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ABSTRACT

The timing variations of transits of an exoplanet provide means of detecting additional planets in the system. The
short-period and resonant variations of the transit signal are probably the most diagnostic of the perturbing planet’s
mass and orbit. The method can be sensitive to small perturbing masses near the transiting planet and for orbits at
mean motion resonances. It is not evident, however, how the mass and orbit of the perturbing planet can be de-
termined from the observed variations of transit times. This is a difficult inverse problem. Direct N-body integrations
are computationally too expensive to provide an adequate sampling of parameter space. Here we develop an alternative
method based on analytic perturbation theory. We find that this new method is typically�104 times faster than direct
N-body integrations. The perturbation theory that we use here has an adequate precision to predict timing variations
for most planetary orbits except those with very large eccentricities where the expansion of the disturbing function is
divergent. By applying the perturbation method to the inverse problemwe determine the number and precision of the
measured transit times that are required for the unique and correct characterization of the perturbing planet. We find
that the required precision is typically a small fraction (�15%Y30%) of the full transit timing variation amplitude.
Very high precision observations of transits will therefore be needed. We discuss the optimal observation strategy to
characterize a planetary system from the transit timing variations. We find that the timing of secondary transits, if
measured with adequate precision, can help to alleviate the problem with the degeneracy of solutions of the inverse
problem.

Subject headinggs: celestial mechanics — planetary systems

1. INTRODUCTION

The goal of this paper is to describe a method that could be
used to determine planetary masses and orbits for exoplanetary
systems where at least one of the planets is transiting over the
disk of its host star. To define the problem, we assume that the
parameters of the transiting planet such as its mass, semimajor
axis, and eccentricity are known from the radial velocity measure-
ments, and that a second planet gravitationally perturbs the orbital
motion of the transiting planet and produces observable short-
period variation in the timing of individual transits (Agol et al.
2005; Holman &Murray 2005). We then investigate how the pa-
rameters of the perturbing planet, such as its mass and orbit, can
be determined from the observed transit timing variations (TTVs).

This is a difficult (inverse) problem. The simplest approachwould
be to use direct N-body integrations of a large sample of planetary
systems (Steffen&Agol 2005;Agol&Steffen 2007) in an attempt to
directly fit the observed TTV signal. This method, however, is
extremely CPU expensive due to the large number of unknown
parameters. In the simplest case, where the transiting planet has a
near-zero eccentricity and the orbits are assumed to be coplanar,
the three basic parameters of the perturbing planet that one would
like to know are its mass, semimajor axis, and eccentricity. In
addition, the TTV signal also depends on the orbital phase of the
perturbing planet (as defined by the longitude at given epoch) and
its longitude of pericenter. Because the pericenter longitude of the
perturbing planet may precess (e.g., due to presence of additional
planets exterior to it), we must include in the list of unknown
parameters not only its initial phase but also its precession fre-
quency. Therefore, there are six unknown parameters in total in

this case. If, for example, 50 values are needed to resolve each of
the six dimensions of parameter space, more than 1010 planetary
systems would need to be tracked in total.
To speed up this calculation we develop a new method that

avoids the need for extensive orbital integrations. The method is
based on perturbation theory (Hori 1966; Deprit 1969). We cal-
culate the transit time at any given epoch as a sum over Fourier
terms with amplitudes and phases that are explicit functions of
the unknown parameters. Our tests demonstrate that this method
is typically �104 times faster than direct orbital integrations. It
allows us to calculate 100 transit times for 1010 planetary systems
in about a day of CPU time.
We describe the newmethod in x 2 and test its precision in x 3.

In x 4, we simulate synthetic TTVs with precise N-body inte-
grations and attempt to determine the mass and orbit of the per-
turbing planet from them by the least-squares fit. We discuss the
uncertainty of the best-fit parameters as a function of the observed
number of transits, observational time base, orbit, andmass of the
perturbing planet. The code described here is available on request.

2. METHOD

TheTTV signal is a series of transit times, t( j), with 1 � j � N ,
where N is the total number of observed transits. The orbit period
of the transiting planet, P1, can be estimated from this data by
linear regression.When P1 is extracted from t( j), we end up with
variation �t( j) ¼ t( j)� jP1 that describes the difference of t( j)
from a strictly periodic (i.e., single-frequency) signal. This varia-
tion can be produced by additional planets in the system that grav-
itationally perturb the orbit of the transiting planet and advance or
delay individual transits.
The dynamics of interacting planets can be complex. Probably

the most diagnostic signatures for the TTVmethod are the short-
period and (near-) resonant oscillations of the transiting planet’s
orbit produced by gravitational perturbations from other planets
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(Holman & Murray 2005; Agol et al. 2005).3 Due to these per-
turbations, the true longitude of the transiting planet, �1, can slightly
lead or trail the one of the unperturbed Keplerian orbit at the time
of transit, therefore producing the timing variation. For an el-
liptic orbit, �1 can be written as a function of the mean longitude,
k1, as

�1 ¼ k1 þ
X1
k¼1

Hk(e1) sin k(k1 �$1); ð1Þ

where e1 and$1 are the eccentricity and pericenter longitude of
the transiting planet, and Hk(e1) are polynomials in e1 with the
lowest power of Hk in e1 being k. Therefore, the TTV signal may
arise from changes in k1, e1, or $1. In practice, the eccentricity
of transiting planets is typically small (Torres et al. 2008) be-
cause orbits have been circularized by tidal effects. To the lowest
order in e1, equation (1) becomes

�1 ¼ k1 þ 2e1 sin k1 �$1ð Þ þO e21
� �

: ð2Þ

In regularized variables, h1 ¼ e1 sin$1 and k1 ¼ e1 cos$1; this
leads to

n1�t ¼ �k1 þ 2�k1 sin k1ð Þ � 2�h1 cos k1ð Þ þO e1ð Þ; ð3Þ

where n1 is the mean motion of the transiting planet, and �k1,
�k1, and �h1 denote the short-period variations of the osculating
orbital elements. For simplicity, we do not explicitly list terms
O(e1) in the above equation. These and higher order terms can be
easily taken into account if e1 is significant.

In the following, we will assume thatm1;m2Tm0, wherem0,
m1, and m2 are masses of the star, inner (transiting), and outer
planets, respectively, and determine the short-period variations in
�k1, �h1, and �k1 using the perturbation theory. The Hamiltonian
H of the two planets orbiting a central star is

H ¼ H0 þ H1; ð4Þ

where

H0 ¼ � Gm0m1

2a1
� Gm0m1

2a2
ð5Þ

and

H1 ¼ �Gm1m2

1

r1 � r2j j �
r1 = r2
r32

� �
; ð6Þ

where G is the gravitational constant, r1 and r2 are the Jacobi
coordinates of planets, and a1 and a2 are their semimajor axes
(e.g., Brouwer & Clemence 1961).

We use the expansion of H1 in the Fourier series:

H1 ¼ � Gm1m2

a2

X
C

l; j
k (� )el11 e

l2
2 sin

i1

2

� �j1

sin
i2

2

� �j2

; exp � k1k1 þ k2k2 þ k3$1 þ k4$2 þ k5�1 þ k6�2ð Þ

ð7Þ

with � ¼
ffiffiffiffiffiffiffi
�1

p
, C

l; j
k (� ) ¼ C

l; j
�k(� ), � ¼ a1/a2 < 1, and multi-

indexes l ¼ (l1; l2), j ¼ ( j1; j2), and k ¼ (k1; k2; k3; k4; k5; k6).
Properties of equation (6) imply that

P
6
n¼1 kn ¼ 0, and that

j1þ j2, l1 � k3j j, l2 � k4j j, j1 � k5j j, and j2 � k6j j are even inte-
gers. The lowest combined power of eccentricities and inclina-
tions that appears in front of each Fourier term in equation (7)
is thus l1 þ l2 þ j1 þ j2 ¼

P6
n¼3 knj j � 0 (see, e.g., Morbidelli

2002, pp. 35Y36).
It is convenient to write equations (5) and (6) in terms of

canonical Poincaré variables:

Lj ¼ mj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm0aj

p
; kj

yj ¼
ffiffiffiffiffiffiffi
2Pj

p
cos pj; xj ¼

ffiffiffiffiffiffiffi
2Pj

p
sin pj

zj ¼
ffiffiffiffiffiffiffi
2Qj

p
cos qj; vj ¼

ffiffiffiffiffiffiffi
2Qj

p
sin qj; ð8Þ

where

Pj ¼ Lj 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2j

q� 	
; pj ¼ �$j

Qj ¼ Lj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2j

q
1� cos ij
� �

; qj ¼ ��j: ð9Þ

The indexes j ¼ 1 and j ¼ 2 denote the variables of the inner and
outer planets, respectively, and ij and�j are their inclinations and
nodal longitudes. By substituting the Poincaré variables in equa-
tion (4) we find that

H ¼ H0(L1; L2)þ H1(Lj; yj; zj; kj; xj; vj) ð10Þ

with H1TH0 for m1;m2Tm0. We do not list the expressions
for H0 and H1 in the Poincaré variables here. In fact, it is not
necessary to calculate these expressions explicitly because our
computer algebra code can easily deal with the transformation
between the orbital elements and Poincaré variables, and thus
combine equations (5)Y (9) to obtain equation (10).

The perturbation theory (Hori1966; Deprit1969) allows us to
select a canonical transformation from Ej to Ēj, where E denotes
arbitrary Poincaré variable, that transforms H to the new Ham-
iltonian, H̄ , that does not depend on new coordinates k̄j. The new
momenta, L̄j, become constants of motion and k̄j ¼ njt þ k(0)j ,
where constants nj and k

(0)
j denote the mean orbital frequency of

planet j and initial phase angle, respectively.
The transformation between Ej and Ēj can be given in terms of

generating function � as

Ej ¼ Ēj þ
X1
n¼1

1

n!
Ln
�Ēj; ð11Þ

where Ln
� is the Lie derivative defined in terms of Poisson

brackets as

L1
�Ēj ¼ Ēj; �


 �
;

Ln
�Ēj ¼ L1

�Ln�1
� Ēj: ð12Þ

Therefore, to the first order in m2/m0, the terms of equation (11)
relevant to equation (3) are

k1 ¼ k̄1 þ
@�1

@L̄1
;

x1 ¼ x̄1 þ
@�1

@ȳ1
;

y1 ¼ ȳ1 �
@�1

@x̄1
; ð13Þ

3 The long-term effects such as the apsidal precession produced by the perturb-
ing planet are more difficult to detect via TTVs if transit observations span only a
few years (Heyl & Gladman 2007). In addition, these effects can be masked by
contributions to the apsidal precession from the oblateness of the central star,
relativity, and tides.
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where�1 denotes the first-order ( linear) terms of � inm2/m0. Ex-
plicit relations between �k1; �h1 and �x1 ¼ x1 � x̄1, �y1 ¼ y1 � ȳ1
can be given from the definition of these variables.WithH1 defined
in equation (7), �1 can be written as

�1 ¼
Gm1m2

ā2

X
k1j jþ k2j j6¼0

�
C

l; j
k (�̄ )

k1n1 þ k2n2
ēl11 ē

l2
2 sin

ī1

2

� �j1

; sin
ī2

2

� �j2

exp � k3$̄1 þ k4$̄2 þ k5�̄1 þ k6�̄2

� �
; exp � k1k̄1 þ k2k̄2

� �
; ð14Þ

where ā2; �̄ ¼ ā1/ā2; ēj; īj; $̄j; �̄j; k̄j are functions of the new
(mean) canonical momenta and coordinates.

Series in equation (14) is not convergent for k1n1 þ k2n2 � 0,
i.e., near mean motion resonances between the two planets. To
deal with this complication we eliminate all Fourier terms from
equation (14) with k1n1 þ k2n2 < n2 fcut, where fcut is the cutoff
parameter. Different values of fcut are tested in x 3.

According to equation (13), we must take the derivative of
�1 with respect to L1, x1, and y1. For example, we have for
e1 ¼ i1 ¼ 0 that

@�1

@L̄1
¼ @ā1

@L̄1

@�1

@ā1
ð15Þ

with

@ā1

@L̄1
¼ 2

ffiffiffiffiffi
ā1

p

m1

ffiffiffiffiffiffiffiffiffi
Gm0

p : ð16Þ

Generating function �1 depends on ā1 via C
l; j
k ā1/ā2ð Þ and n1.

The corresponding derivative term is

@

@ā1

C
l; j
k (�̄ )

k1n1 þ k2n2

" #
¼ 1

k1n1 þ k2n2

@C l; j
k

@ā1
� k1C

l; j
k

k1n1 þ k2n2

@n1
@ā1

 !

ð17Þ

with

@n1
@ā1

¼ � 3

2

ffiffiffiffiffiffiffiffiffi
Gm0

p

ā
5=2
1

: ð18Þ

The derivatives of �1 with respect to x1 and y1 can also be ex-
plicitly given. We do not list them here.
There are two alternative expressions for coefficients C

l; j
k that

we can use: (1) in terms of Laplace coefficients b
(i)
s=2(� ) (e.g.,

Ellis &Murray 2000); (2) in power series of � (e.g., Kaula1962).
These expressions are equivalent as Laplace coefficients can be
expanded in power series of � . The domain of convergence of
these series is given by the Sundman criterion (Sundman 1916),
which postulates that the series is absolutely convergent for

a2g(e1) > a1 f (e2); ð19Þ

where

g(e1) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e21

q
cosh wþ e1 þ sinh w; ð20Þ

f (e2) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e22

q
cosh z� e2 � sinh z ð21Þ

withw ¼ e1 cosh w and z ¼ e2 cosh z. For example, for � ¼ 0:5
and e1 ¼ 0 the expansion is convergent for e2 < 0:32. This
limits the applicability of our method. We discuss this issue in
more detail in x 3.

3. TESTS

The perturbation theory method (hereafter the PT method)
described in the previous section has been implemented in C and
Fortran computer codes. TheC-language code (Šidlichovský1990)
was used to calculate a table of coefficients C

l; j
k (and their de-

rivatives with respect to� ) for 8000 values of � between 0.1 and
0.9. The code efficiently evaluates the power expansion of C

l; j
k

in � (Kaula 1962) with the maximum power selected in such a
way that the numerical values of C

l; j
k are precise to at least seven

decimal digits. For � � 0:9, this required accounting for powers
up to ~300. To assure that the PT method is valid for moderate to
large values of e2, we used terms el22 in equation (7) up to l2 ¼ 15.
We verified that increasing the truncation order does not signifi-
cantly improve the results. Our Fortran code reads the table of co-
efficientsC

l; j
k (and dC

l; j
k /d� ) and determines �t (eq. [3]) according

to the PT method described in x 2. While our codes are capable of
dealing with the case of nonzero inclinations, here we only discuss

Fig. 1.—Comparison between the TTV signal determined from a precise nu-
merical integration ( plus signs) and the one obtained from the PT method (solid
line). The transiting planet has a1 ¼ 0:1 AU and e1 ¼ 0. The perturbing planet
hasm2 ¼ 10�4m0, a2 ¼ 0:2 AU, and e2 ¼ 0:1. The precision of the perturbation
theory is good in this case. The amplitude and QPT of the TTV signal are 234 s
and 2.6% (see main text for the definition of QPT).

Fig. 2.—Same as Fig. 1, but for a2 ¼ 0:32 AU and e2 ¼ 0:35. This case tests
the precision of the perturbation theory for a large orbital eccentricity of the
perturbing planet. The amplitude and QPTof the TTV signal are 104 s and 5.4%.
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the results for i1 ¼ i2 ¼ 0. We also limit the analysis to e1 � 0.
Discussion of results for a more general case is left for elsewhere.

We performed the following experiments to test the precision
of the PTmethod. In each test, we fixed the values of m0,m1, and
m2 and started a large number of exact N-body integrations with
different initial orbits of the two planets. We assumed that the in-
ner planet is transiting and the outer planet is gravitationally per-
turbing the inner planet. Their orbits were set to be coplanar. The
orbit evolution was followed for a fixed timespan, 0 < t < Tint,
with the Bulirsh-Stoer integrator (Press et al. 1992). During this
timespan we interpolated for and recorded all transit times of the
inner planet. The same initial orbits were then used to determine
the transit times from the PT method. We typically used Tint ¼
1000 days in these tests. The best results were obtained with
fcut ¼ 0:1Y0:2.

To start with, we considered a case with m0 ¼ MSun and a1 ¼
0:1 AU. Parameters m2, a2, and e2 were varied to test the pre-
cision of the perturbationmethod for different planetary systems.
Figures 1, 2, and 3 show a comparison of the TTV signals for
a2 ¼ 0:2AU and e2 ¼ 0:1 (case 1), a2 ¼ 0:32AU and e2 ¼ 0:35
(case 2), and a2 ¼ 0:15AUand e2 ¼ 0:05 (case 3).Weusedm2 ¼
10�4m0 in all these cases.4 While case 1 represents the perturbing
planet’s orbit with moderate eccentricity and separation from the
transiting planet, cases 2 and 3 are slightly more extreme. Case 2
tests the precision of the PTmethod for a large eccentricity of the
perturbing planet. Case 3 tests it for a compact planetary system.

To quantify the precision of the PT method we define a
quality parameter, QPT, as a ratio between the rms of the TTV
difference between the N-body and PT methods and the am-
plitude of the TTV signal. According to Figures 1Y3, the PT
method shows a satisfactory precision for all three cases de-
scribed abovewith QPT ranging between 2% and 7%. This result
is encouraging.

Figure 4 helps us to understand the extent of the orbital space
domain where the PT method performs well and where it does
not.5 There are two failure modes. The first one occurs when the
pericenter distance of the outer planet, q2 ¼ a2(1� e2), approaches
a1. The PTmethod fails in this case because the expansion of the
perturbing function is not convergent beyond the limits given by
the Sundman’s criterion (bottom solid lines in Fig. 4). This
limitation of the PTmethod, however, is not as critical as it might
seem because planets with q2 � a1 may not be stable. To check

Fig. 3.—Same as Fig. 1, but for a2 ¼ 0:15 AU and e2 ¼ 0:05. This case tests
the precision of the perturbation theory for a compact planetary system. The
amplitude and QPT of the TTV signal are 1180 s and 6.5%.

Fig. 4.—Results of the orbital survey.We placed a transiting planet on a circular orbit with a ¼ 0:1 AU from a Sun-mass star. The orbit was gravitationally perturbed by
an outer planet with mass m2 ¼ 10�4m0. The orbits of transiting and perturbing planets were assumed to be coplanar. Semimajor axis and eccentricity of the outer planet
were then varied. In each case, we numerically integrated the orbit evolution for 1000 days and registered times of 87 (primary) transits of the inner planet. (a) shows the
(a2; e2) values that are color coded according to the amplitude of the TTV signal, (�t)amp. The color coding is the following: (�t)amp > 1000 s (red), 100 < (�t)amp < 1000 s
(green), 10 < (�t)amp < 100 s (blue), and 1 < (�t)amp < 10 s (turquoise). The PTmethod described in x 2 was used to determine the transit times.We used fcut ¼ 0:1 here.
(b) shows the (a2; e2) values for which the fractional error of transit timings obtained from the PT method was better than 15%. The upper and lower solid curves in both
panels show the planet-crossing and Laplacian-series convergence thresholds, respectively.

4 We usedm2 ¼ 10�3m0 andm2 ¼ 10�5m0 in our additional tests. We found
that the amplitude of the TTV signal scales nearly linearly with m2 as it should
because of the linear dependence on m2 in the PT method. We therefore do not
need to extensively test different values of m2.

5 This figure was obtained withm2 ¼ 10�4m0. Similar surveys were done for
m2 ¼ 10�3m0 and m2 ¼ 10�5m0. Due to linear scaling �t with m2 we found that
the overall pattern in Fig. 4b is nearly invariant to changes of m2.
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on this, we plot in Figure 5 the Hill stability domain as defined by
Gladman (1993). We find that the size of the problematic region,
where the Laplacian expansion is divergent but the orbits are Hill
stable, depends on the masses of the two planets. With m1 ¼
10�3m0 and m2 ¼ 10�5m0 this region opens with increasing a2
and spans a high-eccentricity strip about 0.1 wide in e2 for large
a2. On the other hand, the problematic domain vanishes for
m1 ¼ m2 k10�3m0.

The second failure mode of the PT method occurs at the mean
motion resonances between the two planets. Specifically, the
vertical gaps in Figure 4b where the precision of the PT method
degrades correspond to resonances such as the 2 : 1 at 0.159 AU,
3 : 1 at 0.208 AU, 4 : 1 at 0.252 AU, 5 : 1 at 0.294 AU, and 6 : 1
at 0.33 AU. Figure 6a illustrates an example of TTVs for planets
in the 4 : 1meanmotion resonance. In this example, the TTV sig-
nal is a wave with period�850 days. It is produced by the reso-
nant oscillations of the planetary orbits. Due to these oscillations,
the semimajor axis of the transiting planet varies and affects n1.
Accordingly, k1 has a variable rate and can significantly lead or
trail that of the unperturbed orbit. This motion propagates into the
TTV signal via equation (3). The resonant modes are not taken
into account in the PT method, as explained in x 2 (they must be
removed from eq. [14] to avoid divergence of �1).

In Figure 7, we enlarge the region near the 4 : 1 planetary
resonance. It is apparent from this plot the PT method fails for
0:2475 < a < 0:256 AU and e > 0:05. This includes the region
of resonant orbits and a narrow strip of the nonresonant orbits on
each side of the 4 : 1 resonance. The performance of the PTmethod

for near-resonant orbits can be improved using a higher-order per-
turbation theory (i.e., including more terms in eq. [11]). This will
help to shrink the problematic region in Figure 7. We leave the
development of the higher-order PT method for future work.
The failure of the PT method at the mean motion resonances

does not appear to be immediately critical in practice because the
resonant oscillations of the TTV signal can be characterized (and
become useful) only with a long time baseline of the TTVobser-
vations. Moreover, the short-period oscillations in the underlying
signal can be correctly modeled by the PT method even in the
resonant case (Fig. 6b). Therefore, if any long-term variations of
the TTV signal become apparent for a given system, the following
method of analysis can be used. In the first step, the long-period
terms can be separated from the rest by a Fourier-based filter.

Fig. 5.—Hill stability domain for different masses of the perturbing planet.
The dashed lines denote the upper boundary of the region of Hill-stable orbits
according to Gladman (1993). Different curves are denoted by ratiom2/m0. In all
cases we usedm0 ¼ MSun,m1 ¼ 10�3m0, and a1 ¼ 0:1AU. The solid line shows
the convergence limit of the Laplacian expansion of the disturbing function as given
by Sundman (1916).

Fig. 6.—Comparison between the synthetic TTV signal ( plus signs) and tran-
sit times obtained from the PTmethod (solid lines). As in Fig. 1, the transiting planet
was set to have a ¼ 0:1 AU and e1 ¼ 0. In this example, the perturbing planet was
set to havem2 ¼ 10�4m0, a ¼ 0:25 AU, and e1 ¼ 0:2. This orbit is located in the
4 : 1 mean motion resonance with the transiting planet. The long-period wave
shown in (a) (�850 days) is produced by resonant oscillations. The PT method
fails to reproduce this behavior because it does not properly account for dynamics
of resonant planets. In (b), we show the underlying short-period TTV signal for
the same planetary system. Specifically, all frequencies with periods longer
than 100 days were removed by the high-pass Fourier filter. The short-period
TTVs obtained from the PT method nicely match those produced by the exact
numerical simulation. The amplitude and QPTof the TTV signal in (b) are 32.8 s
and 12.5%.
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The residual short-period signal can then be modeled by the PT
method as in the nonresonant case (see Figs. 6b and 8). Finally,
using the resonant perturbation theory (currently in develop-
ment) or N-body integrations, it must be verified that the identi-
fied resonant solutions match both the short- and long-period
resonant harmonics seen in the TTV signal.

4. DETERMINATION OF m2, a2, AND e2 FROM TTVs

Here we describe how the PTmethod can be used to determine
the mass and orbital parameters of the perturbing planet from
TTVs.We first use the Bulirsh-Stoer integrator to produce a syn-
thetic TTV signal for the selected planetary system, (�tj)synth, where
1 � j � N and N is the number of transits. In all cases discussed

herewe assume that the orbit of the inner transiting planet is known
(from photometric and radial velocity measurements). Specifically,
we set a1 ¼ 0:1 AU and e1 ¼ 0.We then apply the PT method to
a large set of the perturbing planet’s parameters and use the least-
squaresmethod to determinewhich parameters best fit the original
synthetic TTV signal. Finally, the best-fit solutions are compared
to the values of m2, a2, and e2 thatwe used to generate TTVs in the
numerical integration.

The following tests were performed with m0 ¼ MSun, Tint ¼
1000 days (producing N ¼ 87 consecutive primary transits of
the inner planet) and coplanar orbits of the two planets. In addi-
tion to the three basic parameters that wewould like to know in this
case,m2, a2, and e2, the TTV signal also depends on three additional

Fig. 7.—Zoom in of Fig. 4 near the 4 : 1 planetary resonance.We used fcut ¼ 0:1 here. The gap in (b) shows the problematic region where our nominal PTmethod fails
to produce the correct TTV signal.

Fig. 8.—Same as Fig. 7, but based on frequencies >2�/100 day�1. (b) shows that the PT method is capable of reproducing the short-period oscillations of the TTV
signal in the resonance. Therefore, by isolating the short-period TTVharmonics and analyzing them separately with the PTmethod, we achieve satisfactory precision of the
analysis in a domain that is complementary to Fig. 7b.
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unknown parameters, namely the mean and pericenter longi-
tudes of the outer perturbing planet, k(0)2 and$(0)

2 , both defined for a
fixed epoch, and the pericenter precession rate, g2 ¼ d$2/dt. We
include g2 here as a free parameter to account for the nongravitational
effects (e.g., star’s oblateness, relativity, and tides) and those pro-
duced by secular interaction between planets.6

Ideally, we would like to fit for all six parameters described
above. In reality, however, the full sampling of parameter space
with six dimensions would be CPU time consuming and not con-
venient for testing purposes. In the first set of tests, we therefore
fix k1 ¼ k2 ¼ $2 ¼ 0 at the first transit, set g2 ¼ 0, and fit for
m2, a2, and e2 only. Specifically, we searched for solutions with
10�5m0 < m2 < 10�2m0, 0:11 < a2 < 1:0 AU, and e2 < 0:6.
Since we found that a fine resolution in a2 is needed to converge
to the correct solution, we used 8000 values of a2. Parametersm2

and e2 were sampled by 100 and 60 points, respectively. In total,
nearly 50 million planetary systems were tracked by the PT
method, requiring about 10 minutes of the CPU time on our
Opteron-246 computer (i.e., �105 systems are tracked per sec-
ond). In comparison, our efficientN-body integrator tracks 1 plan-
etary system over Tint ¼ 1000 days in about 0.1 s. Therefore, the
speed up factor that we obtain by using the PT method is �104.
The results obtained from the three-parameter fits are described
in x 4.1.

In the second set of experiments, we fit form2, a2, e2, k
(0)
2 , and

$(0)
2 where k(0)2 and$(0)

2 are defined as the values of themean and
pericenter longitudes at the first transit. These five-parameter fits
are more CPU consuming. We therefore used only a rough res-
olution in k(0)2 and$(0)

2 . Specifically, we sampled these angles by
36 values that were evenly spread over 360�. Given the results
described in x 4.2 below, the 10

�
resolution of k(0)2 and $(0)

2 ap-
pears to be adequate. In each of our five-parameter tests, more
than 6 ; 1010 planetary systems were followed, requiring about a
week of the CPU time.

We applied the above-described procedure to a variety of plan-
etary systems. For brevity, we discuss here only the four represen-
tative cases shown in Figures 1Y3 and 6b. Twomethodswere used
to produce the best-fit solutions in each case. In the first method,
we selected trial values of m2, a2, and e2 and defined

�2 ¼ 1

N

XN
j¼1

(�tj)trial � (�tj)synth

h i2
; ð22Þ

where (�tj)trial is the trial �t of the jth transit. We searched for the
minimum of � over all trial values withm2, a2, and e2 placed on a
grid as described above. We also defined regions of parameter
space where � < �cut with �cut in seconds. Different cutoff values
of �cut were then tested to help us to understand the effects of
instrumental noise on the range of acceptable solutions.
In the second method, we added the white noise with charac-

teristic amplitude �wn to (�tj)synth.
7 The goal of this exercise was

to simulate real observation data, (�tj)obs, which can be effected
by random (and uncorrelated) instrumental errors with character-
istic amplitude �wn. We defined

�2 ¼
XN
j¼1

(�tj)trial � (�tj)obs
�wn

� �2
ð23Þ

and searched for the minimum of �2 over all trials. The confi-
dence levels for the normally distributed data were then defined
as��2 ¼ �2 � �2

min < (��2)cut, where the (��2)cut valueswere
properly chosen for N and the required confidence level. For ex-
ample, (��2)cut ¼ 105 with N ¼ 87 corresponds to the 95%
probability. The corresponding confidence regions of m2, a2, and
e2 for different values of �wn were inspected. We summarize the
results below.

Fig. 9.—Best-fit parameters obtained by the least-squares fit to 87 transit times for our case-1 planetary system (see Fig. 1). The parameters of the perturbing
planet are denoted by triangles (m2 ¼ 10�4m0, a2 ¼ 0:2 AU, and e2 ¼ 0:1). The thick and thin lines show the envelopes of solutions for �cut ¼ 10 s and �cut ¼ 30 s,
respectively.

6 We do not need to include g1 ¼ d$1/dt as a free parameter because e1 is
assumed to be small. 7 The red noise modeling goes beyond the scope of this paper.
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4.1. Three-parameter Fits

We start by discussing the results based on equation (22). Fig-
ure 9 shows the best-fit solutions for case 1 (m2 ¼ 10�4m0, a2 ¼
0:2 AU, and e2 ¼ 0:1). With �cut ¼ 10 s, the least-squares fit
identifies the correct mass and orbit of the outer planet with no
significant ambiguity.

The uncertainty of determined parameters m2 and e2 signifi-
cantly increases with increasing �cut. For example, these param-
eters are constrained onlywithin 0:04 < e2 < 0:25 and 2 ; 10�5 <
m2/m0 < 2:5 ; 10�4 for �cut ¼ 30 s. In contrast, a2 could be deter-
mined with an exquisite precision even for �cut ¼ 30 s (Fig. 9).
This result stems from the sensitivity of n2 to the exact value of a2
and its effects on the behavior of k2 in the argument of equa-
tion (14). For �cut > 15 s, however, additional (incorrect) solutions
start to appear as acceptable fits, such as m2 � 1:5 ; 10�5m0,

a2 � 0:153 AU, and e2P0:05 (Fig. 10). Apparently, the inverse
problem becomes non-unique for low signal-to-noise ratio (S/N).
In particular, the noise can mask TTV harmonics that were crucial
for the solution’s uniqueness. With �cut > 15 s (in this case), only
a few main harmonics can be resolved in TTVs. If that is the case
the planet detection can still be achieved by the TTV method, but
the characterization of the perturbing planet’s parameters be-
comes ambiguous.

Interestingly, the critical level of �cut that can ensure a unique
(and correct) solution is rather a weak function of the number of
transits that we include in our computation. For example, if we de-
crease the number of transits from the original 87 (corresponding
to the continuous 1000 day transit data) to 22 (corresponding to
250days), the uniqueness thresholddoes not changemuchand, in the
specific case discussed here, remains at the �15 s level. Figure 11
shows the range of the best-fit orbital parameters for 43 and 22 tran-
sits. With only 10 transits (corresponding to 120 days), however, the
inverse problem becomes ambiguous even for unrealistically
small �cut of order of a few seconds. We emphasize that these re-
sults were obtained with the three-parameter fit. Fits to a larger
number of parameters would probably suffer frommore ambiguity.

The best-fit solutions from 87 transits of the case-2 planetary sys-
tem (m2 ¼ 10�4m0,a2 ¼ 0:32AU, and e2 ¼ 0:35) and �cut ¼ 10 s
have 4 ; 10�5 < m2/m0 < 3 ; 10�4, 0:3198 < a2 < 0:3201 AU,
and 0:26 < e< 0:42. This is comfortably close to the original
parameters. Incorrect solutions start to appear for �cut > 10 s.

Figure 12 shows the best-fit solutions for case 3 (m2 ¼ 10�4m0,
a2 ¼ 0:15 AU, and e2 ¼ 0:05) and �cut ¼ 100 s. They nicely
match the input parameters. The uncertainty improves when we
adopt lower levels of �cut. For example, 9 ; 10�5 < m2/m0 <
1:2 ; 10�4, 0:1499 < a2 < 0:1501 AU, and 0:03 < e < 0:08
with �cut ¼ 50 s. Ambiguous solutions arise for �cut > 100 s in
this example. Therefore, the threshold value of �cut in case 3 is
about 1 mag larger than those in cases 1 and 2. We conclude that
the compact planetary orbits (such as our case 3) can be more
easily characterized from TTVs

The resonant case shown in Figure 7 (m2 ¼ 10�4m0, a2 ¼
0:25 AU, and e2 ¼ 0:2) would be more difficult to identify with

Fig. 10.—Example of the non-uniqueness of the inverse problem. Plus signs
show the original TTV signal for our case-1 planetary system (a1 ¼ 0:1 AU, e1 ¼ 0,
m2 ¼ 10�4m0, a2 ¼ 0:2 AU, and e2 ¼ 0:1). The solid line shows the TTV signal
obtained with m2 ¼ 1:4125 ; 10�4m0, a2 ¼ 0:15265 AU, and e2 ¼ 0:03. This
later solution was identified by the PT method as a fit to the original TTV data
with � ¼ 15:6 s. The two series of TTVs shown here would therefore be indis-
tinguishable if the uncertainty of the TTV measurements exceeded �15 s.

Fig. 11.—Same as Fig. 9, but for 43 (left) and 22 transits (right). This figure demonstrated the increased uncertainty in the determined parameters when small number of
transits are available.
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realistic values of �cut, because the filtered short-period signal
has only a small amplitude. Specifically, we find that with
�cut ¼ 5 s the best-fit solution are 2 ;10�5 <m2/m0 < 1:2 ;10�4,
0:2485 < a2 < 0:2505 AU, and e < 0:25. Already for �cut > 5 s,
however, the PT method is unable to uniquely identify a2 and
picks up a range of incorrect solutions. Therefore, the precision
of the TTV measurements better than �5 s would be probably
required in this example. (We stress that these issues do not stem
from the inaccuracy of the PTmethod discussed in x 3. Low S/N
of the TTV measurements could prevent characterization of the
perturbing planet regardless the method used for fitting.)

Finally, we used equation (23) and the appropriate cuts on
��2 to calculate the confidence regions of parameters m2, a2,
and e2 for different values of �wn. In general, we found that
the correct solution can be identified at high confidence levels
(k99%) for values of �wn that are at least somewhat smaller than
the uniqueness thresholds of �cut established above. For �wn

exceeding these thresholds, namely �wn > 15, 10, 100, and 5 s
for cases 1, 2, 3, and 4, respectively, the perturbing planet would
be difficult to characterize from TTVs alone.

4.2. Five-parameter Fits

The results obtained with the five-parameter fits, where we
allowed k(0)2 and$(0)

2 to vary (in addition tom2, a2, and e2), show
little difference with respect to those obtained with the three-
parameter fits. In general, the region of acceptable fitswith � < �cut
becomes about a factor of �2 wider in a2 than that obtained
previously (Figs. 9, 11, and 12). This is due to the fact that a
slight change in a2 may be compensated bymodifying the values
of k(0)2 and $(0)

2 so that the resulting � value remains roughly
unchanged. This mainly affects fits to the TTVs with a short time
baseline. Interestingly, we find that the range of the estimatedm2

and e2 values obtained from the five-parameter fit is similar
to that obtained for the three-parameter fit (independently of
the length of the TTV time baseline). Therefore, the discussion
in x 4.1 of the white noise effects on the results is also valid here.

We found that the values of k(0)2 and $(0)
2 can be correctly

constrained from the data (Fig. 13), although the uncertainty can

Fig. 12.—Same as Fig. 9, but for our case-3 planetary system (see Fig. 3). The parameters of the perturbing planet, denoted by a triangle in each panel, are
m2 ¼ 10�4m0, a2 ¼ 0:15 AU, and e2 ¼ 0:05. The contour line shows the envelope of solutions with �cut ¼ 100 s.

Fig. 13.—Range of acceptable values obtained for our case-1 planetary system
(see Fig. 3) with the five-parameter fit. We plot �k2 ¼ k2;est � k(0)2 and �$2 ¼
$2;est �$(0)

2 , where k2;est and$2;est are the estimated values from the five-parameter
fit, and k(0)2 and$(0)

2 are the original values that we used to set up the test. The triangle
denotes the best-fit solution. The contour line shows the envelope of solutions
with �cut ¼ 10 s.
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be large. For example, the best-fit values for the case 1 fall dead
on the k(0)2 and $ (0)

2
values that we used to set up the test. With

�cut ¼ 10 s, however, the estimated values of k(0)
2

and $(0)
2 are

spread over a wide range (�80�) about the correct solution. There
also appears to be strong correlation between the estimated
values of k(0)2 and $(0)

2 with larger values of k(0)2 correspond-
ing to larger values of $(0)

2 (Fig. 13). Similar correlations were
found for all tested planetary systems.

4.3. Secondary Transits

The timing of secondary transits (when the planet passes
beyond the star) can also help to detect and characterize the
unseen planet in the system. As discussed in Heyl & Gladman
(2007), the secondary transits can be especially useful to detect
the long-term effects such as the apsidal precession produced by
the perturbing planet. Here we concentrate on the effects of the
short-period variations in the timing of secondary transits.

As in xx 4.1 and 4.2, we performed tests with m0 ¼ MSun,
a1 ¼ 0:1 AU, e1 ¼ 0, and Tint ¼ 1000 days (producing 87 pri-
mary and 87 secondary transits). Unlike in xx 4.1 and 4.2, how-
ever, we then used both the primary and secondary transits to
estimate the parameters of the perturbing planet from the PT
method. Given the results obtained in x 4.2, which demonstrate
that the three- and five-parameter fits are similar, we used the
three-parameter method here to economize the CPU time. Below
we discuss the results obtained for the four representative cases
shown in Figs. 1Y3 and 6b.

The envelope of acceptable solutions with � < �cut ¼ 10
and 30 s for case 1 is very similar to that shown in Figure 9,
where we did not use secondary transits. Figure 14 illustrates
our best fit to the 87 secondary transit times (the fit to the 87
primary transit times is very similar to the solid line shown in
Fig. 1). When fewer transits are used, we identify trends very
similar to those already described in x 4.2 and illustrated in
Figure 11. Specifically, the envelope of solutions becomes wider
in a2 and remains about the same in m2 and e2. The results for
cases 2, 3, and 4 show the same behavior. Therefore, we con-
clude that (1) the secondary transits do not help much to improve
the precision of results, and (2) the correct solution can be
identified with a relatively small number (�20) of (primary and/
or secondary) transits.

The secondary transits can be very important to ensure the
uniqueness of the results. As we discussed in x 4.2, the unique

solution in case 1 was achieved from primary transits alone with
�cut < 15 s, assuming that at least�20 primary transits were ob-
served. If, in addition to �20 primary transits, at least �20 sec-
ondary transits were also observed, the uniqueness is ensured for
�cut < 25 s, thus placing a weaker requirement on the precision
of the timing measurements (here we assume that the timing of
primary and secondary transits is measured with equal precision).
We found a similar increase in the critical � value (by �50%Y
100%) in cases 2, 3, and 4. Therefore, observations of secondary
transits can be very important to achieve an unique determination
of the perturbing planet parameters from the TTVs.

4.4. Gaps in Transit Observations

Above we assumed that observations of the consecutive
transit times are available. This is generally not the case of real
observations where long delays may occur between different sets
of telescopic observations and/or transits may be observed with
a diluted sampling. We tested such effects by introducing arti-
ficial gaps in our synthetic TTV series, by sampling every sec-
ond, third, or fourth consecutive transit, etc. We found that the
total number of observed transits, rather than their time distri-
bution, determines whether or not a unique and correct solution
can be identified from the short-period timing variations of tran-
sits. A longer time base of transit observations can be important
to characterize the resonant and long-period components in the
TTV signal.

5. CONCLUSIONS

Above we discussed our attempts to determine the parameters
of the perturbing planet by the least-squares fit to the TTV sig-
nal. We found that the PT method can sample the parameter
space about 104 times faster than the N-body integrations. The
white noise threshold that allows for unique and correct solu-
tions of the inverse problem varies from case to case but is typ-
ically a small fraction (�15%Y30%) of the full TTVamplitude.
Therefore, while the planet detection can be achieved fromTTVs
with relatively large �wn values, the determination of the planet’s
parameters is a more delicate problem andmay require very high
precision measurements.

What is the optimal observing strategy to characterize a plan-
etary system from the TTVs? Based on the tests described in x 4,
we observe that (1) the high-precision measurements of at least
�20 transits (primary or secondary) are generally needed to
ensure the uniqueness of the results; (2) if k20 transits were
observed, it may be beneficial to dilute the sampling and look for
the long-term trends in the timing of (ideally both) the primary
and secondary transits such as the ones produced by the resonant
and long-period effects; (3) observations of secondary transits
can be very useful to achieve the uniqueness as they help to in-
crease the sampling frequency of the diagnostic short-period
variations in the signal; (4) the total number of the observed
transits (rather than their time distribution) is central to the in-
version process; and (5) the very high precision measurements
will be needed to characterize a planetary system with small per-
turbing planets.

The PT method discussed in this paper can be generalized
to account for (1) eccentric orbit of the transiting planet, and
(2) planetary systems with inclined orbits. Improved precision
near the mean motion resonances can be achieved by using a
higher-order perturbation theory. The problem with the diver-
gence of the Laplacian expansion for high eccentricities can be
resolved by using the Beaugé’s expansion (Beaugé 1996) of the
disturbing function, which is valid even for crossing planetary
orbits. Moreover, efficient minimum-seeking methods (such as

Fig. 14.—Same as Fig. 1, but for the secondary transits. The solid line shows
the transit times for the best-fit solution (m2 ¼ 0:97 ; 10�4m0, a2 ¼ 0:2 AU, and
e2 ¼ 0:102) that we obtained with the PT method from 87 primary and 87 sec-
ondary consecutive transits. Plus signs show the secondary transit times for the
original parameters (m2 ¼ 10�4m0, a2 ¼ 0:2 AU, and e2 ¼ 0:1).
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the genetic algorithm, ‘‘simulated annealing’’ method, etc.; e.g.,
Beaugé et al. 2008) can be implemented in the algorithm to
search for the best-fit solutions rather than using a simple grid
technique used here. These developments are left for future work.
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NESVORNÝ & MORBIDELLI646


