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Abstract

Chiang et al. [Chiang, E., Lithwick, Y., Murray-Clay, R., Buie, M., Grundy, W., Holman, M., 2007. In: Protostars and Planets V, pp. 895–911]
have recently proposed that the observed structure of the Kuiper belt could be the result of a dynamical instability of a system of ∼5 primordial
ice-giant planets in the outer Solar System. According to this scenario, before the instability occurred, these giants were growing in a highly
collisionally damped environment according to the arguments in Goldreich et al. [Goldreich, P., Lithwick, Y., Sari, R., 2004. Astrophys. J. 614,
497–507; Annu. Rev. Astron. Astrophys. 42, 549–601]. Here we test this hypothesis with a series of numerical simulations using a new code
designed to incorporate the dynamical effects of collisions. We find that we cannot reproduce the observed Solar System. In particular, Goldreich
et al. [Goldreich, P., Lithwick, Y., Sari, R., 2004. Astrophys. J. 614, 497–507; Annu. Rev. Astron. Astrophys. 42, 549–601] and Chiang et al.
[Chiang, E., Lithwick, Y., Murray-Clay, R., Buie, M., Grundy, W., Holman, M., 2007. In: Protostars and Planets V, pp. 895–911] argue that during
the instability, all but two of the ice giants would be ejected from the Solar System by Jupiter and Saturn, leaving Uranus and Neptune behind.
We find that ejections are actually rare and that instead the systems spread outward. This always leads to a configuration with too many planets
that are too far from the Sun. Thus, we conclude that both Goldreich et al.’s scheme for the formation of Uranus and Neptune and Chiang et al.’s
Kuiper belt formation scenario are not viable in their current forms.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The investigation of the primordial processes that sculpted
the structure of the Kuiper belt is still an active topic of research.
Several models have been developed over the last decade,
based on the effects of Neptune’s migration on the distant
planetesimal disk (Malhotra, 1995; Hahn and Malhotra, 1999;
Gomes, 2003; Levison and Morbidelli, 2003; see Morbidelli et
al., 2003 for a review). However, many aspects of the Kuiper
belt have not yet been fully explained. Moreover, a new par-
adigm about the giant planets orbital evolution has recently
been proposed (Tsiganis et al., 2005; Gomes et al., 2005; see
Morbidelli, 2005 or Levison et al., 2006 for reviews), which
calls for a global revisiting of the Kuiper belt sculpting problem.
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In this evolving situation, Chiang et al. (2007) have recently
proposed an novel scenario. The idea is based on a recent pair
of papers by Goldreich et al. (2004a, 2004b), who, based on an-
alytic arguments, predicted that originally roughly five planets
began to grow between ∼20 and ∼40 AU. However, as these
planets grew to masses of ∼15 M⊕ their orbits went unstable,
all but two of them were ejected, leaving Uranus and Neptune in
their current orbits. Chiang et al. (2007) argued that this violent
process could explain the structure of the Kuiper belt that we
see today. We review the Chiang et al.’s (2007) scenario in more
detail in Section 2. Like Goldreich et al. (2004a, 2004b), the
Chiang et al.’s (2007) scenario was not tested with numerical
simulations, but was solely supported by order-of-magnitude
analytic estimates, which were only possible under a number of
simplifications and assumptions.

Therefore, the goal of this paper is to simulate numerically
Chiang et al.’s (2007) scenario, in order to see if the presence
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of five Neptune mass bodies (or a similar configuration) in a
primordial planetesimal disk is indeed consistent with the ob-
served structure of the outer Solar System (the orbital distribu-
tion of the Kuiper belt and of the planets). Because Goldreich et
al.’s (2004a, 2004b) and Chiang et al.’s (2007) scenarios heavily
rely on the presence of a highly collisional planetesimal disk,
we need first to develop a new numerical integrator that takes
collisions into account as well as their effects on the dynami-
cal evolution. This code is described and tested in Section 3. In
Section 4 we then describe the results of the simulations that
we did of Chiang et al.’s (2007) scenario. The conclusions and
the implications are discussed in Section 5.

2. A brief description of the Goldreich et al.’s
(2004a, 2004b)/Chiang et al.’s (2007) scenario

As we discussed above, Chiang et al.’s (2007) scenario
for sculpting the Kuiper belt is built on Goldreich et al.’s
(2004a, 2004b) scheme for planet formation. In Goldreich et
al. (2004a, 2004b), the authors pushed to an extreme the con-
cept of runaway (Ohtsuki and Ida, 1990; Kokubo and Ida, 1996)
and oligarchic growth (Kokubo and Ida, 1998; Thommes et al.,
2003; Chambers, 2006) of protoplanets in planetesimal disks.
Unlike previous works, they assumed that the bulk of the mass
of the planetesimal disk is in particles so small (submeter to cm
in size) that they have very short mean free paths. In this situ-
ation the disk is highly collisional, and the collisional damping
is so efficient that the orbital excitation passed from the grow-
ing planets to the disk is instantaneously dissipated. With this
set-up, the extremely cold disk exerts a very effective and time
enduring dynamical friction on the growing planetary embryos,
whose orbital eccentricities and inclinations remain very small.
Consequently, the embryos grow quickly, accreting the neigh-
boring material due to the fact that gravitational focusing is
large.

The order-of-magnitude analytic estimates that describe this
evolution lead to the conclusion that the system reaches a steady
state consisting of a chain of planets, separated by 5 Hill radii
embedded in a sea of small particles. As the planets grow, their
masses increase while their number decreases. This process
continues until the surface density of the planetary embryos, Σ ,
is roughly equal to that of the disk, σ . If the mass of the disk is
tuned to obtain planets of Uranus/Neptune mass when Σ ∼ σ

then the conclusion is that about 5 of these planets had to form
in the range 20–40 AU.

Goldreich et al. (2004a, 2004b) argue that when Σ ∼ σ

the dynamical friction exerted on the planets by the disk is no
longer sufficient to stabilize the planetary orbits. Consequently,
the planets start to scatter one another onto highly elliptical and
inclined orbits. They assume that all but two of the original ice
planets (i.e., three of five in the nominal case) are ejected from
the Solar System in this scattering process (no attempts were
made to model this event). Once their companions have disap-
peared, the two remaining planets feel a much weaker excita-
tion, and therefore their orbits can be damped by the dynamical
friction exerted by the remaining disk. This damping phase is
then followed by a period of outward migration (Fernández and
Ip, 1984). They therefore become Uranus and Neptune, with
quasi-circular co-planar orbits at ∼20 and ∼30 AU.

Chiang et al. (2007) argue that this basic scenario, with
some small modifications, can explain much of the structure
currently seen in the Kuiper belt. The Kuiper belt displays a
very complex dynamical structure. For our purposes, four char-
acteristics of the Kuiper belt are important: (1) The Kuiper
belt apparently ends near 50 AU (Trujillo and Brown, 2001;
Allen et al., 2001, 2002). (2) The Kuiper belt appears to con-
sist of at least two distinct populations with different dynamical
and physical properties (Brown, 2001; Levison and Stern, 2001;
Trujillo and Brown, 2002; Tegler and Romanishin, 2003). One
group is dynamically quiescent and thus we call it the cold
population. All the objects in this population are red in color.
The other group is dynamically excited, inclinations can be as
large as 40◦, and thus we call it the hot population. It, too,
contains red objects, but it also contains about as many ob-
jects that are gray in color. The largest objects in the Kuiper
belt reside in the hot population. (3) Many members of the hot
population are trapped in the mean motion resonances (MMRs)
with Neptune. The most important of these is the 2:3 MMR,
which is occupied by Pluto. (4) The Kuiper belt only con-
tains less than roughly 0.1 M⊕ of material (Jewitt et al., 1996;
Chiang and Brown, 1999; Trujillo et al., 2001; Gladman et al.,
2001; Bernstein et al., 2004). This is surprising given that ac-
cretion models predict that �10 M⊕ must have existed in this
region in order for the objects that we see to grow (Stern, 1996;
Stern and Colwell, 1997; Kenyon and Luu, 1998, 1999).

Chiang et al. (2007) suggest the following explanation for
the Kuiper belt’s structure. First, in order to make the edge
(characteristic 1 above), they assume that the planetesimal disk
is truncated at ∼47 AU. This assumption is legitimate given the
work of Youdin and Shu (2002) and Youdin and Chiang (2004)
on planetesimal formation. They assume—as a variant of the
pure Goldreich et al.’s (2004a, 2004b) scenario—that some co-
agulation actually occurred in the planetesimal disk while the
planets were growing. This coagulation produced a population
of objects with a size distribution and a total number com-
parable to the hot population that we see today. Because this
population constitutes only a small fraction of the total disk’s
mass, their existence does not change the overall collisional
properties of the disk, which are essential for Goldreich et al.’s
(2004a, 2004b) story.

Thus, during the final growth of the ice giants, Chiang et
al. (2007) envision three distinct populations: the ‘planetary
embryos’ (objects that eventually become Neptune-sized), the
‘KBOs’ (macroscopic objects of comparable size to the current
Kuiper belt objects, formed by coagulation), and ‘disk parti-
cles’ (golf-ball sized planetesimals that constitute the bulk of
the disk’s mass and which have a very intense collision rate and
damping). The KBOs are not massive enough to be affected by
dynamical friction, but are big enough not to be damped by col-
lisions with the disk-particles.

As the planets grow to their final sizes, Chiang et al. (2007)
estimate that the KBOs can be scattered by the growing plan-
ets to orbits with eccentricities and inclinations of order of 0.2.
These, they argue, become the hot population, which has ob-
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served eccentricities and inclinations comparable to these val-
ues. After all but two of the original planets are removed by the
dynamical instability and the ice giants evolve onto their cur-
rent orbits inside of 30 AU, Chiang et al. (2007) suggest that
there is still a population of very small disk particles between
40 and 47 AU. With the planets gone, this disk can become
dynamically cold enough to allow large objects to grow in it,
producing a second generation of KBOs on low-eccentricity
and low-inclination orbits. These objects should be identified,
in Chiang et al.’s (2007) scenario, with the observed cold pop-
ulation of the Kuiper belt.

The mass of the disk between 40 and 47 AU, however,
should retain on order of half of its original mass, namely
about 20 M⊕ according to the surface density assumed in Chi-
ang et al.’s (2007) Eq. (13). How this total mass was lost and
how the cold population acquired its current, non-negligible
eccentricity excitation, are not really explained by Chiang et
al. (2007). The authors limit themselves to a discussion of
the radial migration of Neptune, after the circularization of
its orbit, to create the resonant populations (Malhotra, 1995;
Hahn and Malhotra, 1999). This, in principal, might excite the
cold classical belt, although Chiang et al. (2007) admit that it
is not at all obvious how planet migration would proceed in a
highly collisional disk. As for the mass depletion, collisional
grinding is the only mechanism that makes sense at this point
in time. However, it is not clear (at least to us) why collisional
grinding would become so effective at this late stage while it
was negligible during the planet formation and removal phases,
when the relative velocities were much higher.

At this point we want to emphasize that, although the ideas
presented in Goldreich et al. (2004a, 2004b) and Chiang et al.
(2007) are new and intriguing, the papers do not present any
actual models. Most of the arguments are based on order-of-
magnitude equations where factors of 2 and

√
3 are dropped and

approximate timescales are set equal to one another in order to
determine zeroth-order steady state solutions. In addition, sim-
plifications are made to make the problem tractable analytically,
like, for example, at any given instant all of the disk particles
have the same size. Another example of a simplification is that
the rate of change of the velocity dispersion of the disk par-
ticles due to collisions is simply set to the particle-in-the-box
collision rate—the physics of the collisions are ignored. While
making such approximations is reasonable when first exploring
an idea and determining whether it could possibly work, nu-
merical experiments are really required in order to determine
whether the process does indeed act as the analytic expressions
predict.

Finally, many of the steps in these scenarios are not justified.
Of particular interest to us is the stage when, according to Gol-
dreich et al. (2004a, 2004b), all but two (i.e., three of five in
the nominal case) of the original ice giants are removed from
the system via a gravitational instability. The papers present
order-of-magnitude equations that argue that such an instabil-
ity would occur, but the authors are forced to speculate about
the outcome of this event.

Indeed, we suspect, based on our experiences, that Goldreich
et al.’s (2004a, 2004b) expectations about the removal of the ice
giants are naive. In particular, Levison et al. (1998) followed the
dynamical evolution of a series of fictitious giant planet systems
during a global instability. They found that during the phase
when planets are scattering off of one another, the planetary sys-
tem spreads to large heliocentric distances, and, while planets
can be removed by encounters, the outermost planet is the most
likely to survive. Similarly, Morbidelli et al. (2002) studied sys-
tems of planetary embryos of various masses originally in the
Kuiper belt and found that in all cases the embryos spread and
some survived at large heliocentric distances. From these works
we might expect that Goldreich et al.’s (2004a, 2004b) insta-
bility would lead to an ice giant at large heliocentric distances
(but still within the observation limits), rather than having a
planetary system that ends at 30 AU with a disk of small par-
ticles beyond. Granted, the simulations in both Levison et al.
(1998) and Morbidelli et al. (2002) did not include a disk of
highly damped particles that can significantly affect the evolu-
tion of the planets, so new simulations are needed to confirm
or dismiss the Goldreich et al.’s (2004a, 2004b)/Chiang et al.’s
(2007) scenario. In this paper we perform such simulations. We
are required to develop a new numerical integration scheme to
account for the collisional damping of the particle disk. This
scheme is detailed and tested in the next section.

3. The code

In this section we describe, in detail, the code that we con-
structed to test the Chiang et al. (2007) scenario. Before we
can proceed, however, we must first discuss what physics we
need to include in the models. As we described above, our mo-
tivation is to determine how a system containing a number of
ice-giant planets embedded in a disk of collisionally damped
particles dynamically evolves with time. Our plan is to repro-
duce the systems envisioned by Goldreich et al. (2004a, 2004b)
and Chiang et al. (2007) as closely as possible rather than cre-
ate the most realistic models that we can. Thus, we purposely
adopt some of the same assumptions employed by Goldreich
et al. (2004a, 2004b). For example, although Goldreich et al.
(2004a, 2004b) invoke a collisional cascade to set up the sys-
tems that they study, their formalism assumes that the disk
particles all have the same size and ignore the effects of frag-
mentation and coagulation. We make the same assumption.

In addition, although Goldreich et al. (2004a, 2004b) invoke
a collisional cascade to grind kilometer-sized planetesimals to
submeter-sized disk particles, they implicitly assume that the
timescale to change particle size is short compared to any of
the dynamical timescales in the problem. Thus, their analytic
representation assumes that the radius of the disk particles, s,
is fixed. They determine which s to use by arguing that disk
particles will grind themselves down until the timescale for the
embryos to excite their orbits is equal to the collisional damp-
ing time (which is a function of s). Then s is held constant.
We, therefore, hold s constant as well. Also, Goldreich et al.
(2004a, 2004b) do not include the effects of gas drag in their
main derivations, we again follow their lead in this regard.

Our code is based on SyMBA (Duncan et al., 1998; Levison
and Duncan, 2000). SyMBA is a symplectic algorithm that has
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the desirable properties of the sophisticated and highly efficient
numerical algorithm known as Wisdom–Holman Map (WHM),
(Wisdom and Holman, 1991) and that, in addition, can handle
close encounters (Duncan et al., 1998). This technique is based
on a variant of the standard WHM, but it handles close encoun-
ters by employing a multiple time step technique introduced by
Skeel and Biesiadecki (1994). When bodies are well separated,
the algorithm has the speed of the WHM method, and when-
ever two bodies suffer a mutual encounter, the time step for the
relevant bodies is recursively subdivided.

Although SyMBA represented a significant advancement to
the state-of-art of integrating orbits, it suffers from a basic and
serious limitation. At each time step of the integration, it is nec-
essary to calculate the mutual gravitational forces between all
bodies in the simulation. If there are N bodies, one therefore
requires N2 force calculations per time step, because every ob-
ject needs to react to the gravitational force of every other body.
Thus, even with fast clusters of workstations, we are computa-
tionally limited to integrating systems where the total number
of bodies of the order of a few thousand.

Yet, in order to follow both the dynamical and collisional
evolution of the numerous small bodies present during the Gol-
dreich et al.’s (2004a, 2004b) scenario, we need to implement a
way to follow the behavior of roughly 1026–29 particles. This
clearly is beyond the capabilities of direct orbit integrators.
Only statistical methods can handle this number of objects. In
the following, we describe our approach to this problem.

As described above, the systems that Chiang et al.’s (2007)
envisions have three classes of particles: the planetary embryos,
the KBOs, and the disk particles. Each class has its unique dy-
namical characteristics. The embryos are few in number and
their dynamics are not directly effected by collisional damping.
Thus, in our new code, which we call SyMBA_COL, they can
be followed directly in the standard N -body part of SyMBA.
The KBOs are not dynamically important to the system from
either a dynamical or collisional point of view. Since we are
more concerned here with the final location of the ice giants
than the dynamical state of the Kuiper belt, we ignore this pop-
ulation. Finally, we need to include a very large population of
submeter-sized particles that both dynamically interact with the
rest of the system and collisionally interact with each other.

Thus, we have added a new class of particle to SyMBA
which we call a tracer particle. Each tracer is intended to rep-
resent a large number of disk particles on roughly the same
orbit as one another. Each tracer is characterized by three num-
bers: the physical radius s, the bulk density ρb , and the total
mass of the disk particles represented by the tracer, mtr. For
example, the runs presented below, we set s = 1 cm or 1 m
and ρb = 1 g cm−3. In addition, we typically want to repre-
sent a ∼75 M⊕ disk with ∼3000 tracer particles, meaning that
mtr ∼ 0.025 M⊕ (although the exact numbers vary from run to
run).

The first issue we needed to address when constructing
SyMBA_COL, was to determine an algorithm that correctly
handles the gravitational interaction between the embryos and
the disk particles. Since there are only a few embryos and they
are relatively large, the acceleration of the tracers due to the
embryos can be determined using the normal N -body part of
SyMBA. It is less obvious, however, whether the gravitational
effect of the disk particles on the embryos can also be effec-
tively simulated using the normal N -body part of SyMBA,
i.e., using the forces directly exerted on the embryos by the
tracers. To argue this position, let us point out that the grav-
itational effect of the disk particles on the embryos is well
approximated by the dynamical friction formalism, which, as-
suming a Maxwellian velocity distribution, can be written as
(Chandrasekhar, 1943; also see Binney and Tremaine, 1987):

(1)
d �w
dt

∝ (mem + mdp)ρdisk

w3

[
erf(X) − 2X√

π
e−X2

]
�w,

where X ≡ w/(
√

2u), w is the velocity of the embryo, u is the
velocity dispersion of the disk particles, mdp is that mass of an
individual disk particle, ‘erf’ is the error function, and ρdisk is
the background volume density of the disk. So, if mem 
 mdp,
the acceleration of the embryos due to the disk is indepen-
dent on the mass of individual disk particles. Thus, although
mtr 
 mdp, the direct acceleration of the embryos due to the
tracers is roughly the same as if we had each individual disk
particle in the simulation as long as mtr � mem. Therefore,
in general, we can employ the standard N -body part of the
SyMBA to calculate the gravitational effects of the embryos
and the disk particles on each other. We return to the issue of
how big mem/mtr needs to be below.

All that is left is to consider the effects of the disk particles
on each other. There are two effects that must be included: colli-
sional damping and self-gravity. We handle the former through
Monte Carlo techniques. The first step in our collisional algo-
rithm is to divide the Solar System into a series of logarithmi-
cally spaced annular rings that, in the simulations performed
here, stretched from 10 to 60 AU. As we describe more below,
the logarithmic spacing is employed by the self-gravity algo-
rithm. In all, we divided space into Nring = 1000 such rings in
our production runs (although in some of our tests, we used
Nring = 10,000 rings). We use these rings to statistically keep
track of the state of the disk particles. In particular, as the sim-
ulation progresses, we keep track of the tracer particles moving
through the ring and from this calculate: (1) the total mass of
disk particles in that ring (Ma), and (2) the vertical velocity dis-
persion of the disk particles, uz. These values are recalculated
every τupdate, by moving each tracer along its Kepler orbit in the
barycentric frame and adding its contribution to each ring as it
passes through. Except where noted, we set τupdate = 200 yr.
In addition, as the tracers orbit during the simulation, we keep
a running list of their velocities and longitudes as they pass
through each individual ring. Entries are dropped from this list
if they are older than τupdate.

At each timestep in the simulation, we evaluate the proba-
bility, p, that each tracer particle will suffer a collision with
another disk particle based on the particle-in-a-box approxi-
mation. In particular, p ≡ n(4πs2)w dt , where n is the local
number density of the disk particles, w is the velocity of the
tracer relative to the mean velocity of the disk, and dt is the
timestep. It is important to note that n is not the number density
of tracers, but the number density of the disk assuming that all
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disk particles had a radius of s. Therefore, p does not carry
any information about the mass or number of tracers, but is
only dependent on the surface density of the disk, its vertical
velocity dispersion, and s. In addition, the analytic derivations
in Goldreich et al. (2004a, 2004b) usually assume that w = u,
however, here we use the true velocity of the individual tracer.

We assume that

(2)n(z) =
{

(1 − exp[−1])n0, if z < z0,

n0 exp[−z/z0], if z � z0,

where z is the distance above the disk mid-plane, n0 =
Ma/2( 4

3πs3ρb)z0Aa , Aa is the area of the ring, and z0 is the
scale height of the disk. In particular, z0 = uz/Ω , where Ω is
the orbital frequency. We hold n(z) constant for z < z0 to help
correct for the fact that dt is finite. If we did not hold n constant
there would be a danger that we would underestimate the col-
lision rates because particles would jump over the high density
mid-plane as they orbit. The price to pay for this is a disconti-
nuity in n(z) at z0, but it is a price, we believe, that is wise to
pay.

Once we have determined p, we generate a random number
between 0 and 1, and if p is larger than this number, we declare
that the tracer has suffered a collision with another disk par-
ticle. Now, we need to determine the velocity of the impactor,
and again we turn to our rings. As we stated above, as the tracers
orbit during the simulation, we keep a running list of particles
that had passed through each ring, keeping tract of their indi-
vidual velocities. The impactor is assumed to have the same
location as the target, but its velocity is chosen from this run-
ning list appropriately rotated assuming cylindrical symmetry.
We also assume that two particles bounce off of one another [as
in Goldreich et al. (2004a, 2004b)], but that the coefficient of
restitution is very small. The end result is that we change the
velocity of our target tracer to be the mean of its original veloc-
ity and that of the impactor.

We have to spend a little time discussing how we decide
which velocity in our running list to choose because if this is
done incorrectly it leads to a subtle error in the results. In an
early version of the code we simply chose the velocity at ran-
dom. This is the same as assuming that the disk is axisymmet-
ric, and thus collisions try to force particles onto circular orbits.
However, in a situation where the disk is interacting with a mas-
sive planet on an eccentric orbit, the natural state of the disk is
for its particles to evolve onto eccentric orbits whose longitude
of perihelion, ω̃, is the same as the planet’s, and whose eccen-
tricity, e, is a function of the eccentricity of the planet and the
distance from the planet. In essence, this situation should pro-
duce an eccentric ring. Experimenting with our original code
showed that in situations where the ring is massive, the assump-
tion of axisymmetry causes the planet to migrate away from the
disk at an unphysically large rate, as collisions try to force par-
ticles onto circular orbits while the planet tries to excite their
eccentricities.

Thus, we found that our code needs to be able to support
eccentric rings. We found that we can accomplish this by mod-
ifying the method we use for choosing a velocity for the im-
pactor. In particular, in addition to storing a particle’s velocity
in the running list, we also keep tract of its true longitude, λ.
We choose from the running list the velocity of the object that
has the λ closest to that of the target tracer. In this way, asym-
metries can be supported by the code. We show an example of
this in the test section below.

Through experimentation we also found that we need to in-
clude self-gravity between the disk particles, at least crudely.
In an early version of the code we did not include this effect
and found that under certain conditions there was an unphysi-
cal migration of planetary embryos. In particular, in situations
where disk particles became trapped in a MMR with an embryo
(particularly the 1:1 MMR) the embryo was incorrectly pushed
around by the disk particles if there was a large number of ad-
ditional disk particles in the system. This did not occur if the
particle self-gravity was included.

There are too many tracers in our simulations to include
self-gravity directly. Thus, we employ a technique originally
developed for the study of disk galaxies, known as the particle-
mesh (PM) method (Miller, 1978). In what follows, we use the
formalism from Binney and Tremaine (1987). We first define a
modified polar coordinate system u ≡ ln
 and φ, where 
 and
φ are the normal polar coordinates, and define a reduced poten-
tial, V (u, φ) = eu/2Φ[
(u),φ] and a reduced surface density
S(u, φ) = eu/2σ [
(u),φ] such that

(3)V (u, φ) = − G√
2

∞∫
−∞

2π∫
0

S(u′, φ′)dφ′
√

cos(u − u′) − cos(φ − φ′)
du′.

If we break the disk into cells this becomes

(4)Vlm ≈
∑
l′

∑
m′

G(l′ − l,m′ − m)Ml′m′,

where Mlm = ∫∫
cell(l,m)

S du dφ and G is the Green’s function:

(5)

G(l′ − l,m′ − m) = − G√
2(cosh(ul′ − ul) − cos(φm′ − φm))

,

when l �= l′ and m �= m′, and

(6)

G(0,0) = −2G

[
1

φ
sinh−1

(
φ

u

)
+ 1

u
sinh−1

(
u

φ

)]
,

where u and φ are the grid spacings.
For this algorithm we found that it is best to assume that the

disk is axisymmetric, so Eq. (4) becomes

Vlm ≈
∑
l′

∑
m′

G(l′ − l,m′ − m)
φ

2π
Ml′

(7)=
∑
l′

φ

2π
Ml′

∑
m′

G(l′ − l,m′ − m),

(8)Vl ≈
∑
l′

φ

2π
Ml′ G̃(l′ − l).

Note that Eq. (8) is one-dimensional, and thus it only supplies
us with a radial force. The tangential and vertical forces are
assumed to be zero. We made this assumption due to the small
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number of tracers in our system. However, a simple radial force
is adequate for our purposes.

Also, the form of Eq. (8) allows us to use the rings already
constructed for the collisional algorithm. All we need is that
relationship between Ml′ and the total amount of mass in ring,
Ma . We find that

(9)Ml′ = 2Ma

(a2
l2 − a2

l1)
a

3/2
l

[
ln(al2) − ln(al1)

]
,

where al2, al1, and al are the outer edge, inner edge, and radial
center of ring l.

So, Eq. (8) gives us the reduced potential at the center of
ring l and thus the true potential can be found (Φ = e−u/2V ).
To calculate the radial acceleration at any location, we employ
a cubic spline interpolation scheme. Finally, the acceleration of
a particle is calculated by numerically differentiating this inter-
polation.

3.1. Tests

In this subsection we describe some of the tests that we per-
formed on SyMBA_COL.

3.1.1. An isolated ring
In this test, we studied the behavior of a disk of particles

initially on eccentric orbits as collisions damp their relative ve-
locities. In particular, we evolved a system containing the Sun
and 1000 tracers, which were uniformly spread in semi-major
axis from 30 to 35 AU. Initially, the tracers were given a Raleigh
distribution with an RMS eccentricity equal to 0.1, and an RMS
sin(i) equal to 0.05. The total mass of the ring was 10 M⊕ and
we set s = 1 cm.

The solid curve in Fig. 1 shows the temporal evolution of
the eccentricities in the above system. As the system evolved,
the ring collapsed (i.e., eccentricities and inclinations dropped)
as the collisions damped out random velocities. During this
process, we found that a small fraction of the particles were left
behind because as the ring collapsed these particles found them-
selves in regions of space where there were no other particles.
For example, if a particle had a relatively large initial inclina-
tion and happened not to have suffered a collision early on, then
it can be left behind on a large inclination orbit because it finds
itself traveling above and below the collapsing disk most of the
time. Eventually, it will hit another particle because it pene-
trates the disk, but this can take a long time. The end result of
this process is that during the collapse, there is always a high
velocity tail to the eccentricity and inclination distributions. To
correct for this, we plot the median eccentricity rather than the
more standard RMS eccentricity in Fig. 1. In this system, we
find that the e-folding damping time of the eccentricity is 320
years.

In order to test whether our code has converged we per-
formed a second experiment. Recall that in the first run, we used
1000 tracers, Nring = 1000, and τupdate = 200 yr. This produced
the solid curve in the figure. The dotted curve shows the results
for a high resolution run where Nring = 10,000, τupdate = 20 yr,
and we used 10,000 tracer particles. Although there are some
Fig. 1. The temporal evolution of the collisionally active ring of particles used
as the first test of our new code. In particular, we plot the median eccentric-
ity (emed). The solid and dotted curves refer to the normal and HIRES runs,
respectively.

differences between the two curves, the basic evolution of the
systems, including their e-folding damping times, are the same.
Thus, we feel that the code has converged well enough that we
can employ the lower resolution.

We now need to calculate what Goldreich et al.’s (2004a,
2004b) development would predict. Goldreich et al.’s (2004a,
2004b) Eq. (50) states that

(10)
1

τcol
≡ − 1

u

du

dt
∼ Ω

σ

ρbs
.

Plugging in the appropriate values for this test, we find that
Goldreich et al. (2004a, 2004b) predict that the collisional
damping time, τcol, should be ∼110 yr, which is about a
factor of 3 shorter than we observed. However, we believe
that the agreement is reasonably good because Goldreich et
al.’s (2004a, 2004b) derivations were intended to be order-of-
magnitude in nature and that factors of a few were typically
dropped.

3.1.2. A narrow ring with a giant planet
As discussed above, we found that our code must be able

to support an eccentric ring if the dynamics demand it, and we
described our methods for doing so. Here we present a test of
this ability. In particular, we studied the behavior of a 10 M⊕
narrow ring of collisional particles under the gravitational in-
fluence of Saturn. In order to enhance the eccentricity forcing
of the ring, we set Saturn’s e = 0.2. The semi-major axes (a) of
the disk particles was spread from 1.70 < a/aSat < 1.72, where
aSat is Saturn’s semi-major axis. The particles had an initial ec-
centricity of 0.1. Of importance here, the initial ω̃ was randomly
chosen from the range of 0 and 2π . Thus, if we define two new
variables, H ≡ e cos(ω̃) and K ≡ e sin(ω̃), then at t = 0 the
tracer particles fall along a circle of radius e in H–K space
(Fig. 2).



202 H.F. Levison, A. Morbidelli / Icarus 189 (2007) 196–212
Fig. 2. Three snapshots of the evolution of a ring of collisionally active particles under the gravitational influence of a Saturn-mass planet with e = 0.2. The ring has
a semi-major axis 1.71 times larger than the planet. The particles, which were initially uniform in ω̃ (H ≡ e cos(ω̃) and K ≡ e sin(ω̃)), clump in ω̃ and thus form an
eccentric ring.
We find that as the system settles down, the particles evolve
to a point in H–K space (Fig. 2). And since this point does not
sit at the origin, the particles have the same e and ω̃, i.e., they
form an eccentric ring. Unfortunately, we know of no analytic
theory describing the behavior of this ring. However, we can
take a clue from the secular theory of the response of a mass-
less test particle to an eccentric planet (Brouwer and Clemence,
1961; see also Murray and Dermott, 2000), which predicts that
the ‘forced’ eccentricity of the particle is

(11)eforced = b
(2)
3/2(aSat/a)

b
(1)
3/2(aSat/a)

eSat,

where b
(i)
3/2 are the Laplace coefficients. Plugging in the appro-

priate value, we find eforced = 0.14. This should be an upper
limit to the actual eccentricity of the ring because the colli-
sions within the disk, which are not included in Eq. (11), should
decrease eccentricity. We find the ring has an eccentricity of
∼0.1, although the exact value changes over time. Thus, the
ring seems to behaving reasonably. Interestingly, we also find
that this ring’s precession is negative, which implies that self-
gravity is important to its dynamics. This, again, appears to be
reasonable.

3.1.3. A system of growing embryos in the
dispersion-dominated regime

As Goldreich et al. (2004a, 2004b) explained in detail, a sys-
tem consisting of growing embryos in a sea of disk particles will
be in one of two possible modes. If the velocity dispersion of the
disk particles is large enough that the scale height of the plan-
etesimal disk exceeds the radius of the embryo’s Hill’s sphere,
rH = a(mem/3 M�)1/3, then the disk behaves as if it is fully
three-dimensional. This occurs if u � ΩrH . This situation is re-
ferred to as the dispersion-dominated regime. However, if col-
lisions damp planetesimal random velocities strongly enough,
u can get much smaller than ΩrH and the system enters the so-
called shear-dominated regime. In this mode, growth proceeds
in a qualitatively different way, and can be much more rapid
than dispersion-dominated growth (also see Rafikov, 2004). In
the extreme, the velocity dispersion can be so small that the en-
tire vertical column of the planetesimal disk is within the proto-
planet’s Hill’s sphere, thus making accretion a two-dimensional
process.
Given the different nature of these two regimes, we test each
of them separately. We begin with the dispersion-dominated
regime. This test starts with a population of ten 5000 km radii
embryos spread in semi-major axes between 25 and 35 AU.
This implies that Σ = 4.6 × 10−4 M⊕/AU2 = 0.012 g/cm2.
The initial eccentricities of the embryos were set to 0, but the in-
clinations were given a Raleigh distribution with an RMS sin(i)

equal to 1.5 × 10−4 to insure that the embryo–embryo encoun-
ters can excite inclinations.

The disk was spread between 20 and 40 AU and was de-
signed so that σ = 1.5 × 10−3 M⊕/AU2. We set s = 100 m.
The disk was represented by at least 2000 tracers, where the
eccentricities and inclinations were chosen from Raleigh dis-
tribution with an RMS eccentricity and 2 sin(i) equal to 0.025.
Fig. 3 shows the temporal evolution of the eccentricities and
inclinations of both the embryos (solid curves) and the disk
particles (dotted curves) as observed in several runs where we
varied Ntracer and Nrings.

Goldreich et al. (2004a, 2004b) predict that the eccentrici-
ties of both the embryos and disk particles would increase until
a steady state is reached. This steady state is caused by a bal-
ance in the heating and cooling processes in both populations.
The disk particles are being excited by the embryos, while they
are being damped by collisions. At the same time, the embryos
are exciting each other, while they are being damped due to
dynamical friction with the disk particles. This steady state is
clearly seen in our simulations (Fig. 3).

Indeed, Goldreich et al.’s (2004a, 2004b) analysis allows us
to predict what the steady state eccentricities should be. In par-
ticular, in the regime of interest, Goldreich et al. (2004a, 2004b)
find (Eq. (76)) that for the disk particles

(12)u ∼ vesc

(
Σ

σ

s

R

)1/4

,

where vesc is the escape velocity of the embryos. Plugging in
the above values, we find that u = 0.04 AU yr−1, which corre-
sponds to an RMS eccentricity of ∼0.04 (the circular velocity at
30 AU is 1.1 AU yr−1 so that e ∼ u). This is in excellent agree-
ment with our simulation. For the embryos, if v is defined to
be their velocity dispersion, then recently Chiang and Lithwick
(2005, their Eq. (45)) showed that

(13)
v ∼

(
Σ

)1/2

,

u 8σ
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Fig. 3. The temporal evolution of the RMS eccentricity (left) and the RMS inclination (right) of a system of embryos embedded in a disk of small objects. The disk
particles are collisionally active. The solid curves show the behavior of the embryos, while the dotted curves show that of the disk particles. Different colors refer to
different disk resolutions, see text and legend for a description.
which is 0.2 in our test problem. We observe this ratio to
be roughly 0.3. We believe that our simulations are repro-
ducing the Goldreich et al.’s (2004a, 2004b) predictions fairly
well given the order-of-magnitude nature of Goldreich et al.’s
(2004a, 2004b) derivations.

As in our previous test, we must consider whether our code
has high enough resolution. To investigate this issue, we per-
formed four simulations where the only difference was the res-
olution of the disk. The black, red, and blue curves in Fig. 3
show the results for an increasing number of tracer particles
(2000, 10,000, and 30,000, respectively). In all these cases
Nring = 1000. In addition, the green curves (labeled ‘HIRES’)
show the results for a simulation with 10,000 tracer particles,
but where Nring = 10,000. In all cases the behavior of the
systems are very similar. Indeed, the code has converged ad-
equately enough, particularly when Ntracers � 10,000. As we
discuss below, such resolutions are required in order to handle
the shear-dominated regime.

We must also consider conserved quantities when testing our
code. Unfortunately, collisions do not conserve energy, and so
the only conserved quantity is the angular momentum vector of
the system. In the run presented in Fig. 3, we find that angular
momentum is conserved to 1 part in 104 over 100 Myr, which
is satisfactory.

Finally, Goldreich et al. (2004a, 2004b) predict that the em-
bryos will grow as they accrete the disk particles. In particular,
their Eq. (77) predicts that

(14)
dR

dt
∼ Ωσ

ρb

(
Σ

σ

s

R

)−1/2

.

For the parameters in this test, this predicts dR/dt ∼ 6 ×
10−6 km/yr. In the simulation, all embryos started with R =
5000 km. At the end of 107 years, Eq. (14) forecasts that the
embryos should grow ∼50 km. We find at the end of the sim-
ulation that the average embryo radius is 5038 km. Again, the
agreement is good.

3.1.4. A system of growing embryos in the shear-dominated
regime

As a final test of our code, we study the behavior of a system
containing three embryos with a mass of 0.17 M⊕ embedded
in a 7 M⊕ disk of planetesimals spread from 27 to 33 AU. The
radius of the disk particles was set to 5 cm. This problem was
designed so that the system should be in the shear-dominated
regime.

The results from several simulations with different disk res-
olutions is presented in Fig. 4. We start with a discussion of
code convergence. We preformed simulations with Ntracer be-
tween 2000 and 32,700 particles. In almost all runs Nrings =
1000, however we created one simulation with Nrings = 10,000
(marked ‘HIRES’ in the figure). In all these calculations, we
find that the behavior of the disk particles was the same. Thus,
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Fig. 4. The temporal evolution of the RMS eccentricity of a system of embryos embedded in a disk of small objects in the shear-dominated regime. The top panel
shows the behavior of the embryos, while the bottom shows that of the disk particles. Different colors refer to different disk resolutions, see text and legend for a
description.
we conclude that even in the highly damped shear-dominated
regime, our collisional code has adequate resolution for all the
cases we have studied.

The behavior of the embryos, on the other hand, only con-
verged for Ntracer � 10,000. There are two reasons why the
number of tracers can effect the dynamical state of the embryos.
First, the code could be struggling to calculate accurately the
dynamical friction of the tracers on the embryos. Equation (1)
shows that the strength of dynamical friction should not depend
on the size of the tracer particle if mem/mtr 
 1, but the ques-
tion is how big does this ratio have to be. Second, the embryos
could be artificially excited due to the viscous stirring from the
large tracers. In order for the code to behave correctly, the ra-
tio of the tracer viscous stirring timescale to the viscous stirring
timescale due to the embryos themselves must be greater than 1.
Combining Goldreich et al.’s (2004a, 2004b) Eqs. (31) and (44),
we expect that this ratio is proportional to mem/mtr, although
again, it is not clear what this value needs to be in order to
satisfy the timescale ratio constraint. The fact that the code
converges for Ntracer � 10,000 implies that both the dynami-
cal friction calculation is correct and the tracer viscous stirring
is unimportant when mem/mtr > 150. We abide by this restric-
tion in all the simulations that follow.
For the shear-dominated regime, Goldreich et al. (2004a,
2004b) predict (their Eq. (77))

(15)u ∼ vesc

α3/2

Σ

σ

s

R
,

where α is the angular size of the Sun as seen from the embryo.
In addition, Goldreich et al.’s (2004a, 2004b) Eq. (110) says

(16)v ∼ vesc
√

α
Σ

σ
.

Plugging in the appropriate values for this test, we find that Gol-
dreich et al. (2004a, 2004b) predict that u ∼ 2 × 10−4 AU yr−1

and v ∼ 7 × 10−4 AU yr−1. In our simulation we find u ∼
4 × 10−4 AU yr−1 and, after convergence, v ∼ 10−3 AU yr−1,
which is in very good agreement with Goldreich et al.’s (2004a,
2004b) analytic theory.

In conclusion, in this subsection we presented a series of
tests of SyMBA_COL. In all cases, the code reproduces the
desired behavior. In addition, in those cases where direct com-
parison with Goldreich et al.’s (2004a, 2004b) derivations is
appropriate, there is reasonable quantitative agreement, within
a factor of a few. This level of agreement is about what one
should expect given the order-of-magnitude nature of Goldre-
ich et al.’s (2004a, 2004b) development. Thus, in the remainder
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Fig. 5. s = 1 m and md = 80 M⊕. The ice giants had an original mass of 16 M⊕. We plot three curves for each planet, which is represented by a different color.
These curves show the semi-major axis, perihelion, and aphelion distances. The solid black curve illustrates the semi-major axis of the outermost disk particle. The
columns of black points show the semi-major axes of all the disk particles at various times.
of the paper we employ the code to test Chiang et al.’s (2007)
scenario for the early sculpting of the Kuiper belt.

4. Systems with five ice giants

In this section we use SyMBA_COL to perform full dy-
namical calculations of the scenario reviewed in Section 2. In
particular, for reasons discussed in Section 2, we concentrate on
the phase when the ice-giant system becomes unstable. Thus,
we start our systems with a series of ice giants, each of which
is 16 M⊕, spread from 20 to 35 AU, which corresponds to a
spacing of roughly 5 Hills spheres. In all cases, the initial ec-
centricities and inclinations of the ice giants were very small
(∼10−4), and Jupiter and Saturn were included on their current
orbits.

At the time of the instability, Chiang et al. (2007) predict
that the mass of the planetesimal disk should be about the
same as the total mass of the ice giants, i.e., 80 M⊕. However,
given the nature of Goldreich et al.’s (2004a, 2004b) deriva-
tions, this number is very uncertain. Thus, we study a range of
disk masses: md = 40, 80, 120, and 160 M⊕. In addition, it is
uncertain what s should be, and thus we study two extremes:
s = 1 m and 1 cm. The simulations initially contain 2000 tracer
particles which are spread from 16 to 45 AU. The initial ec-
centricities of the disk particles were set to ∼10−4, while the
inclinations set to half of this value. These parameters put our
code in a regime where its validity and convergence have been
demonstrated in the tests in Section 3.1.

Except where noted, we integrated the systems for 108 yr,
with a timestep of 0.4 yr. As described in Levison and Dun-
can (2000), SyMBA and thus SyMBA_COL have difficulty
handling close encounters with the Sun. Therefore, we remove
from the simulation any object the reaches a heliocentric dis-
tance less than 2 AU. In all, we performed 10 simulations.

We start the discussion of our results with the s = 1 m runs.
In particular, perhaps the best way to begin is with a detailed
description of the behavior on one single simulation. For this
purpose we chose the md = 80 M⊕ run since it is closest to
Goldreich et al.’s (2004a, 2004b) nominal Σ ∼ σ situation.
Fig. 5 shows the temporal evolution of the nominal simulation.
In the figure each ice giant is represented by three curves of the
same color. The curves show its semi-major axis, perihelion,
and aphelion distances. The black curve shows the semi-major
axis of the outermost disk particle. In addition to the curves,
there are columns of points. These points show the semi-major
axes of all the disk particles at that particular time.

The system remains relatively quiescent for the first 500,000
yr. During this time, the disk particles rearrange themselves so
that a large fraction of them are in the trojan points of the ice
giants. This behavior can be seen in the two leftmost column of
dots in the figure. In addition, two rings of particles form im-
mediately interior to and exterior to the embryos. Originally
the embryo growth rate is large, the embryo mass increases
1.1 M⊕, on average, in the first 60,000 yr. But after that time,
very little growth happens. Again, this is due to the fact that
most of the mass of the disk is found in the trojan points of the
embryo and in isolated rings where they are protected from the
embryos. At 550,000 yr the system becomes mildly unstable
and undergoes a ‘spreading event’ that moves the inner ice-
giant inward and the outer one outward. Such events are com-
mon in our simulations. After this event the eccentricities of the
ice giants decrease presumably due to the fact that they are fur-
ther from one another. For the next ∼4 myr the system is stable.

During this period of relative quiescence the disk particles
concentrate in three main areas. Roughly 30% of the disk parti-
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Fig. 6. The final state of five ice-giant simulations with s = 1 m and md = 80 M⊕. (A) The eccentricity of an object as a function of its semi-major axes. The disk
particles are shown as black dots. The planets are in color, the value of which is a function of the planet’s mass. The legend for the color is shown below the plot. For
the planets, the radius of the dot scales as the cube root of its mass. The ‘error-bars’ show the radial extent that the object travels as it orbits due to its eccentricity.
(B) A histogram of the mass distribution of disk particles. The width of the semi-major axis bins is 0.5 AU. Notice that almost all of the mass is concentrated in a
few narrow rings.
cles can be found in a ring between the orange and red embryos.
This ring therefore contains 22 M⊕! It is very narrow as well—
only 0.05 AU in width. Roughly the same amount of material
can be found in a ring at 47 AU, beyond all of the embryos.
This ring is also very narrow with a width of only ∼0.1 AU.
Finally, 29% of the disk can be found in the trojan points of
the green embryo. This implies that there is more mass in the
Lagrange points than in the embryo, itself. The characteristics
of these structures leaves us wondering how physically realistic
they are. After all, our code ignores fragmentation, which may
be important as the ring forms. In addition, once the ring forms,
the relative velocities are very small and the surface densities
are large, thus we might expect either two-body accretion or a
gravitational instability to form larger objects. We believe that
the ring is an artifact of the simplistic collisional physics that
we inherited from Goldreich et al. (2004a, 2004b) and they are
probably not physical.

At 4.3 Myr, the red and green embryos in the figure hit the
4:3 mean motion resonance with one another. This destabilizes
the embryos and they undergo a series of scattering events with
one another. A large number of disk particles are released from
their storage locations at this time. This period of violence lasts
for 700,000 yr, but eventually the dynamical friction caused
by the released disk particles is able to decouple the embryos
from one another. Amusingly, the blue and orange embryos get
trapped in the 1:1 mean motion resonance with one another,
which lasts for over 5 myr.

During the remainder of the simulation, the ice giants mi-
grate outward. The disk particles that were liberated during the
instability are spread out enough that their collisional damping
time is longer than the time between encounters with the em-
bryos. Thus, the planets hand the particles off to one another
allowing a redistribution of angular momentum. This process,
which is called planetesimal-driven migration is well under-
stood (see Levison et al., 2006 for a review) since it was dis-
covered over 20 yr ago (Fernández and Ip, 1984) and has been
studied as a possible explanation of the resonant structure of the
Kuiper belt (Malhotra, 1995; Hahn and Malhotra, 2005).

However, collisional damping still does play a role during
this time. As the planets migrate, four relatively high mass rings
start to form. At the end of the simulation the most massive
of these contain 32 M⊕! Indeed, the final system is shown in
Fig. 6. Fig. 6A shows the eccentricity of objects as a func-
tion of their semi-major axis. The planets are in color, with
the ‘error-bars’ showing the range of heliocentric distances that
they travel as they orbit. We find that the inclinations, which
are not shown, are roughly what one would expect—i.e., the
sin(i)’s are roughly half the eccentricities. This is a general re-
sult that we see in all the runs.

The size of the symbol in the figure scales as the mass of the
planet to the 1/3 power. The disk particles are shown in black.
Fig. 6B presents a histogram of the mass of the disk particles as
a function of semi-major axis. There are three important things
to note about the final system: (1) None of the ice giants were
ejected from the system. (2) There is a planet in a nearly circular
orbit at a large heliocentric distance (although it is close enough
that if it actually existed it would have been discovered long
ago). Although this system may not be finished evolving, it is
very unlikely that this planet will be removed. (3) Almost all
the disk particles survive. Of the 80 M⊕ of material in the disk,
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Fig. 7. The final state of five ice-giant simulations with s = 1 m not shown in Fig. 6. See Fig. 6A for a description of this type of plot. (A) 40 M⊕ disk. (B) 120 M⊕
disk. (C) 160 M⊕ disk.
72 M⊕ are still present at 100 Myr. Almost all of this mass is
found in four massive rings interior to 30 AU.

We performed 3 other simulations with s = 1 m and the sto-
ries for these simulations are, for the most part, very similar.
The final states of these systems are shown in Fig. 7. This fig-
ure is the same as Fig. 6A, which fits in the sequences between
Figs. 7A and 7B. The first thing to note is that the entire plan-
etary system went unstable in the md = 160 M⊕ run. In this
case, a 75 M⊕ ring formed in Saturn’s 1:2 mean motion res-
onance that eventually drove up Saturn’s eccentricity until the
Jupiter–Saturn system was disrupted. We will ignore this run in
the following analysis because it clearly cannot represent what
happened in the Solar System. There were no planetary ejec-
tions in any of these simulations in the remaining runs. There
was one merger in the md = 120 M⊕ run. In all cases, we
find massive planets at large heliocentric distances, inconsistent
with the current Solar System and the expectations of Goldreich
et al. (2004a, 2004b) and Chiang et al. (2007).

As we described above, we are interested in setting up our
initial conditions so that they represent Chiang et al.’s (2007)
hypothetical Solar System immediately before the instability
sets in, when the ice giants are presumably almost fully formed.
That is reason we started with systems where the initial mass
of the ice giants was set to 16 M⊕. Thus, to test this assump-
tion it is interesting to look at the amount of mass accreted by
the ice giants during our calculations. The colors in Figs. 6A
and 7 indicate the mass of the planet. We found that between
10 and 16% of the original disk mass is accreted by the ice
giants in our s = 1 m runs. The amount of embryo growth in-
creases monotonically with disk mass. The ice giants in the
md = 40 M⊕ run only accreted a total of 6.5 M⊕ of plan-
etesimals, while they grew roughly by a total of 13 M⊕ in
the md = 120 M⊕ simulation run. The planets in this run are
probably too large to be considered good Uranus and Neptune
analogs. It is also interesting to note that the more massive the
disk, the more excited the final system of ice giants is. We think
that this is due to the fact that the more massive disks produce
larger planets, which, in turn, produce stronger mutual pertur-
bations, and thus stability is achieved only with wider orbital
separations.

We now turn our attention to the s = 1 cm runs—the results
of which are shown in Fig. 8. The same basic dynamics that
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Fig. 8. The final state of five ice-giant simulations with s = 1 cm. These are the runs where the initial mass of the planets was 16 M⊕. See Fig. 6A for a description
of this type of plot. (A) 40 M⊕ disk. (B) 80 M⊕ disk. (C) 120 M⊕ disk. (D) 160 M⊕ disk. The ice giant in the upper right of this panel should actually be at
a = 161 AU and e = 0.48. It is plotted at its perihelion distance rather than semi-major axis.
we discussed above work with these systems and we get the
same basic results. This includes the fact that Jupiter and Saturn
went unstable in the md = 160 M⊕ run. The main difference
between the md � 120 M⊕ runs here and those in the s = 1 m
is that in these runs the ice giants accreted much more of the
disk material. For example, the ice giants in the md = 120 M⊕
run accreted a total of 37 M⊕ of planetesimals in the s = 1 cm
run, while they accreted 13 M⊕ in the s = 1 m simulation. This
is probably due to the fact that, at least at early times, colli-
sions between the disk particles are more frequent and thus the
system remains cooler. As a result, the gravitational focusing
factor of the ice giants remains larger so that the accretion rate
is higher. As a consequence, the final ice-giant systems that we
obtain in these runs are, for the same initial disk mass, more
excited and spread out than those constructed in the s = 1 m
simulations (Fig. 7).

In response to the large accretion rates in our s = 1 cm runs,
we decided to push our simulation back to an earlier time in
order to determine if we can produce ice giants on the order
of the same size as Uranus and Neptune for this value of s.
In particular, our systems started with five embryos of 8.3 M⊕
each. The orbits of the embryos and the geometry of the disk
was the same as in our previous integrations. We preformed
4 simulations with md = 43, 85, 128, and 170 M⊕. As with the
previous cases, the orbits of Jupiter and Saturn became unstable
in the high disk mass. Not surprisingly, we found a monotonic
relationship between the initial disk mass and the amount of
material the ice giants accreted from the disk in the remain-
ing systems. In particular, on average each ice giant accreted
2, 6, and 16 M⊕ in the runs with md = 43, 85, and 128 M⊕,
respectively. Since we started with embryos of 8.3 M⊕, the
md = 85 M⊕ disk produces the best planets. However, we be-
lieve that larger disk masses would still probably acceptable
if we were to increased s (thereby decreasing the damping).
On the other hand, since s = 1 cm is so extreme, we believe
that we can rule out less massive disks (i.e., md � 50 M⊕)—
these anemic disks are unlikely to form objects as massive as
Uranus and Neptune.

The final systems are shown in Fig. 9. As the planets grew,
their orbits spread. The final systems always had a planet well
beyond 30 AU.

5. System with Earth-mass embryos

Finally, in this section we briefly study the growth of the ice
giants from much smaller planetary embryos. Our goal here is
to make sure that the initial conditions used above were not ar-
tificial in some respect. That is, given the order-of-magnitude
nature of Goldreich et al.’s (2004a, 2004b) arguments, perhaps
we start the above calculations in the wrong state. For exam-
ple, in all the above runs, we started with five ice giants, as
suggested by Chiang et al. (2007). However, perhaps the nat-
ural system should contain four such objects, rather than five,
and then the system might evolve as Chiang et al. (2007) sug-
gested. Thus, in this section we present simulations where we
start with small planetary embryos and let the system evolve
naturally. Unfortunately, these simulations are computationally
expensive and thus we can only perform a couple of test cases.

In particular, our systems started with 6 embryos of 1 M⊕
each, spread from 21 to 27 AU. The initial eccentricities and in-



Models of the collisional damping scenario 209
Fig. 9. The final state of five ice-giant simulations with s = 1 cm. These are the runs where the initial mass of the ice giants was 8.3 M⊕. See Fig. 6A for a description
of this type of plot. (A) 43 M⊕ disk. (B) 85 M⊕ disk. (C) 128 M⊕ disk. (D) 170 M⊕ disk.
clinations of these particles are very small (∼10−3). These ob-
jects were embedded in a disk of 18,000 tracer particles spread
from 20 to 30 AU, with a total mass of 90 M⊕. Two simulations
were done, one with s = 1 m and one with s = 1 cm.

Performing a computation with 18,000 tracer particles is
very CPU intensive. We needed such a large number of tracers
to adequately resolve the dynamical friction between the trac-
ers and embryos, which, as we explained above, requires that
mem/mtr > 150. However, as the embryos grow, such a large
number of tracers were no longer needed. Thus, our plan was
to continue the integrations until the average embryo mass was
10 M⊕, after which we would remove four out of every five
tracer particles at random while keeping the total mass of trac-
ers constant.

Fig. 10 shows the temporal evolution of the average em-
bryo mass in both the simulations. The dotted curve is from
the s = 1 m. Note that the growth rate is very small—the av-
erage mass of the embryos at 2.5 Myr was only 1.2 M⊕. In
addition, during the last 500,000 years of the simulation, the
growth rate was only 3 × 10−9 M⊕ yr−1. We terminated the
simulation at this point because it was clear that this simulation
was no going to produce Uranus- and Neptune-sized planets
fast enough. This is true because Uranus and Neptune, their
ice-giant status notwithstanding, do each have several M⊕ of H
and He in their atmospheres. The most natural way to account
for this is if these planets finished their accretion in ∼107 yr,
before the gas nebula was completely depleted (Haisch et al.,
2001).

As Fig. 10 shows, however, the s = 1 cm runs, indeed, pro-
duce reasonable Uranus and Neptune analogs within 10 Myr.
Fig. 10. The average mass of the embryos as a function of time in our simula-
tions which starts with six 1-Earth-mass embryos. The solid and dotted curves
refer to the s = 1 cm and s = 1 m, respectively. The s = 1 m run was terminated
at 2.5 Myr because of very small growth rates.

In fact, by this time, the embryos have an average mass of
12.4 M⊕. The final system is shown in Fig. 11. At 100 Myr, this
run has four ice giants ranging in mass from 10.6 to 14.9 M⊕.
Recall that the system started with six embryos. There were
two mergers that reduced the number to four. Thus, none of the
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Fig. 11. The final state of our s = 1 cm simulation with Earth-mass embryos. See Fig. 6 for a description of this type of plot.
ice giants were ejected. Two of the resulting planets have semi-
major axes beyond the current orbit of Neptune. Of particular
note is the 10.6 M⊕ ice giant on an orbit with a semi-major
axis of 51 AU and an eccentricity of 0.01. This system suf-
fers from another problem as well. Less than 50% of the tracers
were accreted by the planets. Thus, there is still 46 M⊕ of mate-
rial concentrated in narrow rings throughout the outer planetary
system.

6. Conclusions

Chiang et al. (2007) have recently proposed a new and in-
novative scenario for the primordial sculpting of the Kuiper
belt. The idea is based on a recent pair of papers, Goldreich et
al. (2004a) and Goldreich et al. (2004b), that, based on order-
of-magnitude analytic arguments, predicted that originally ∼5
planets began to grow between ∼20 and ∼40 AU. As these
planets grew to masses of ∼15 M⊕ their orbits went unsta-
ble, some of them were ejected, leaving Uranus and Neptune
in their current orbits. Chiang et al. (2007) argued that this
violent process could explain the the currently observed dy-
namical excitation of the Kuiper belt. Like Goldreich et al.
(2004a, 2004b), the Chiang et al.’s (2007) scenario was not
tested with numerical simulations, but was solely supported by
back-of-the-envelope analytic estimates.

Therefore, here we presented a series of integrations in-
tended to simulate numerically Chiang et al.’s (2007) scenario.
We performed 12 simulations starting at the stage where the
5 ice giants are predicted to become unstable. In these simu-
lations we varied the mass contained in the background disk,
the size of the disk particles (either 1 m or 1 cm), and the initial
mass of the ice giants. We found that in the simulations in which
the mass of the disk �160 M⊕, the orbits of Jupiter and Saturn
were not stable. In addition, we can rule out systems with disk
masses �50 M⊕ because our simulations that start with 8.3 M⊕
ice giants show that these disks are unlikely to produce planets
as large as Uranus and Neptune.

In the runs where Jupiter and Saturn were stable, contrary
to Goldreich et al.’s (2004a, 2004b) conjecture, planetary ejec-
tion almost never occurs. Instead, we found that the planetary
systems spread and thus all our final systems contained a planet
in an orbit far beyond the current orbit of Neptune (but still
at a distance at which it would not escape detection). All our
systems had at least one planet beyond 50 AU. Indeed, the semi-
major axis of the outermost giant planet in these systems ranged
from 52 to 90 AU.

Obviously, we have not been able to model all possible cases
since parameter space is large and these calculations are expen-
sive. However, we think that it is possible to speculate how these
results would change if we expanded our coverage of parameter
space. It would help if we were to reduce the number of ice gi-
ants to four, or even three, because we would need to eject fewer
planets. However, since we found only one ejection in our en-
tire set of simulations (only including those runs where Jupiter
and Saturn were stable), we do not believe that this would solve
the problem.

It might also help if we were to make the initial plane-
tary system more compact and thus make it more likely that
the ice giants would evolve onto Saturn-crossing orbits. How-
ever, we find that for the disk masses we have studied, Saturn
only has a 17% chance of ejecting an ice giant that is crossing
its orbit. Therefore, a more compact system probably will not
solve the problem. This conclusion is at odds with the results
of Thommes et al. (1999, 2002), where ice giants originally in
compact planetary systems were commonly ejected. We believe
that this difference is due to the fact that our disks are collision-
ally active. In the Thommes et al. simulations, disk particles are
very quickly removed as the result of gravitational interaction
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with the planets. This does not occur in our simulations because
collisions keep the disk in place. This discussion leads, how-
ever, to the final way in which we could increase the number of
ejections—we could increase s thereby making these simula-
tions more like those in Thommes et al. (1999, 2002). However,
we find that even in our s = 1 m runs, the accretion rate is so
small that in a situation where s is large, Uranus and Neptune
would probably not grow (see Levison and Stewart, 2001), at
least by Goldreich et al.’s (2004a, 2004b) mechanism.

As a case in point, we performed two simulations that
initially contained six 1-Earth-mass embryos embedded in a
90 M⊕ disk. One run had s = 1 m, and the other had s = 1 cm.
In the s = 1 m run, the growth rates were too small to allow
Uranus–Neptune analogs to form in a reasonable amount of
time. However, four ice giants with masses between 10.6 and
14.9 M⊕ formed in the s = 1 cm run. The outermost of these
had a semi-major axis of 51 AU and an eccentricity of 0.01.

All the simulations we have performed show the same basic
behavior—the system spreads during the growth and dynami-
cal evolution of the ice giants. Planetary ejections are rare. For
reasons described above, we believe these results are generic
enough to be universal. Therefore, we believe that it is safe to
rule out the Chiang et al.’s (2007) scenario for the sculpting of
the Kuiper belt, as well as Goldreich et al.’s (2004a, 2004b) sce-
nario for the formation of Uranus and Neptune.

We think that the problem with Goldreich et al. (2004a,
2004b) is not in the derivation of the various estimates, but
rather in some of simplifying assumptions that they were forced
to employ to make the problem analytically tractable. Indeed,
on microscopic, short-term, scales, we were able to reproduce
much of the behavior that Goldreich et al. (2004a, 2004b) pre-
dicted (see Section 3). In the case of the problem we address
in this paper, Goldreich et al.’s (2004a, 2004b) assumption that
the surface density of the disk particles remains smooth and
uniform is probably at fault, since we find that the formation of
rings and gaps actually dominates the dynamics. Having said
this, we must remind the reader that we adopted many of Gol-
dreich et al.’s (2004a, 2004b) simplifying assumption ourselves,
and if this mechanism for planet formation is to be further ex-
plored, these should be more fully tested.
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