20 21 22
Final Period ratio

FIG. 7.— Final period ratio of Jupiter and Saturn migrating in N-body sim-
ulations including the effects of a 1D gas disk. The vertical axis shows the
relative surface density of the disk. The gas disk lasts 1 Myr. After the gas
dissipation the orbits of the giant planets are numerically integrated for an-
other 50 Myr. The color-code shows the MEGNO value of each system at
the end of the simulation. In this set of simulations, there is no case where
Jupiter and Saturn suffer close-encounters (there is no black points in the
figure different from Fig. 6).

The experiment presented in Fig 7 produced more regular
configurations of Jupiter and Saturn than chaotic ones. In
agreement with pure hydrodynamical simulations (Zhang &
Zhoul|[2010; [Pierens et al.|2014)), Jupiter and Saturn typically
park in either 3:2 (in high-mass disks) or 2:1 (low-mass disks)
mean motion resonance. We did not find chaos in simulations
where Jupiter and Saturn ends in 3:2. All our instances of
chaos were related to Saturn and Jupiter’s period ratio being
close to 2. We observe chaos in about 1-25% of these simu-
lations depending on the disk parameters and K-value (a pa-

rameter that defines the ratio between the migration timescale
and eccentricity/inclination damping; see Eq. 3). We expect
that chaotic configurations for Jupiter and Saturn in 3:2 may
be more likely for larger eccentricities than our migration and
damping prescriptions allow (see Figure 6).

We performed 15 hydrodynamical simulations using the
GENESIS code (Pierens 2005). None of the simulations with
Jupiter and Saturn migrating in the disk generated chaos in
Jupiter and Saturn’s orbits. However, both hydrodynamical
simulations and our N-body simulations with synthetic forces
are extremely idealized. A number of factors could change the
outcome. First, the protoplanetary disks in these simulations
are typically laminar and perfectly axi-symmetric. Second,
the gas disk’s dissipation in numerical simulations is in gen-
eral poorly modeled with an exponential density decay over
the entire disk. Third, at the end of the gas disk phase planets
should evolve in a sea of planetesimals and leftover building
blocks of their own process of formation. In these simulations
we did not include any external perturbation in the system
(but see Section 2). Fourth, the migrating ice giants (and/or
their building blocks; [Izidoro et al.| (2015a)) represent a fur-
ther source of perturbations.

In fact, the results shown in Figures 6 and 7 are comple-
mentary in nature. The setup of the simulations in Figure 7
favor deep capture in resonance and regular motion between
Jupiter and Saturn while that in Figure 6 (because of the ran-
dom selection of angles) may preferentially put the dynamical
state slightly off the libration center and favor mostly chaotic
orbits. The existence of many chaotic configurations in Fig-
ure 6 demonstrates the prevalence of chaos and even if the gas
giants’ orbits behaved regularly immediately after the dissipa-
tion of the gaseous disk, there are a number of processes that
could have rendered them chaotic.

4.3. Long-term dynamical stability of the gas giants in a
chaotic configuration

The present-day orbits of the giant planets are thought to
have been achieved by an instability in the giant planets’ or-
bits that occurred long after the dissipation of the gaseous
(Tsiganis et al.| 2005} [Morbidelli et al.|2007; |Levison et al.
2011). Our model is entirely consistent with a late (~500
Myr-later) instability in the giant planets’ orbits, whatever the
exact configuration of Jupiter and Saturn (see Nesvorny &
Morbidelli]2012; Batygin et al.|2012} |Pierens et al.|2014). In
fact, our model is also consistent with a earlier giant planet
instability (Kaib & Chambers|2016)), as long as there is a suf-
ficiently long interval during which the belt can be chaotically
excited. This interval is roughly longer than 10 Myr in most of
the simulations were have run, but can be as short as 2 Myr. To
illustrate the possibility of a long-term stability between the
giant planets evolving in chaotic orbits we performed N-body
simulations in which Jupiter, Saturn, Uranus and Neptune mi-
grate in a disk. The prescription for migration used in these
simulations is analogous to that explained before in this text.
Isothermal type-I migration and damping is also applied for
the ice giants. Here, we used again those damping timescales
defined in Eq. 4 to 7 and accelerations given by Eq 8 to 10.
Figure 8 shows a long-term stable dynamical evolution of the
gas giants in chaotic orbits. At the end of the gas disk phase
Jupiter and Saturn are locked in the 2:1 MMR, Saturn-Uranus
in 2:1 MMR, and Uranus-Neptune in 3:2 MMR. The system
is dynamically stable for over 500 Myr.

5. DISCUSSION
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FIG. 8.— An example of the genesis of chaos in the giant planets’
orbits and their long term stability. Top: Orbital migration of Jupiter,
Saturn, Uranus and Neptune embedded in the gaseous protoplanetary
disk. At the end of the gas disk phase the planets are locked in a chain
of mean motion resonances (2:1, 2:1, 3:2). Bottom: Long-term evo-
lution of the Saturn-to-Jupiter orbital period ratio, and the gas giants’
eccentricities and inclinations over the next 500 Myr. This configu-
ration is consistent with a later instability in the orbits of the giant
planets (Tsiganis et al.|2005; [Levison et al.|2011; |[Nesvorny & Mor-
bidellil|2012).

Chaotic excitation of the asteroid belt represents a novel
mechanism for solving a longstanding problem in planetary
science. Yet there are a number of questions that arise when
considering whether this mechanism is consistent with our
current vision of the Solar System’s global evolution.

In this section we address a number of questions.

5.1. Chaotic Excitation vs. the Grand Tack

The “small Mars” problem highlights the fact that a mass
deficit is needed from ~ 1—4 AU to explain Mars’ small mass
relative to Earth’s (Wetherill 19965 [Raymond et al.[[2009). In
the Grand Tack model, this deficit is generated by Jupiter’s
long-distance orbital migration from several AU in to 1.5 AU,
then back out to beyond 5 AU (Walsh et al.[201 1} Jacobson &
Morbidelli|[2014; Raymond & Morbidelli|2014; Brasser et al.
2016)

By explaining the asteroid belt’s orbital structure, our re-
sults revive models in which the asteroid belt was initially
very low mass (Izidoro et al.[2015b; [Levison et al.|2015).
While standard disk models typically invoke a smooth mass
distribution within disks (for example, the minimum-mass
solar nebula model of Weidenschilling|[1977; [Hayashi|[ 1981}
generates a smooth disk from discrete planets), it remains

unclear whether the planetary building blocks embedded in
these gaseous disks should really follow a smooth distribu-
tion. In fact, models often find that planetesimals preferen-
tially grow in special locations within the disk, such as at
pressure bumps (e.g. |Johansen et al|2014). Some models
naturally create confined rings of planetesimals within broad
disks (Surville et al|[2016). There also exist mechanisms
to systematically drain solids from certain areas of the disk,
thereby creating localized depletions and enhancements (e.g.
Moriarty & Fischer][2015} [Levison et al.|2015}; Drazkowska
et al. 2016).

Our model thus forms the basis of an alternative to the
Grand Tack model. Within the context of this model, Mars’
small mass can be explained by a broad mass depletion be-
tween Earth and Jupiter’s orbits. The asteroid belt, which
could not be stirred by the dynamical effects of local embryos,
was chaotically excited by Jupiter and Saturn.

The next step is to search for ways to distinguish between
the Grand Tack and this new chaotic model. Tests may be
based on observations of small bodies in the Solar System
or geochemical measurements. Alternately, the models may
be differentiated by more detailed studies of the underlying
physical mechanisms involving planetary orbital migration
and pebble accretion.

Like the Grand Tack, our model assumes that Jupiter and
Saturn migrated during the gas-disk phase into a resonant con-
figuration, mostly likely to the 3:2 or 2:1 MMR (Masset &
Snellgrove|2001; Morbidelli & Cridal2007; Pierens & Nelson
2008; ID’ Angelo & Marzari||2012; |Pierens et al.[2014). How-
ever, the scale of radial migration of Jupiter and Saturn in our
scenario could be less specific and much smaller than that in
the Grand-Tack scenario, where Jupiter and Saturn migrated
inward-then-outward. In our case — since it is quite unlikely
that Jupiter and Saturn grew already in resonance — only an in-
ward convergent phase of migration between the giant planets
is needed to put them into a resonant configuration.

The Grand Tack and the chaotic excitation model are not
contradictory models. In the Grand Tack model, some level
of chaotic excitation could have operated between Jupiter and
Saturn’s two-phase migration and the Nice model instability.
However, since the asteroid belt is already sufficiently dynam-
ically excited after the Grand Tack (Deienno et al.|2016) it
would be unnecessary to invoke chaotic excitation. We also
note that both the Grand Tack and chaotic excitation mecha-
nisms may operate with Jupiter and Saturn in either the 3:2 or
2:1 mean motion resonance (see also [Pierens et al.|[2014). Of
course, the 3:2 resonance has been much more carefully stud-
ied for the Grand Tack, and our results suggest that the 2:1
resonance may be favored with regards to chaotic excitation.
Yet we caution that Jupiter and Saturn’s configuration during
the disk phase may not necessarily differentiate between the
two models.

5.2. A chaotic young Solar System?

It is entirely reasonable to imagine a chaotic young Solar
System. Several exoplanetary systems with planets on near-
resonant orbits are thought to be chaotic, such as 16 Cyg
B (Holman et al.|[{1997), GIJ876 (Rivera et al.|2010), and Ke-
pler 36 (Deck et al.|2012). The present-day Solar System is
well known to be chaotic (Laskar| 1989, [2003); [Sussman &
Wisdom||1992). The orbits of the terrestrial planets undergo
chaotic diffusion on a timescale of a few million years (Laskar
1989; Batygin et al.|2015). It is unknown whether the present-
day giant planets are in a chaotic configuration; an accurate
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determination is precluded by uncertainties in our knowledge
of the planets’ orbital positions (Hayes|2008; Michtchenko &
Ferraz-Mello|2001). It is often assumed that the early So-
lar System was characterized by regular motion of the planets
(Brasser et al|[2013). Our work suggests that this may not
have been the case, and that the structure of the asteroid belt
is a signpost that Jupiter and Saturn’s early orbits were in fact
chaotic.

We showed that a small nudge could trigger chaos in Jupiter
and Saturn’s early orbits (Fig. 1). Could another small nudge
or the cumulated effects of scattering planetesimals make the
system regular again? It is important to note that when scat-
tering of planetesimals takes place not only damping of ec-
centricity but also radial migration should be observed. This
process would lead to divergent migration of Jupiter and Sat-
urn (and ice giants) and not necessarily sinking towards the
resonant center and consequently regular orbits. Typically, a
late dynamical evolution is envisioned in models of the So-
lar System evolution (Gomes et al 2005, Levison et al 2011)
which implies Jupiter and Saturn hanging out into or very near
resonances for hundreds of Myr after gas disk-phase. What is
required for chaotic excitation to work is simply a sufficient
time interval in this phase while the giant planets remain in a
chaotic state. This depends also on the chaotic configuration
of Jupiter and Saturn and the setup over the disk of planetesi-
mals (Nesvorny & Morbidelli|2012).

Obviously, it would be computationally challenging to per-
form a systematic analysis to identify all dynamical configura-
tions of Jupiter and Saturn which could excite the belt. How-
ever, we indeed found that non-resonant or temporary reso-
nant configurations also can excite the belt. We also recog-
nized that it is not clear why previous classical simulations of
terrestrial planet formation did not find similar effects in the
belt. One possibility is that the chaotic effects on asteroids
have been erased or mitigated by the typical presence of large
planetary embryos in the belt in classical simulations (Cham-
bers|2001; [Raymond et al.|2006; /O’ Brien et al.[2006} |Izidoro
et al. 2014} [2015b)). Also, these previous simulations have
preferentially considered Jupiter and Saturn near their current
orbits or in the 3:2 MMR (in almost circular orbits; see for ex-
ample Raymond et al.|(2009)). In our most successful simula-
tions of belt excitation Jupiter and Saturn have eccentricities
of about 0.03-0.05, the latter is consistent with results from
hydrodynamical simulations (Pierens et al.[2014)).

5.3. The absence of “fossilized” Kirkwood gaps

The Kirkwood gaps in the asteroid population are created
by mean motion resonances with Jupiter. The most promi-
nent is the gap created by Jupiter’s 3:1 mean motion resonance
centered at 2.50 AU in the present-day belt. The chaotic ex-
citation of the asteroid belt likely took place before a late in-
stability in the giant planets’ orbits (the so-called Nice model;
Tsiganis et al.|(2005); Morbidelli et al.| (2007); [Levison et al.
(2011)). If a late instability shifted Jupiter’s orbit inward by
~0.2 AU (Tsiganis et al|2005) then there should exist a fos-
silized gap in the asteroid belt at about 2.6 AU, just exterior
to the current Kirkwood gap associated with the 3:1 reso-
nance. No such gap exists (see Section 6.4 of Morbidelli et al.
(2010)).

We caution that the dataset used to study fossilized gaps
(or lack thereof) is relatively sparse, containing just 335 large
asteroids (with absolute magnitude H < 9.7) spread across
the entire main belt (see Fig 7 in/Morbidelli et al.{(2010)). The
vicinity of the 3:1 Kirkwood gap contains only ~10 asteroids.

A careful statistical analysis using a larger dataset (potentially
extending to smaller bodies) would help quantify the depth
and width of the missing Kirkwood gaps.

The belt excitation by the chaotic motion of Jupiter and Sat-
urn seems to require an eccentricity of ~0.03 or more (al-
though we did not perform a systematic analysis on this issue
since it is beyond the scope of this paper). It was proposed
by Morbidelli et al.|(2010) and Deienno et al.|(2016) that the
pre-instability giant planets must have had almost perfectly
circular orbits. Thus, Jupiter’s mean motion resonances were
relatively weak and narrow such that the Kirkwood gaps be-
fore the instability were virtually nonexistent. Jupiter’s eccen-
tricity must remain extremely low (e; < 0.01) to avoid clear-
ing the primordial gap. This requires that during the gas disk
phase the orbits of the gas giants were very efficiently damped
by the gas (Morbidelli et al.[2007; Pierens et al.|2014).

The problem of the fossilized Kirkwood gaps (if it exist al
all) appears to have a simple solution. During the Nice model
instability, one or two ice giants are often ejected from the
Solar System after suffering close encounters with Jupiter. To
reproduce the Solar System’s current architecture, 1-2 addi-
tional primordial ice giants may thus have existed before the
instability (Nesvorny|[2011; |Batygin et al[2012)). During the
scattering process a doomed ice giant typically spends time
with an orbit interior to (but crossing) Jupiter’s. The scattered
ice giant passes through the asteroid belt, often crossing the
main belt. While this interval is short in duration, lasting just
a few tens to hundreds of thousands of years, a scattered ice
giant perturbs the distribution of asteroids. Brasil et al.| (2016))
showed that local groupings of asteroids analogous to asteroid
families, initially strongly confined in orbital parameter space,
are smeared out by the scattered ice giant (see their Figs 4
and 5). This smearing would fill in any fossilized Kirkwood
gaps. In the context of this evolution of the giant planets, the
present-day Kirkwood gaps must have been created after the
Nice model instability.

In summary, we expect that any fossilized Kirkwood gaps
would have been erased by the Nice model instability (Brasil
et al.[2016). The absence of fossilized gaps cannot be used as
a constraint on the giant planets’ early orbits.

5.4. Implantation of C-type asteroids in the Belt

In this paper we did not address another important char-
acteristic of the asteroid belt: the radial mixing of different
taxonomic types of asteroids. The inner part of the main
belt is dominated by S-type (water-poor) bodies, while C-type
(water-rich) ones are preferentially found in the outer part of
the belt, mostly beyond 2.5 AU (Gradie & Tedesco||1982; De-
Meo & Carry|2014). We demonstrate in an upcoming paper
that the belt’s chemical dichotomy is a natural, unavoidable
outcome of the gas giants’ growth in the gaseous protoplane-
tary disk. During the gas-accretion phase Jupiter’s core (and
Saturn as well) destabilizes the orbits of nearby small bodies
and implant a fraction of these bodies in the outer asteroid belt
(Izidoro et al.2016, Raymond & Izidoro, in prep.). These re-
sults together with those already presented here will form the
basis for a new model to explain the bulk structure of the as-
teroid belt.

6. CONCLUSIONS

We have proposed a new mechanism to explain the puzzling
orbital excitation of the asteroid belt. This mechanism re-
quires that Jupiter and Saturn’s primordial orbits were chaotic,
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and we showed that this is indeed a plausible outcome of their
growth and migration. The eccentricities and inclinations of
asteroids are excited as a multitude of resonances stochasti-
cally jump across the full width of the belt. This mechanism
is consistent with observations and has important implications
for our understanding of the early Solar System.

While this paper explained the orbital distribution of the
asteroids, we did not explain another important feature, the
taxonomic mixing of the asteroid belt. We reassure the con-
cerned reader that we have a separate novel mechanism to
explain this, which will be addressed in an upcoming paper
(Izidoro et al.|2016, Raymond & Izidoro, in prep.).
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APPENDIX
ADDITIONAL SIMULATIONS

In this appendix we provide extra details and address one observational constraint. First we present examples of additional
resonances that act to chaotically excite the belt in the JSCHA simulation. We then present other examples of the belt’s excitation
for different chaotic giant planet configurations.

The role of different resonances

Here we provide more details about the nature of the chaotic excitation mechanism by showing how different chaotically-
jumping resonances can excite asteroids’ eccentricities and/or inclinations.

Figure 9 show examples of asteroids being excited by the perturbation of chaotic Jupiter and Saturn. These asteroids are in the
same simulation as those shown in Figure 3, but simply are in different parts of the main belt. Different resonances act to increase
the eccentricities and inclinations of bodies in the belt.

Figures 10-12 show the Fourier analysis of other angles and comparison between the JSREG and JSCHA simulations. The v
secular resonance is much stronger and wider in the JSCHA simulation than the JSREG simulation (v appears at ~2.5 AU; see
Figure 4, 5, and 11). However, its effects in the JSCHA simulation are much more localized than those of the 14 in the sense of
its power to affect bodies over the whole belt (if bodies have the same proper inclination and eccentricity). We did not perform
a systematic analysis of all resonances that contribute to pump inclination of bodies in the whole belt but high order secular and
secondary resonances also play an important role for exciting bodies residing away from v in the JSCHA simulation. Perhaps
even three body resonances contribute. We stress that the nature of the resonances that contribute to excite bodies in the belt and
their strength depends on the chaotic evolution of Jupiter and Saturn.

Additional Simulations of chaotic excitation of the asteroid belt

In this section we present several examples of dynamical excitation of the belt by different orbital configurations between
Jupiter and Saturn. In these simulations we used 8000 test particles (in some cases 2000) uniformly distributed between 1.8 and
4.5 AU We stress that not all our simulations where Jupiter and Saturn had chaotic orbits successfully excited the belt. Rather, we
found a spectrum of outcomes. Some simulations were not able to excite parts of the belt while in other cases the perturbations
from Jupiter and Saturn were so strong that the belt was destroyed. We did not perform a systematic analysis looking for the
optimal resonant or non-resonant chaotic configuration to excite the belt. However, we have used as fiducial case a dynamical
configuration where Jupiter and Saturn are in 2:1 MMR.

Figure 13 shows the dynamical evolution of asteroids in a simulation with chaotic Jupiter and Saturn in the 2:1 resonance.
Figures 14-17 show the dynamical evolution of asteroids in the belt in simulations where Jupiter and Saturn are in different
resonant configurations, with period ratios of ~1.75, ~1.66, ~1.66 and ~1.5, respectively. Simulation were integrated using
Symba (Duncan et al.|[1998) with a 0.1 year timestep. The total duration of each simulation varied between 20 and 125 Myr;
and each simulation’s duration is indicated in the bottom panel. Figure 13, 14 and 16 show simulations initially with 8000 test
particles. Simulations corresponding to Figures 15 and 17 contain initially 2000 test particles.

Figure 14 shows a simulation in which the whole belt was excited both in eccentricity and inclination. However, some regions
of the belt were overly depleted compared with others after 20 Myr of integration.

Figure 15 is a very interesting case. Asteroids in the belt maintained low orbital inclinations and eccentricities for more than
30 Myr. At ~33 Myr a stochastic jump in the positions of the giant planets (consequence of their orbits being chaotic) resulted
in a very strong perturbation in the belt (see corresponding panel in Figure 15). Within 2 Myr of the jump, the whole belt was
excited to the observed levels of the real one. This case shows that excitation of the entire belt may be an extremely fast event.
However, typically, the complete belt excitation seems to require about ~10 Myr or so.

Figure 16 shows a case where the level of eccentricity excitation is consistent with the observed one. However, the region
between 2.1 and 2.8 AU is under-excited in inclination. In general an under-excited inner belt is less of a problem than an
under-excited outer belt, because perturbations from the inner parts of the Solar System (e.g., Mars and other remnant planetary
embryos) may excite the inner belt but not the outer belt (Izidoro et al.|2015b).

Figure 17 shows a simulation where Jupiter and Saturn are near the 3:2 resonance. In this case, both eccentricities and orbital
inclination of bodies in the belt are modestly under-excited when compared with the real belt.

Despite some cases failing to reproduce the dynamical excitation of the belt we stress that in all these examples the level of
dynamical excitation produced is substantially higher than if Jupiter and Saturn had those respective period ratios but regular
orbits. When Jupiter and Saturn have regular orbits only objects near strong secular resonances (as v and /1) and mean motion
resonances have their eccentricities and inclinations significantly increased relative to the initial value (almost coplanar and
circular orbits; (Raymond et al.|2009; [Izidoro et al.|2015b)).
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Initial conditions of our main simulations
In this section we provide the initial conditions of our simulations corresponding to Figures 1, 2, 4, and 13 to 17.
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FI1G. 16.— Dynamical evolution of asteroids in a simulation with chaotic Jupiter and Saturn and comparison with real asteroids with diameter larger than 50
km. The period ratio between Jupiter and Saturn is about 1.66 (one of the resonant angles associated with the 7:4 resonance librate and circulate showing that the
planets are near the resonance separatrix but episodes of libration in the 3:2 resonance are also observed).
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FIG. 17.— Dynamical evolution of asteroids in a simulation with chaotic Jupiter and Saturn and comparison with real asteroids with diameter larger than 50
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TABLE 1
INITIAL CONDITIONS OF OUR SIMULATIONS. FROM LEFT TO RIGHT THE COLUMNS SHOW THE CORRESPONDING FIGURE IN THE PAPER, THE
SIMULATION, THE PLANET NAME, THE PLANET MASS (SOLAR MASSES), SEMI-MAJOR AXIS (AU), ECCENTRICITY, ORBITAL INCLINATION (DEG.),

ARGUMENT OF PERICENTER (DEG.), LONGITUDE OF THE ASCENDING NODE (DEG.) AND MEAN ANOMALY (DEG.).
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Figure  Simulation  Planet Mass Semi-major Axis (AU)  Eccentricity  Inclination (deg.) Argument Longitude of the Mean
Mgp) of Pericenter (deg.)  ascending node (deg.)  Anomaly (deg.)
Fig. 1
Jupiter 1073 5.25 0.025 0 0 0 0
Saturn  2.85x10~% 8.33385552283305 0.025 0.5 0 0 180
Embryo  3.0x1077 12 0.035 0 0 0 250
Fig. 2
JSREG Jupiter 1073 5.4 0.025 0 0 0 0
JSREG Saturn  2.85x10~% 8.5719656 0.025 0.5 0 0 180
JSCHA Jupiter 1073 5.4 0.03 0 0 0 0
JSCHA Saturn  2.85x107% 8.5719656 0.03 0.5 0 0 180
Fig. 4
JSREG Jupiter 1073 5.25 0.025 0 0 0 0
JSREG Saturn  2.85x107% 8.33385552283305 0.025 0.5 0 0 180
JSCHA Tupiter 1073 5.25 0.03 0 0 0 0
JSCHA Saturn  2.85x10~* 8.33385552283305 0.03 0.5 0 0 180
Fig. 13
Jupiter 1073 5.25 0.00324129 0 0 0 0
Saturn  2.85x1074 8.34031296 0.03543211 1.33660054 338.16098022 203.47100830 178.91156006
Fig. 14
Jupiter 1073 5.25 0.00115474 0 0 0 0
Saturn  2.85x10~4 7.64275074 0.04558534 1.20436156 215.75094604 282.47793579 155.35372925
Fig. 15
Jupiter 1073 5.25 0.00397692 0 0 0 0
Saturn  2.85x107% 7.33959627 0.01606708 0.48118880 258.75650024 358.17221069 160.78182983
Fig. 16
Jupiter 1073 5.25 0.00127964 0 0 0 0
Saturn  2.85x10~% 7.39253807 0.02013579 1.65362096 250.55947876 167.58595276 31.68255806
Fig. 17
Jupiter 1073 5.25 0.00292543 0 0 0 0
Saturn  2.85x107% 6.83152723 0.02512858 0.42025852 288.54019165 166.67124939 291.39468384
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