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Abstract

Although it is well known that a massive planet opens a gap in a protoplanetary gaseous disk, there is no analytic description of the surface
density profile in and near the gap. The simplest approach, which is based upon the balance between the torques due to the viscosity and the gravity
of the planet and assumes local damping, leads to gaps with overestimated width, especially at low viscosity. Here, we take into account the fraction
of the gravity torque that is evacuated by pressure supported waves. With a novel approach, which consists of following the fluid elements along
their trajectories, we show that the flux of angular momentum carried by the waves corresponds to a pressure torque. The equilibrium profile of
the disk is then set by the balance between gravity, viscous and pressure torques. We check that this balance is satisfied in numerical simulations,
with a planet on a fixed circular orbit. We then use a reference numerical simulation to get an ansatz for the pressure torque, that yields gap profiles
for any value of the disk viscosity, pressure scale height and planet to primary mass ratio. Those are in good agreement with profiles obtained in
numerical simulations over a wide range of parameters. Finally, we provide a gap opening criterion that simultaneously involves the planet mass,
the disk viscosity and the aspect ratio.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The dynamical evolution of planets in protoplanetary disks
has become a topic of renewed interest in the last decade,
boosted by the discovery of extra-solar planets, and in particu-
lar of hot Jupiters. In fact, the observation of giant planets close
to their parent stars argues for the existence of effective mech-
anisms of planetary migration, which can be found in the study
of planet–disk interactions.

Several types of migration have been identified, depending
on how the planet modifies the local density of the disk. Type I
migration occurs when the planet is not massive enough to sig-
nificantly alter the local density of the disk; the planet migrates
inward with a speed proportional to its mass (Ward, 1997).
Type II migration corresponds to the case where the planet is
so massive that it opens a clear gap in the disk; the migra-
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tion then depends on the viscous evolution of the disk (Lin
and Papaloizou, 1986a, 1986b). Type III (or runaway) migra-
tion corresponds to planets with intermediate mass, which do
not open a clear gap, but only form a dip around their orbits in
the gas surface density profile; under some conditions, their mi-
gration drift rate can grow exponentially, in a runaway process
(Masset and Papaloizou, 2003).

The modification of the disk density is the result of the com-
petition of torques exerted on the disk by the planet and by
the disk itself. More precisely, the planet gives some angular
momentum to the outer part of the disk, while it takes some
from the inner part (Lin and Papaloizou, 1979; Goldreich and
Tremaine, 1980). In doing so, it pushes the outer part of the disk
outward and the inner part inward, and therefore tends to open
a gap. However, the internal evolution of the disk, which tends
to spread the gas into the void regions, opposes to the opening
of the gap.

However, there is a lack of an analytical prediction of the gap
profiles. Classically, the gap is considered to have a step func-
tion profile, with the edges located at the sites where the total
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Fig. 1. Gap profiles created by a Jupiter mass planet, for different viscosities. The vertical axis represents the normalized azimuth-averaged density. The horizontal
axis represents the distance to the primary in normalized units. Top panel: analytic curves obtained by matching the differential torques due to gravity and viscosity
on each elementary ring of the disk. Bottom panel: numerical profiles obtained in simulations, after 1000 planetary orbits for the three largest viscosities, and 5000
orbits for log(ν) = −5.5 and −6.5.
gravity torque is equal to the total viscous torque. This is obvi-
ously an oversimplification. A more sophisticated approach has
been recently presented by Varnière et al. (2004). They provide
an analytic expression that describes the gap profile, by equat-
ing the viscous and gravity torques on any elementary disk ring.
We will provide more details on this approach in Section 2. The
problem is that, when the viscosity is small, the viscous torque
is small as well, and thus it cannot counterbalance the gravity
torque. Consequently, in a low viscosity disk, a nonmigrating
planet should open a very wide gap, unlike what is observed
in numerical simulations (see, e.g., Fig. 1): gaps do increase in
width and depth as the viscosity decreases, but the dependence
of the gap profile is less sensitive on viscosity in the numerical
simulations than it is expected in theory.

The reason for this difference is that not all of the gravity
torque is locally deposited in the disk. It is transported away
by density waves (Goldreich and Nicholson, 1989; Papaloizou
and Lin, 1984; Rafikov, 2002; see Appendix C). These waves
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are observed in simulations. In this situation, the viscous torque
has to counterbalance only a fraction of the gravity torque,
which yields narrower gaps than expected from the simple vis-
cous/gravitational torque balance.

An evaluation of the fraction of the gravitational torque that
is locally deposited at shock sites in the disk has been under-
taken by Rafikov (2002). However he did not use his analysis to
provide an analytic representation of the gap profile. Moreover,
his calculation required several assumptions (the planet Hill ra-
dius had to be much smaller than the local disk height, the disk
surface density was assumed to be uniform, etc.), which are not
satisfied in the general giant planet case.

Here we introduce a novel approach. We follow a fluid ele-
ment along its trajectory which, in the steady state, is periodic
in the planet corotating frame. A flux of angular momentum
carried by the density waves corresponds to a pressure torque
acting on the fluid element, whose average over a synodic pe-
riod is nonzero. In this work, we evaluate this averaged pressure
torque, together with the gravity and viscous torques. The fact
that the fluid element path is closed implies that these time av-
eraged torques balance.

In Section 3 we introduce the pressure torque, and we use
numerical simulations to check that the gap structure is set by
the equilibrium between the gravity torque and the sum of the
viscous and the pressure torques. In Section 4 we construct a
semi-analytic algorithm and we get an expression to compute
that gap profile. We compare our results with the profiles ob-
tained in numerical simulation, and we discuss the merits and
limitations of our method. In Section 5 we use our algorithm to
explore the dependence of the gap structure on disk viscosity
and aspect ratio. We recover the trends observed in numerical
simulations, namely the limited gap width in low viscosity disks
and the filling of the gap with increasing viscosity and/or aspect
ratio. Finally in Section 6, we provide a gap opening criterion
that simultaneously involves the viscosity, the scale height and
the planet mass.

2. Gravity and viscous torques

In this section we revisit the calculation of the gravity and
viscous torques mentioned in the Introduction. We show that
considering them alone, as usually done, is not sufficient to
achieve a quantitatively correct description of the gap profiles.

2.1. Notations

The disk is represented in cylindrical coordinates (r, θ, z),
centered on the star, where the plane {z = 0} corresponds to
the mid-plane of the disk. The disk viscosity ν and aspect ratio
(H/r)—where H denotes the thickness of the disk—are as-
sumed to be invariant in time and space. The equations of fluid
dynamics are integrated with respect to the z-coordinate, so that
z disappears from the equations and only two dimensions are
effectively used. This procedure introduces the concept of sur-
face density Σ , which is defined as

∫ +H

−H
ρ dz, where ρ is the

volume density in the disk.
In the theoretical analysis (but not in the numerical calcula-
tions) the disk is assumed to be axisymmetric, so that Σ only
depends on r . The angular velocity Ω is assumed to be Ke-
plerian: Ω ∝ r−3/2. The planet is assumed on a circular orbit
around the star. The radius of its orbit is denoted rp . The mass
of the planet is denoted Mp and its ratio with the mass of the
central star M∗ is q . Normalized units are introduced, so that
M∗ = rp = 1 and the gravitational constant G is also assumed
to be unity. In the limit q → 0, this sets the angular orbital ve-
locity of the planet Ωp = 1 and its period equal to 2π .

2.2. Total torques

Usually, one considers the part of the disk extending from a
given radius r0 > rp to infinity. The study of the part of the disk
extending from 0 to r0 < rp is done in an analogous way. Two
torques are evaluated. The first one is due to the disk viscosity
and can be easily derived from the stress tensor in a Keplerian
disk with circular orbits. The torque exerted on the considered
part of the disk (r > r0) by the complementary part is written
(see, for instance, Lin and Papaloizou, 1993):

(1)Tν = 3πΣνr2
0 Ω0.

Notice that more refined expression for perturbed disks with
eccentric orbits have been proposed in the literature (see, for
instance, Borderies et al., 1982), but they have not been used in
the works that we review in this section.

The second torque comes from the gravity of the planet. It
can be computed following two different approaches. In the
first one (Goldreich and Tremaine, 1980; Ward, 1986), it is
decomposed into the sum of the individual torques exerted at
each Lindblad resonance. In the second approach (Lin and Pa-
paloizou, 1979; Goldreich and Tremaine, 1980) it is obtained
by computing the angular momentum change for fluid elements
at conjunction with the planet, using an impulse approximation.
The two approaches are known to give equivalent results. In the
following, we use the expression from the impulse approxima-
tion:

(2)Tg(�0) = C q2Σr4
pΩ2

p

(
rp

�0

)3

,

where �0 = (r0 − rp). The above expression gives the torque
exerted by the planet on a disk extended from r0 to infinity.
It is valid only for |�0| > �m, where �m is the maximum
of H (the local thickness of the disk) and the Hill radius
of the planet RH = (q/3)1/3 (Goldreich and Tremaine, 1980;
Ward, 1997). The value of the numerical coefficient C depends
on the approach followed for the calculation of the torque. In
the most recent and refined calculation, Lin and Papaloizou
(1993) found C = 32

243

[
2K0

( 2
3

) + K1
( 2

3

)]2 ≈ 0.836 (where K0

and K1 are modified Bessel functions).
Classically, the gap is modeled as a step function profile in

the disk surface density, with edges placed at a distance �0

from the planet orbit, with �0 given by the solution of the
equation Tg(�0) = Tν , and Tg and Tν given in (2) and (1). The
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maximal gravity torque is

Tg(�m) ≈ 0.836q2Σr4
pΩ2

p

(
rp

�m

)3

.

Thus, a gap can be opened only if

(3)ν < 0.0887q2 r4
pΩ2

p

r2
0Ω0

(
rp

�m

)3

,

otherwise Tν is larger than Tg and the gas overruns the planet.
Condition (3) is equivalent to that given in Bryden et al. (1999),
expressed as a constraint on the mass of the planet relative to
the viscosity of the disk.

2.3. Differential torques and comparison with numerical tests

2.3.1. Differential torques
Varnière et al. (2004) proposed a more refined approach to

model the surface density profile in the gap. Their approach is
based on a simple consideration: in equilibrium, when a steady
state is reached, the gravity torque and the viscous torque must
be equal on every elementary ring of the disk. The torques act-
ing on elementary rings can be computed by differentiation
relative to r ≡ r0 of (1) and (2):

(4)δTν(r) = −3

2
νΩ

[
r

Σ

dΣ

dr
+ 1

2

]
(2πrΣ),

(5)δTg(r) ≈ 0.4q2r3
pΩ2

pr−1
(

rp

�

)4

(2πrΣ).

Matching δTν and δTg gives a differential equation in Σ :

(6)
1

Σ

dΣ

dr
= δTg(r)

3πνr2ΩΣ
− 1

2r
.

The integration of this equation gives the profile of the gap.
The top panel of Fig. 1 gives examples of the solution of Eq.

(6) for several values of the viscosity, from strong (ν = 10−3.14)
to weak (ν = 10−6.5). To compute them from (6), we have
(i) assumed that the mass of the planet is 10−3 in our nor-
malized units, (ii) imposed the boundary condition Σ(r0 =
3) = 1/

√
3 and (iii) assumed that the gravity torque is null in

the horseshoe region, here approximated by: rp − 2RH < r <

rp + 2RH. As a consequence of (iii) the surface density pro-
file in the vicinity of the planet assumes an equilibrium slope
proportional to 1/

√
r , which makes δTν null. Notice that the

slopes of the surface density at the edges of the gap do not de-
pend on our assumptions (ii) and (iii), but are dictated solely
by the differential equation (6). We remark that the profiles il-
lustrated in the figure are the same as in Varnière et al. (2004),
despite the fact that these authors consider the gravity torque as
given by the sum of the individual Lindblad resonances. This
again underlines the equivalence of the two approaches for the
calculation of the gravity torque discussed in Section 2.2.

2.3.2. Numerical simulations
We have tested the results of these analytic calculations us-

ing purely numerical simulations. For this purpose, we have
used the 2D hydrodynamic code described in Masset (2000),
and considered a Jupiter mass planet (q = 10−3) in a disk,
whose initial surface density profile decays as 1/

√
r , and

Σ(rp) = 6 × 10−4 [the value of the minimal mass solar neb-
ula at 5 AU (Hayashi, 1981)]. The disk aspect ratio was fixed at
5%. The viscosity was chosen equal to the values used for the
analytic computations, for direct comparison. In these simula-
tions, the planet was assumed not to feel the gravity of the disk,
so that it did not migrate. The grid used by the code for the hy-
drodynamical calculations extended from 0.5 to 3 (we remind
that the planet location is rp = 1). The boundary conditions in
r are nonreflecting, which means that the waves behave as if
they were propagating outside the boundaries of the grid. The
angular momentum they carry is thus lost; we have checked
that the flux through the outer boundary represents only a neg-
ligible fraction of the total gravity torque (see Appendix C).
The relative surface density amplitude perturbation at the outer
boundary has been measured to be less than 5%. The size of
the grid was 150 cells in radius and 325 cells in azimuth. The
simulations were carried on for 1000 planetary orbits, for vis-
cosity down to 10−5.0 and 5000 orbits for weaker viscosities.
At these times, the profile of the gap does not seem to evolve
significantly any more, as also found by Varnière et al. (2004).

2.3.3. Comparisons
The results are illustrated in the bottom panel of Fig. 1. As

anticipated in the Introduction, we remark an evident differ-
ence with the analytic predictions. The simulated gap is much
narrower than the one predicted by the analytic expression (6)
for low viscosities (ν < 10−6). At first sight, one might think
that the discrepancy between the analytical and numerical so-
lutions is due to the numerical viscosity (dissipation due to
numerical errors) of the computer code. However, this is un-
likely for the following reasons: (i) different gap profiles are
observed for different viscosities, which shows that the simu-
lation is not dominated by the numerical viscosity, as the latter
should be the same in all simulations; (ii) changing the resolu-
tion of the grid used in the numerical scheme, which changes
the numerical viscosity, does not affect the gap profiles signifi-
cantly; (iii) different numerical schemes give consistent results
(De Valborro, private communication).

As anticipated in the Introduction, the problem with this an-
alytical modeling is the assumption that the gravity torque is
entirely deposited in each annulus of the disk. A condition for
such deposition to happen is that RH � H (Lin and Papaloizou,
1993). Thus, this is usually considered as a second independent
criterion for gap opening, in addition to (3) (Bate et al., 2003).
However, even if this condition is satisfied, a fraction of the
gravity torque is still evacuated by the waves (Goldreich and
Nicholson, 1989; Papaloizou and Lin, 1984; Rafikov, 2002).
The problem is to evaluate this fraction. Below we show that
it can be computed from a mean pressure torque acting on the
fluid elements over their periodic equilibrium trajectories.

3. Pressure torque

Consider an arbitrary closed curve in the disk and a little
tube around it. The rate of change of angular momentum of the
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matter in the tube is the sum of the differential flux of angu-
lar momentum through its boundaries (due to the advection of
matter) and of the torques acting on it. From the Navier–Stokes
equations, in addition to the gravity and viscous torques, there
is a third torque due to pressure:

(7)tP =
∮

c2
s

∂Σ

∂θ
dθ,

where the integral is computed along the curve and we have as-
sumed the usual state equation P = c2

s Σ (with cs = HΩ denot-
ing the sound speed). If the tube is a ring centered at the origin
r = 0, the torque tP is equal to zero (on the ring, r is constant
and ∂Σ/∂θ = dΣ/dθ ), while the differential flux of angular
momentum is generally not zero. The latter is the flux carried by
the pressure supported wave (Goldreich and Nicholson, 1989;
see Appendix C). On the contrary, if one chooses a stream tube
(i.e. a tube bounded by two neighboring streamlines), the dif-
ferential flux is obviously zero (there is no flux of matter, by
definition of stream tube), while tP is nonzero in general. The
latter is true because the streamlines are strongly distorted (see
Fig. 2) so that Σ ≡ Σ(r(θ), θ) and thus ∂Σ/∂θ �= dΣ/dθ . This
shows that one can translate the angular momentum flux carried
by the waves into a pressure torque, by a suitable partition of
the disk in concentric tubes. Obviously the two approaches are
equivalent as the physics is the same. However, working with
stream tubes and pressure torques gives practical computational
advantages. This is therefore the approach that we follow in this
paper.

Below, we check that the gravity, pressure and viscous
torques really cancel each other in the numerical simulations,
once the steady state is reached.

3.1. Computation of the torques along the trajectories

The approach outlined above requires that the stream tubes
are closed. In our simulations this is true at the steady state,
because our boundary conditions preserve the initial radial ve-
locity at the edges of the grid, which is null as a result of our
choice for the initial disk density profile Σ ∝ 1/

√
r . The cal-

culation of the streamlines, which is done in Fourier space to
ensure periodicity, is detailed in Appendix A. We remark that,
in the steady state, the streamlines coincide with the fluid ele-
ment trajectories.
Fig. 2. Disk surface density map in the vicinity of a gap opened by a Jupiter mass planet located at (rp = 1, θp = 0). Light gray denotes high density and black low
density, in a logarithmic scale. The white curves show some streamlines, in the frame corotating with the planet. They are followed from π to −π for r > 1, and
from −π to π for r < 1, periodically. Two of them correspond to horseshoe orbits in the planet corotation region. Notice the strong distortion of the streamlines
when they cross the over-density corresponding to the spiral wave (wake) launched by the planet.



592 A. Crida et al. / Icarus 181 (2006) 587–604
Fig. 3. Graphical representation of the expressions (8) (integrated gravity torque, bold short-dash curve), (9) (integrated viscous torque, bold dotted curve), and (10)
(integrated pressure torque, bold solid curve). Their reference scale is reported on the left vertical axis. The streamline followed for their calculation is plotted in
the planet corotating frame as a dashed curve at the top of the figure and can also be seen in Fig. 2, while the position of the planet is shown by a filled dot at the
bottom; the corresponding scale is reported on the right vertical axis. The thin solid curve shows the difference between the angular momentum measured along the
streamline (H(θ)), and the sum of the three integrated torques and of the initial angular momentum (H(θ)). A small difference is almost impulsively acquired at
the wake crossing, due to numerical approximations.
Denoting the streamline by ri(θ), we numerically com-
pute the following expressions, which are the integrals of
(1/Σ)(rFθ ) with Fθ the azimuthal component of the force due
to gravity, viscosity, or pressure respectively:

(8)tg(θ) = 1

Ti(θ)

θ∫
π

ri(θ
′)

∂φ(ri (θ
′),θ ′)

∂θ ′

∣∣∣∣dθ ′

θ̇ ′

∣∣∣∣,

(9)tν(θ) = 1

Ti(θ)

θ∫
π

1

Σ(ri(θ
′),θ ′)

ri(θ
′)Fν

θ

(
ri(θ

′), θ ′)∣∣∣∣dθ ′

θ̇ ′

∣∣∣∣,

(10)tP (θ) = 1

Ti(θ)

θ∫
π

c2
s

Σ(ri (θ
′),θ ′)

∂Σ(ri (θ
′),θ ′)

∂θ ′

∣∣∣∣dθ ′

θ̇ ′

∣∣∣∣.
Here, φ denotes the gravitational potential of the planet, and

Fν
θ = 1

r
[ ∂
∂r

(r ¯̄T rθ ) + ∂
∂θ ′

¯̄T θθ + ¯̄T rθ ], where ¯̄T = ( ¯̄T rr
¯̄T rθ

¯̄T θr
¯̄T θθ

)
is

the local viscous stress tensor for a Newtonian fluid: ¯̄T =
2Σν

( ¯̄D−( 1
3∇
v)

I
)
, where ¯̄D is the strain tensor and I is the

identity matrix. We integrate from π to θ , with π > θ � −π ,
because we consider r0 > rp , so that the angular velocity is neg-
ative in the corotating frame. The time required to reach θ from
π is denoted Ti(θ). Thus, as the trajectories coincide with the
streamlines in the steady state, the expressions above describe
the averaged torques felt by a fluid element that travels from the
planet opposition to θ .
In the following, we denote for simplicity by tg , tν , tP the ex-
pressions (8)–(10) evaluated at θ = −π . The total torques act-
ing on the stream tube centered around the considered stream-
line are simply the product of these quantities times the mass
carried by the tube.

In the next paragraphs we give a brief description of the in-
tegrated torques (8)–(10) as functions of θ , which are plotted in
Fig. 3 for the streamline starting at r = 1.2 at opposition with
the planet.

3.1.1. Viscous torque
The growth of the integrated viscous torque appears to be

nearly linear with respect to the azimuth, leading to a to-
tal negative torque. We verified that on this streamline tν ≈
δTν/(2πΣr), with δTν from (4). Thus, the viscous torque de-
pends only on the radial relative derivative of the azimuthally
averaged density 1

Σ
dΣ
dr

. However, on streamlines that pass
closer to the planet, the difference between tν and δTν/(2πΣr)

becomes more significant (see Fig. 6).

3.1.2. Gravity torque
The evolution of this integrated torque is not monotonic. The

fluid element is first repelled by the planet, as a result of the
indirect term in the gravitational potential. Then, when θ de-
creases below ∼0.5, it starts to be attracted by the planet. The
attraction becomes stronger and stronger as the fluid element
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Fig. 4. Absolute value of tg as a function of r , where r is the distance to the central star at planet opposition of the streamline on which the gravity torque is integrated.
The bold long-dashed curve is obtained from the simulation with q = 10−3, (H/r) = 5%, and ν = 10−5.5, while the bold short-dashed curve corresponds to a more
viscous case (ν = 10−4.6). The solid line traces expression (11), which remarkably fits the results obtained in the less viscous case. The dashed–dotted curve traces
expression (5), which shows that δTg �= tg .
approaches conjunction, namely as θ decreases to 0. The inte-
grated torque becomes negative. After conjunction, the planet
tends to pull the fluid element toward positive θ , giving a pos-
itive torque. As a result, the fluid element is rapidly repelled
toward larger r , as one can see from the trajectory in Fig. 3.
This is typical of the scattering of test particles in the restricted
three body problem, which qualitatively justifies the impulse
approach for the calculation of the gravitational torque, as in
Lin and Papaloizou (1979).

However, Lin and Papaloizou’s calculation holds in the ap-
proximation r ∼ rp . By comparing the numerical estimate of
δTg/(2πΣr) with δTg given by Eq. (5), we find that the fol-
lowing expression, which has the same dependence in � and
nearly the same numerical coefficient, but which distinguishes
r and rp , provides a much more accurate representation of the
gravity torque:

(11)tg = 0.35q2r5
pΩ2

pr

(
1

�

)4

sgn(�).

In reality, tg depends on the exact shape of the streamlines,
which in turn depends on the scale height and the viscosity (see
Figs. 4 and 6). However, the difference is moderate and lim-
ited to the vicinity of the planet, so that in the following we use
expression (11) for all cases.

We stress that expression (11) gives the torque exerted on the
fluid element, which is generally not the torque deposited in the
disk. In fact, even in the absence of viscosity, it does not corre-
spond to the change of angular momentum of the fluid element,
because some of the angular momentum is carried away by the
pressure torque.
3.1.3. Pressure torque
The variation of this torque with θ is simple to understand

if one takes into account that: (i) the trajectories cross the
wake immediately after the conjunction with the planet (Fig. 2);
(ii) the wake is a strong over-density in the disk; (iii) the pres-
sure term ∂Σ/∂θ makes over-densities repellent. Thus, as the
fluid element approaches the wake, its azimuth θ decreasing in
the corotating frame, the pressure rises and tends to push the
fluid element back in the direction of increasing θ . This gives
a positive local torque and it explains the peak in the integrated
pressure torque in Fig. 3. Then, after that the fluid element has
crossed the wake, the pressure decreases as θ decreases. This
leads to a negative local pressure torque. It corresponds to the
fall after the peak in Fig. 3. The negative contribution is bigger
than the positive one because of the asymmetry of the trajectory
relative to the wake position, which is clearly visible in Fig. 5.

Clearly, the pressure torque must depend on the shape of the
streamlines and on the surface density relative radial gradient,
which govern the shape of the wake and its density enhance-
ment. We return to this in Section 4.

3.2. Torque balance at equilibrium

From Fig. 3 we remark that, at θ = −π , the sum of the vis-
cous and pressure torques is basically the opposite of the gravity
torque. Therefore, the three torques approximately balance out.

Given the angular momentum H of a fluid element at θ = π ,
one can compute the angular momentum H(θ) that it would
have if its trajectory were governed exclusively by the three
torques mentioned above: H(θ) = H(π) + tg(θ) + tν(θ) +
tP (θ). This can be compared with the local angular momentum
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Fig. 5. Sketch on the origin of the pressure torque. Here are drawn some stream-
lines, the width of which represents the mass carried by the corresponding
streamtube. At the gap edge, the pressure gradient gives a force. The distor-
tion of the streamlines at the wake leads to a large azimuthal component of this
force, which gives a torque.

on the trajectory H(θ), measured directly from the numerical
simulation. In Fig. 3 the thin line shows H(θ) − H(θ). This
function is zero for θ evolving from π down to ∼0, where the
wake is crossed. At the wake crossing, a small kick is observed.
Then, when θ evolves from the wake location to −π , the func-
tion H(θ) − H(θ) remains constant again. This confirms that
the trajectory is essentially governed by the three torques men-
tioned above.

The small difference between H and H (Fig. 3) could in
principle be due to the pseudo-viscous pressure introduced in
the simulation to avoid numerical instabilities (Lin and Pa-
paloizou, 1986a) but we have verified that the effect of the latter
is negligible. Thus, we conclude that it is a consequence of nu-
merical errors, introduced by the grid discretization at the shock
site. This numerical issue evidently prevents the three cumula-
tive torques from balancing out perfectly at θ = −π : indeed,
their sum is equal to H(−π) − H(−π) �= 0.

In order to explore the relative importance of viscosity and
pressure in different situations, we show in Fig. 6 the three
averaged torques as a function of r for two simulations, with
ν = 10−4.6 (top panel) and ν = 10−5.5 (bottom panel). In the
more viscous case, the pressure torque becomes relevant for
r < 1.2, i.e. at the edge of the gap. There, it substantially helps
the viscous torque in counterbalancing the gravity torque. This
explains why the gap observed in the simulation is narrower
than the one predicted by the theory considering only the grav-
ity and the viscous torques alone (see Fig. 1). In fact, if the
pressure torque were not present, all over the region r < 1.2 the
relative radial gradient of the surface density of the disk would
have needed to be much steeper, in order to enhance the viscous
torque up to the value of the gravity torque [see Eq. (4)]. This
would have given a wider and deeper gap profile.

It is interesting to compare the top panel of Fig. 6 with the
lower panel, which is plotted for a value of the viscosity that is
almost an order of magnitude smaller. First, we remark that the
gravity torque is somewhat smaller in the vicinity of the planet;
this is due to a (moderate) change of the shape of the stream-
lines, as discussed in last subsection. The viscous torque has
decreased much more than the gravity torque, but not propor-
tionally to the viscosity; this is because the profile of the gap
has changed and the relative radial gradient of the surface den-
sity is now steeper. The pressure torque has increased relative to
the gravity torque, and is now nonnegligible in the full region
r < 1.3. It is always larger in absolute value than the viscous
torque. Its radial profile looks very similar to that of the gravity
torque. In essence, it is the pressure torque that counterbalances
the action of the planet, with the viscosity only playing a minor
role. Thus there is a dramatic qualitative change, with respect
to the previous case, in how the torques balance out to settle the
equilibrium configuration.

The two cases discussed above convincingly show that the
disk equilibrium is set by the equation

(12)tg + tν + tP = 0.

When the viscosity fades, the role of pressure takes over in con-
trolling the gap opening process, limiting the gap width. This
means that, as viscosity decreases, a larger fraction of the grav-
ity torque is transported away by the pressure supported waves.
This phenomenon explains why the width of the gap increases
with decreasing viscosity in a much less pronounced way than
in Varnière et al.’s model, which does not include a pressure
torque.

The role of pressure in limiting the gap width may still ap-
pear surprising, but it can be understood with some physical
intuition. In an inertial environment, it is pressure—and not
viscosity—which makes a gas fill the void space. In a rotating
disk the situation is different, because a radial pressure gradi-
ent simply adds or subtracts a force to the gravitational force
exerted by the central star. This changes the angular velocity
of rotation of the gas, without causing any radial transport of
matter. Thus if the edges of the gap were circular, the pressure
could not play any role in limiting the gap opening. However,
as the gap edges are not circular, as shown in Fig. 5, the pres-
sure gradient is not entirely in the radial direction, and thus it
exerts a force with a nonnull azimuthal component. This gives
a net torque, and tends to fill the gap.

4. Gap profiles

In the last section, the pressure torque has been numerically
computed in different cases. It has been shown that, when the
disk is in equilibrium, the pressure, gravity and viscous torques
cancel out. This suggests that it should be possible to compute
a priori the shape of the gap by imposing that this equilibrium
(12) is respected. Indeed, the viscous and pressure torques de-
pend on the relative radial gradient of the azimuth-averaged
density, whereas the gravity torque has no direct dependence
on it. Therefore, on a given trajectory, there must be a value of
this gradient that corresponds to the exact equilibrium between
these three torques.
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Fig. 6. The torques tg , tν , tP are plotted in bold lines as a function of r , which denotes here and in the following plots the radius of the streamline at opposition with
respect to the planet (θ = ±π ); the horseshoe region r � 1.15 ∼ rp + 2RH (see Fig. 2) is excluded. The thin dotted line shows the value of the viscous torque given
by δTν/(2πΣr), with δTν from (4) (Keplerian circular approximation). The thin solid line is the sum of the three torques. It is not exactly zero, in particular in the
vicinity of the planet, because of numerical approximations generated at the wake crossing. Top panel: large viscosity case; the pressure torque becomes relevant
only close to the planet. Bottom panel: low viscosity case; the pressure torque appears further from planet, compensating for the smaller viscous torque.
Our semi-numerical algorithm for the computation of this
equilibrium value is described in Appendix B. The results are
shown in Fig. 7 (crosses) and satisfactorily agree with the real
values measured in the corresponding numerical simulation
(solid curve), i.e. the simulation from which the streamlines
used by the algorithm have been obtained.

The knowledge of the relative radial gradient of the azimuth-
averaged density as a function of the radial distance enables
us to construct a gap profile by simple numerical step by step
integration, starting from a boundary condition. In the sec-
ondary panel of Fig. 7 this integrated profile (dashed curve)
is plotted against the real one from the considered simula-
tion. The match between the two profiles is almost perfect,
which again proves that the gap profile is set by the balance
between the three torques due to gravity, viscosity, and pres-
sure.
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Fig. 7. The crosses show the relative radial gradient of the surface density as computed by the algorithm described in Appendix B. The solid curve shows the same
quantity, measured from the numerical simulation from which the streamlines used in the algorithm have been taken (aspect ratio = 0.05, viscosity = 10−5.5, planet
mass = 10−3). From the algorithm, the gap profile is computed (dashed curve in the little box), and compared to that obtained in the numerical simulation (solid
curve).
4.1. An explicit equation for the gap profile

We now wish to go beyond the semi-numerical algorithm
of Appendix B and obtain an approximate analytic expression
for the pressure torque, to be used in an explicit differential
equation for the gap profile.

As we have seen above, for a given streamline, the absolute
value of the pressure torque is an increasing function of the rela-
tive radial gradient of the azimuthally averaged surface density.
Furthermore, in a disk with no density gradient, the pressure
torque must be zero. Thus, we approximate the dependence of
the pressure torque on the relative radial density gradient with
a linear function:

tP = −a(r)

(
dΣ

Σ dr

)
.

Before looking for a numerical approximation of the func-
tion a(r), we make two considerations on its functional depen-
dence on the scale height of the disk and on the mass of the
planet.

First, because of Eq. (7), a(r) is necessarily proportional to
c2
s . As cs is proportional to the scale height H , we can write

a = (H/r)2a′(r).
Second, in the limit of negligible viscosity, scaling the as-

pect ratio H/r proportionally to RH/rp , and adopting RH as
basic unit of length, the equation of motion becomes indepen-
dent of the planet mass (Korycansky and Papaloizou, 1996).
Thus, if the disk aspect ratio scales with the planet Hill ra-
dius, the resulting surface density Σ at equilibrium is a func-
tion of �/RH only. Consequently dΣ/(Σ dr) is a function of
�/RH, divided by RH. As the gravity torque tg is proportional
to R2

Hr(�/RH)−4 [see (11)], the equilibrium tg = tp can hold
if and only if a′(r) = rRHa′′(�/RH)rpΩ2
p , where a′′(�/RH)

is a dimensionless function and the constant factor rpΩ2
p stands

for homogeneity reasons.
To evaluate the function a′′, we use numerical simulations

from which we measure the pressure torque and the relative ra-
dial gradient of the surface density. In practice, we consider two
simulations: (i) the reference one, with a Jupiter mass planet in
a disk with aspect ratio = 0.05 and viscosity = 10−5.5, which
gives information for �/RH in the range 2–7, and (ii) a similar
simulation but with viscosity ν = 10−6.5 which, because of its
wider gap, allows us to better estimate the asymptotic behavior
of a′′ at large �. We find that a′′(�/RH) can be approximately
fitted by the function

(13)a′′
(

�

RH

)
= 1

8

∣∣∣∣ �

RH

∣∣∣∣
−1.2

+ 200

∣∣∣∣ �

RH

∣∣∣∣
−10

.

Equation (13) has been determined for the external part of
the disk (� > 0), outside of the horseshoe region. However,
assuming that the streamlines are symmetric relative to the po-
sition of the planet, the same expression can be applied in the
inner part of the disk, which justifies the absolute value of �.
In fact, to represent the inner edge of the gap, just rotate Fig. 5
by 180◦, and it becomes evident that a negative density gradient
leads to a positive torque.

Note that Eq. (13) has been determined with reference to
the streamlines corresponding to the case with q = 10−3, ν =
10−5.5, and H/r = 5%. However, the exact shape of the stream-
lines depends on q , ν, and H/r , even in rescaled coordinates.
We neglect this dependence at this stage.

Thus, we assume that (13) is valid for any value of ν and
H/r and a′′ depends on q only via RH. This approximation
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Fig. 8. Comparison of numerical results (plain lines) and analytic profiles given
by Eq. (14) (dashed lines). Case 1: reference case: q = 10−3, H/r = 5%,
ν = 10−5.5. Case 2: more viscous case: q = 10−3, H/r = 5%, ν = 10−4.
Case 3: less viscous case: q = 10−3, H/r = 5%, ν = 10−6.5. Case 4: scaled
case: q = 3 × 10−3, H/r = 7.2%, ν = 10−5.5. Case 5: thicker disk case:
q = 10−3, H/r = 10%, ν = 10−5.5. Case 6: more massive case: q = 3×10−3,
H/r = 5%, ν = 10−5.5.

has the advantage of providing us an analytic expression for the
computation of the gap profiles. In fact, the disk equilibrium
equation (12) becomes:

(14)

(
RH

Σ

dΣ

dr

)
= tg − 3

4νΩ(
H
r

)2
rrpΩ2

pa′′ + 3
2ν r

RH
Ω

with a′′ and tg given in Eqs. (13) and (11), respectively.
The right-hand side of Eq. (14) is independent of Σ and

is an explicit function of r . This differential equation can be
integrated, once a boundary condition Σ(r0) is given. Unfortu-
nately the integral has no analytic solution, so that it has to be
computed numerically.

Fig. 8 shows comparisons of the gap profiles obtained in nu-
merical simulations with those obtained with the integration of
Eq. (14), for six different cases with different viscosities or as-
pect ratios and planetary mass (see figure caption for a list of
parameters). The comparisons are done only for the outer part
of the disk, because in the inner part, the effect of the boundary
condition, not considered in our model, is too prominent in the
numerical results. In the integration of Eq. (14), Σ has been set
equal to the value found in the numerical simulations at a point
on the brink of the gap, so as to allow an easier comparison be-
tween the numerical and semi-analytic density gradients at the
edge of the gap. We remark that in case 1, the semi-analytic gap
profile matches almost perfectly the numerical profile. This is
not surprising, because this is the reference case for which the
streamlines have been computed, so that our expression (13) is
virtually exact.

In cases 2 and 3, we change the viscosity and keep the same
planet mass and aspect ratio as in case 1. Now, the agreement
between the numerical and semi-analytic profiles is less good.
In particular, in the high-viscosity case, the real density gradi-
ent is shallower than the one we compute, while in the low-
viscosity case it is steeper. This is because the real streamlines
are not identical to those for which Eq. (13) has been computed.
In the more viscous case, the equilibrium in the disk is achieved
with a weaker pressure torque. The distortion of the stream-
lines at the wake is dictated by the difference between the local
gravity and pressure torques. Thus, a weaker pressure torque
gives streamlines that are more distorted at the wake than in our
reference case. But, as sketched in Fig. 5, the more a stream-
line is distorted, the more efficient it is in producing a pressure
torque from a radial surface density gradient. Consequently the
pressure torque required to set the equilibrium in the disk is
achieved with a smaller density gradient than the one needed
if the streamlines were as in the reference case. The opposite
holds in the less viscous case.

In case 4, we increase the mass of the planet and the disk
aspect ratio, in a way such that H/RH is the same as in case 1.
The viscosity is also the same as in case 1, and the agreement
between the model and the simulation is equally good.

Finally, in cases 5 and 6, we change H/RH. In case 5,
we keep the planet mass and viscosity of case 1 but increase
the aspect ratio to 10%; the model gap is quite narrower and
shallower than the numerical one. In case 6, we use the same
planet as in case 4 but with the aspect ratio and viscosity of
case 1, which gives as smaller H/RH; the gap that our model
predicts is now slightly wider than the one obtained in the nu-
merical calculation. The interpretation for the disagreements
observed in cases 5 and 6 is the same as that offered for cases 2
and 3.

4.2. Note on disk evolution during gap opening

Fig. 8 shows significant differences in the value of Σ be-
tween the numerical simulation and the analytic expression.
However, we stress that a large difference in Σ can correspond
to almost no difference in the relative slope

( 1
Σ

dΣ
dr

)
. For in-

stance, in the case with viscosity equal to 10−4 (case 2), the
surface density profiles for r > 1.6 seem quite different, but in
fact, they have the same relative slope.

As we have shown above, it is the relative slope
( 1

Σ
dΣ
dr

)
that

sets the equilibrium. This equilibrium must be reached quickly,
on a time scale independent of viscosity. In fact, in absence
of equilibrium, the fluid elements are displaced radially over
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Fig. 9. Evolution with time of the profile of the external edge of the gap opened by a Jupiter mass planet in a 5% aspect ratio disk, with a 10−6.5 viscosity. Top panel
shows the relative radial gradient of the density; the fact that the curves overlap argues that the equilibrium function has been rapidly reached. Bottom panel shows
the evolution of the surface density at the same times; a ‘bump’ appears, which is a consequence of the matter removed from the gap, and it is eroded on a viscous
time scale. This happens without modifying substantially the relative slope.
a synodic period and the trajectories are not periodic. This cor-
responds to the opening of the gap. Then, once the equilibrium
is almost set, the value of Σ can still significantly evolve on
a long (viscous) time scale, but keeping

( 1
Σ

dΣ
dr

)
essentially

unchanged. This fact is illustrated in Fig. 9, which compares
the evolution of

( 1
Σ

dΣ
dr

)
(top panel) with the evolution of Σ

(bottom panel) for a weakly viscous case (ν = 10−6.5). This
behavior explains why, when simulating the gap opening in
low viscosity disks, the surface density profile seems to have
attained a stationary solution within a limited number of plane-
tary orbits, despite that the presence a prominent ‘bump’ at the
outer edge of the gap indicates that there is still room for evo-
lution (see Fig. 1).

In the inner disk, once the gap profile is set in terms of rela-
tive slope, we expect that the density Σ decreases on a viscous
timescale, because of the accretion on the central star. In the ap-
proximation of a fixed planet, this viscous evolution would lead
to the formation of an inner hole in the disk, extended up to the
planet position.

5. Dependence of gap profiles on viscosity and aspect ratio

In the previous section, we have presented a semi-analytic
method to compute gap profiles. It gave overall satisfactory re-
sults, as shown in Fig. 8. In this section, we use our method
to explore the dependence of the gap profile on the two key
parameters of the disk: viscosity ν and aspect ratio H/r . In
particular, we wish to revisit, with a unitary approach, the gap
opening criteria mentioned in Section 2:
(i) The viscosity needs to be smaller than a threshold value.
According to Eq. (3), in our case of a Jupiter mass planet
this value is νcrit ≈ 10−4.

(ii) The disk height at the location of the planet needs to be
smaller than ∼ RH. For a Jupiter mass planet it corresponds
to an aspect ratio ∼7%.

In the computation of the gap profiles by integration of Eq.
(14), two problems are encountered.

First, a boundary condition is needed. This choice is arbi-
trary, but in principle it should be consistent with the steady
state of the disk. However, the steady state is an academic
concept which exists only if the density is kept fixed some-
where in the disk, otherwise the disk spreads to infinity follow-
ing Lynden-Bell and Pringle (1974) equation. In our numerical
code, the surface density is kept equal to the unperturbed value
at the outer boundary of the grid (r = 3). Thus, for the so-
lutions of Eq. (14) presented in Figs. 10 and 11, we impose
Σ(r = 3) = 1/

√
3. In this way, our solution should correspond

to the steady state solution that the code would converge to.
Moreover, this choice allows a direct comparison of our pro-
files with those obtained with Varnière et al. model, illustrated
in the top panel of Fig. 1 using the same boundary condition.

The steady state solution provided by the numerical simu-
lation does not depend on the size of the grid, provided that
the boundaries are sufficiently far from the planet (negligible
differential planetary and pressure torques, or equivalently, neg-
ligible wave carried angular momentum flux, as in our nominal
case—see Appendix C). This required size increases with de-
creasing viscosity because the radial range over which the wave
is damped increases.
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Fig. 10. Analytical gap profiles given by Eq. (14) for different viscosities. The gap deepens as viscosity decreases, but its width remains bounded, even for very

small ν.
Thus, in a very low viscosity case, the steady state solution
obtained by the numerical simulation over an extended disk
would be different from the model profiles given in Fig. 10.
However, our model profiles would bound the gap observed
in the numerical simulation as long as the normalized surface
density at r = 3 does not decrease below 1/

√
3. In such low

viscosity cases, this happens after an exceedingly long time.
Thus, we claim that our model profiles are significant for the
description of gaps in realistic disks.

The second problem concerns the treatment of the horseshoe
region. The gravity and pressure torques, tg and tp , are consid-
ered null in the horseshoe region |�| < 2RH. The depth of the
gap is thus set by the value of the density at rp + 2RH. At the
edges of the gap, the slope is very steep, so that a little change
in the assumed width of the horseshoe region leads to a ma-
jor change in the gap depth. This is a limitation of our results
from a quantitative point of view. Though, it does not change
the qualitative evolution of the gap profiles with respect to the
disk parameters.

This sensitivity to the width of the horseshoe region is also
a problem for the construction of the surface density profile in
the inner disk. The integration for the inner disk starts from
rp − 2RH down to r = 0, with the density at the bottom of the
gap acting as the boundary condition. In principle, if the gap
profile is symmetric, the errors at the right-hand side and left-
hand side borders of the gap compensate each other: the value
of the surface density at the bottom of the gap is not quantita-
tively correct, but the density profile in the inner disk is realistic.

Fig. 10 shows the results of our semi-analytic calculation for
a fixed value of the aspect ratio (5%) and different values of the
viscosity ν (from 0 to 10−3 in normalized units). Fig. 11 keeps
the viscosity ν = 10−5.5 and explores the dependence of the gap
profile on the disk aspect ratio (from 0 to 30%). The plotted
curves naturally order themselves from bottom to top, from the
less viscous case (respectively the smallest aspect ratio) to the
most viscous case (respectively the biggest aspect ratio). Notice
that this progression does not represent an evolution with time,
but different steady state gap profiles, for different parameters.

Dependence on viscosity
First of all, we remark in Fig. 10 that the different shapes of

the gaps qualitatively agree with those computed with numeri-
cal simulations, shown in the bottom panel of Fig. 1. Indeed, not
only do we get deeper and wider gaps as viscosity decreases, but
we also correctly reproduce the limited gap width achieved in
the small viscosity cases. This means we have solved the prob-
lem that initially motivated our investigation.

As viscosity increases, the gap is filled with gas, and the
profile tends to the unperturbed profile set by the sole viscous
effects: Σ ∝ 1/

√
r (see Section 2). Nevertheless, it is hard to

determine a precise threshold value for gap opening, for at least
two reasons. The first one is that the gap profiles have a smooth
dependence on the viscosity. The concept of threshold viscos-
ity for gap opening does not hold. The gap gradually increases
in depth over a range of viscosities of about one order of mag-
nitude. The second reason is that the depth of our gaps is very
sensitive to the assumed width of the horseshoe region, as dis-
cussed above. Thus, there is some uncertainty on the value of
the viscosity that makes the gap become only a dip. Assuming
that a gap is opened if the surface density falls below 10% of the
unperturbed density, we find that νcrit ≈ 10−5. We remind that
the ‘classical’ threshold for gap opening is νcrit ≈ 10−4. How-
ever, the numerical experiments in Fig. 1 (bottom panel) also
suggest that Σ ∼ 0.1 at the bottom of the gap is achieved for
ν ∼ 10−5.

Dependence on aspect ratio
Consider now Fig. 11. We see a smooth evolution from deep

gaps to shallow or inexistent gaps with increasing aspect ratios.
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Fig. 11. Analytical gap profiles given by Eq. (14) for different aspect ratios. The gap deepens as the aspect ratio decreases.
This is easy to understand, because (H/r)2 is a multiplicative
coefficient in the expression of the pressure torque (see Sec-
tion 4). Therefore, the larger (H/r), the shallower needs to be
the relative slope at the edge of the gap to achieve the equilib-
rium (12). As in the previous case, it is not possible to determine
a threshold value of (H/r) for gap opening, but we find that the
‘classical’ value (H/r)crit ≈ 0.07 corresponds to about 90% de-
pletion in the gap.

More generally, with our approach we find that the viscosity
required to fill the gap is a decreasing function of the aspect
ratio. If the aspect ratio is too large, the gap cannot be opened
whatever the viscosity. To our knowledge, this is the first time
that an analytic approach gives the correct description of the
evolution of the gap profile with respect to both disk viscosity
and aspect ratio.

6. A new generalized criterion for gap opening

To go beyond the qualitative considerations of the previous
section, we try to generalize the gap opening criterion with an
expression that involves simultaneously the three main parame-
ters of the problem: mass of the planet, scale height of the disk
and viscosity.

We start with a few considerations on two limiting cases. In
the zero viscosity limit, as we have seen in Section 4, changing
the scale height of the disk in proportion to the Hill radius of
the planet preserves the gap profile in scaled units �/RH. This
means that, whatever depth threshold is adopted for the defin-
ition of ‘gap,’ the threshold value of H for gap opening in the
zero viscosity limit, H0, is proportional to RH:

H0 ∝ RH ∝ q
1
3 .

In the infinitely thin disk limit (H/r → 0), the disk equilib-
rium is set by the equation tg = tν . At the border of the gap
where the slope of the surface density is relevant, tν is pro-
portional to ν r dΣ

Σ dr
. By changing the mass of the planet, the

gravity torque changes proportionally to R2
Hr(�/RH)−4. If the

viscosity ν is changed proportionally to R3
H ∝ q , then the sur-

face density profile Σ remains an invariant function of �/RH.
Thus, independently of the adopted definition of ‘gap’ as in the
previous case, the threshold viscosity for gap opening in the in-
finitely thin disk limit, ν0, scales proportionally to q . This is
consistent with the gap opening criterion given in Bryden et al.
(1999):

ν0 ∝ q.

We now come to the general case where neither H nor ν are
null. From the considerations above and Eq. (14) it is evident
that a change in the planet mass q can give an invariant sur-
face density profile in scaled units �/RH provided that H is

changed proportionally to q
1
3 and ν is changed proportionally

to q .
The most complicated case that remains to be analyzed is

that where q is constant, but H and ν are changed. It is evident
from Eq. (14) that it is not possible to have an invariant sur-
face density profile by decreasing H and increasing ν or vice
versa. The question is therefore how to keep the central gap
depth invariant, despite changes in the gap profile. We answer
this question using our semi-analytic calculation of gap pro-
files, based on the integration of Eq. (14). For this, we define—
arbitrarily—that the minimal depth that defines a gap is 1/10 of
the unperturbed disk density at r = rp . Fig. 12 shows as bold
lines, for six different values of the planet mass, the relation-
ships H vs ν that preserve such central gap depth.

As one can see, these relationships are almost linear.
We can fit each one with a relation of type H/H0 +ν/ν0 = 1,

where H0 and ν0 have been defined above. As we have ν0 ∝ q

and H0 ∝ q1/3, we can derive a general relation involving H ,
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Fig. 12. The bold curves represent the values of (H/r) that make the gap depth be 10% of the unperturbed density for given values of ν. They have been computed
from the solutions of Eq. (14). Each curve corresponds to a planet mass. The thin lines represent our linear approximations given by Eq. (15) for the corresponding
planet mass.
ν, and q that approximately describes all the curves plotted in
Fig. 12, and thus a general criterion for gap opening. Denot-
ing by R the Reynolds number r2

pΩp/ν, we find that a gap is
opened if q , H , and R satisfy the following inequality:

(15)
3

4

H

RH
+ 50

qR � 1.

The thin lines in Fig. 12 correspond to the limit case 3
4

H
RH

+
50
qR = 1, for any of the six considered values of q .

7. Conclusions

In this paper, we have analyzed in detail the process of gap
opening in protoplanetary disks. In this respect, a key problem
is to calculate which fraction of the torque exerted by the planet
is locally deposited in the disk and which fraction is transported
away by pressure supported waves. We have shown that the an-
gular momentum evacuated by the waves can be computed as
a pressure torque. We found that the steady state of the disk is
set by the equilibrium among the total gravity torque, the vis-
cous torque, and the pressure torque. From this consideration,
we have built a semi-analytical algorithm that, given viscosity
and aspect ratio, provides the equilibrium profile of the surface
density of the disk, enabling us to explore the gap shape for a
large range of parameters.

This work has two types of application. It can be used to
achieve a first realistic estimate of the width and depth of gaps
in various situations, in view of the future high resolution ob-
servations of protoplanetary disks (with ALMA or the SKA
projects). It can also give equilibrium gap profiles to be used
as a starting condition in numerical simulations if one wants to
avoid the intermediate, cpu-consuming phase which leads to the
steady state.

Our work is not fully analytic. Indeed our final Eq. (14)
involves a function a′′ which we approximated by the ansatz
function (13), with coefficients determined with respect to a ref-
erence numerical simulation. Also the gravity torque (11) has
been refined using fits to the reference numerical results. As a
consequence, if our model matches the results of the reference
numerical simulation, it still is in satisfactory agreement with
the results of other numerical simulations.

Moreover, the equilibrium profile that we obtain corresponds
to the equilibrium configuration of the disk at infinite time in
presence of a nonmigrating planet, which is evidently an ideal
case. Our model is two-dimensional, intended to approximate
the behavior of a vertically isothermal 3D disk; in a 3D, ther-
mally stratified disk, the density waves would not propagate
exactly the same way (Bate et al., 2003) and consequently the
pressure torque is expected to be somewhat different. Finally,
we have assumed a constant kinematic viscosity; in reality, in
the regions where the perturbations are nonlinear, the effec-
tive viscosity depends on the local planet’s gravitational torque
(Goodman and Rafikov, 2001), although this dependence may
be weak (Papaloizou et al., 2004).

In spite of these limitations, our work clearly demonstrates
the fundamental role of the pressure in setting the equilibrium
of the disk. Moreover, it gives a correct, nearly quantitative,
description of the evolution of the gap profile with respect to
the key parameters of the problem: planet mass, viscosity and
aspect ratio. From this we derive a new general criterion for gap
opening, involving simultaneously these three parameters.

Our work shows why the width of the gap is bounded even
in the case with very small viscosity, which was the open prob-
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lem that originally motivated our work. It provides a conceptual
unification of the two classically, but independently derived,
criteria for gap opening, based on threshold viscosity and as-
pect ratio.
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Appendix A. Trajectories and streamlines computation

In a steady state, trajectories and streamlines coincide. Com-
puting the streamlines is then equivalent to computing the tra-
jectories. In principle, to compute a trajectory it is enough to
integrate the velocity field. The latter is defined on the grid
and output by the code, from which the velocity at any point
of the disk can be computed by interpolation. However, using
this procedure, the resulting trajectories would in general not be
periodic, as a consequence of the accumulation of the integra-
tion and interpolation errors. This is a serious problem, because
the loss of periodicity would introduce a spurious change of an-
gular momentum, namely a spurious torque.

To obtain perfectly periodic streamlines, we used the fol-
lowing algorithm, that for simplicity we detail for the outer
part of the disk (r > rp). We first compute a trajectory from
(r = r0, θ = π) to θ = −π by simple numerical integration of
the velocity field (the integration runs from π to −π because
r0 > rp , so that the fluid element rotates clockwise in the coro-
tating frame). This gives a first curve r(1)(θ), defined on the
interval [−π,π]. By definition r(1)(π) = r0, but r(1)(−π) is in
general close but not equal to r0, because of numerical errors,
as said above. On this trajectory, we calculate vr

vθ
(r(1)(θ), θ) ≡

f (1)(θ). This is a pseudo-derivative of r(1), i.e. the slope of the
tangent to the curve according to the velocity field. It should
be equal to dr(1)/dθ , but is not exactly equal because of the nu-
merical errors in the computation of r(1). Then, we compute the
Fourier coefficients f

(1)
n of f (1)(θ). The first one f

(1)
0 is real,

and corresponds to the mean of f (1), namely to a radial drift. It
is not zero as r(1) is not exactly periodic, and therefore we set it
to zero. The pseudo-derivative of r(1) with respect to θ is thus
modified. To get back to a trajectory, we integrate this modi-
fied pseudo-derivative. We denote the new trajectory by r(2)(θ).
This trajectory is periodic by construction as its zeroth order
Fourier coefficient is null. From r(2), we repeat the algorithm
to find r(3), and so on, until the algorithm converges to a fixed
point. This fixed point r(θ) is a periodic trajectory by construc-
tion. It fits the velocity field, as it verifies dr(θ)

dθ
= vr

vθ
(r(θ), θ),

provided that the zeroth order Fourier coefficient of its pseudo-
derivative is negligible. If it is not, it means that the algorithm
failed. This happens in particular if the real streamlines are not
periodic because a steady state has not been reached yet.

In practice, for the implementation of this algorithm, we
used simulations computed over a grid with a larger resolution
than that used in Section 2. More precisely, we have used 512
cells in radius and 1024 in azimuth. The number of points used
to compute the Fourier coefficients of the pseudo-derivative was
1024 too. In all cases, the algorithm explained above converged,
and the zeroth order Fourier coefficient of the final pseudo-
derivative was negligible (less than 10−3 in our normalized
units, even 10−4 for all trajectories with r(π) > 1.2).

Appendix B. A semi-numerical algorithm for the
calculation of the equilibrium surface density slope

We present an algorithm that, given the shape of the stream-
lines, computes the relative surface density radial gradient that
ensures the equilibrium condition (12). This is done in two
steps. First, we design a procedure that evaluates tP on each
streamline, for any given value of 1

Σ
dΣ
dr

. Second, we solve nu-
merically the implicit equation for 1

Σ
dΣ
dr

given by Eq. (12).

B.1. First step: Computation of the torques

The streamlines are ordered with respect to increasing dis-
tance to the central star, so that ri(θ) < ri+1(θ) for every i, θ .
We call the ith streamtube the zone around the ith streamline:
{(ri−1 + ri)/2 < r < (ri + ri+1)/2}. A total mass mi or mean
density Σi can be imposed to be carried by a given stream-
tube i. Because the steady state is reached, the flux of matter in
streamtube i is constant with respect to time and azimuth, and
is Fi = mi/Ti , where Ti is the synodic period along the stream-
line. Thus, the mass has to be distributed in the streamtube in
such a way that the flux

(B.1)F(θ) = Σ
(
ri(θ), θ

)
vθ

(
ri(θ), θ

)[
ri+1(θ) − ri−1(θ)

]
/2

is equal to Fi for all θ . The azimuthal speed vθ (ri(θ), θ) can
be obtained by interpolation from the output of the numerical
code; the local density Σ(ri(θ), θ) is therefore the only un-
known in Eq. (B.1), so that one has:

(B.2)Σ
(
ri(θ), θ

) = 2Fi/vθ

(
ri(θ), θ

)[
ri+1(θ) − ri−1(θ)

]
.

Any relative radial density gradient (1/Σ)(dΣ/dr) around
the ith streamline can be created by imposing appropriate val-
ues for Σi+1 and Σi−1. The masses mi+1 and mi−1 carried by
the streamlines are obtained by multiplying the mean surface
densities by the areas of the stream tubes. Then, the local den-
sities are computed using Eq. (B.2).

Once the streamlines and the local densities are known, the
numerical computation of the pressure torque can be done us-
ing Eq. (10). The partial derivative of the density with respect
to the azimuth is delicate to compute. Indeed, from Eq. (B.2)
we know Σ(ri(θ), θ) only on a discrete set of values ri(θ). To
compute (∂Σ/∂θ) at the location (ri(θ), θ) we need to know
Σ(ri(θ), θ ± δθ), for some small δθ . This is computed by in-
terpolation between Σ(rj (θ ± δθ), θ ± δθ) and Σ(rj+1(θ ±
δθ), θ ± δθ), where the j th streamline is chosen such that
rj (θ ± δθ) < ri(θ) < rj+1(θ ± δθ).

The viscous and gravity torques are given by expressions (4)
and (11), respectively, with r ≡ r(π). Expression (4) is pre-
ferred to expression (9), despite of its limitations in the very
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vicinity of the planet (see Fig. 6) because it is simple and ex-
plicit.

B.2. Second step: Computation of the gap profile

To obtain the density profile we impose that the sum of
the three torques vanishes on every streamline. Thus, for each
streamline, the goal is to find the value of the relative surface
density slope s = ( 1

Σ
dΣ
dr

)
that makes the total torque ttotal(s) =

(tp + tν + tg) equal to zero. As the pressure torque is numeri-
cally computed, the solution can be found only numerically. We
use a secant method algorithm, described next.

A first value s0 of s is arbitrarily chosen (typically 0 or
the solution found on a neighboring streamline). Then, an-
other value s1 is taken (for instance, s0 + 100 ttotal(s0)). The
secant method algorithm is then used. The value chosen for
s2 is: s1 − ttotal(s1) · (s1 − s0)/[ttotal(s1) − ttotal(s0)]. A se-
quence (sn)n=0,1,... is build this way. At each step, the tested
value is: sn = sn−1 − ttotal(sn−1) · (sn−1 − sn−2)/[ttotal(sn−1) −
ttotal(sn−2)]. The sequence converges to sequil, such that
ttotal(sequil) = 0. We stop when we reach a value for s that makes
|ttotal(s)| smaller than 10−4tg , and we take that as our solution
for

( 1
Σ

dΣ
dr

)
equil.

With this procedure, we get ( 1
Σ

dΣ
dr

)equil for each streamline
or, equivalently, each ri(π). It represents a data point for the rel-
ative radial derivative of the density, shown as a cross in Fig. 7.

Appendix C. Flux of angular momentum

The flux of angular momentum has to be evaluated in a frame
in which angular momentum is conserved. This is not the case
for the frame centered on the primary (which is accelerated),
whereas it is the case in the nonrotating frame centered on the
barycenter G of the system (star plus planet plus disk), which is
inertial. One therefore needs to evaluate the following expres-
sion:

(C.1)FH =
2π∫

0

(Σrv′
θ )v

′
r r dθ,

where v′
θ and v′

r are the perturbed azimuthal and radial veloc-
ities in the G centered frame: v′

θ = vθ − v̄θ and v′
r = vr − v̄r ,

the barred quantities denoting the averages over the circle of
integration.

We assume that q  1. We remark that the perturbed quanti-
ties are proportional to q , and FH to q2. Then, to compute (C.1)
from the velocities output by the code, we need a sequence of
transformations. Neglecting terms that will give corrections of
order q3 in FH, this reduces to two transformations on vr and
vθ :

(i) The velocity of G in the heliocentric frame has to be sub-
stracted. In polar coordinates centered on the star, it is to
first order in q: 
v(G) = qrpΩp(sin(θ − θp), cos(θ − θp)),
where the subscript p refers to the planet.

(ii) The radial and azimuthal components of a fluid element
velocity are different in the heliocentric and barycentric
frames. For any vector X = (Xr,Xθ ) in the heliocentric
frame, the radial component in the barycentric frame is
written, to first order in q , as: Xr −Xθq(rp/r) sin(θ − θp).
Similarly, the azimuthal component of X in the barycentric
frame is: Xθ + Xrq(rp/r) sin(θ − θp). We stress that the
radial component of the velocity of a fluid element is pro-
portional to q , so that the above correction on the azimuthal
component is second order in q and will be neglected.

The application of (i) and (ii) give the following expression
for FH:

FH = Σ̄

2π∫
0

r
(
v′
θ − qrpΩp cos(θ − θp)

)

(C.2)×
(

v′
r − q

rp

r
(rΩp + v̄θ ) sin(θ − θp)

)
r dθ,

where Σ̄ is the mean density on the circle and all the quantities
are the ones output by the code in the heliocentric frame. This
corresponds to the flux of angular momentum through the circle
of radius r , due exclusively to the wave launched by the planet.

The assumption q  1 has allowed us to neglect the follow-
ing effects:

(a) The density Σ should be evaluated along the circle, but
Σ = Σ̄ +Σ ′ and Σ ′ ∝ qΣ  Σ̄ , so that Σ can be replaced
by Σ̄ in the integral.

(b) The circle of radius r centered on G differs from the circle
of radius r centered on the star. As the distance between
the two circles is proportional to q , this only introduces
negligible modifications in the value of every quantity.

(c) In the previous calculations, G corresponds to the barycen-
ter of the star–planet system, and not of the whole system
including the disk. The latter is initially axisymmetric, and
the perturbations are proportional to q . As the mass of the
disk is also of the order of the mass of the planet, the influ-
ence of the disk on the barycenter position is negligible.

We computed the flux FH on our reference simulation (q =
10−3, ν = 10−5.5, H/r = 0.05) using Eq. (C.2). In Fig. 13,
FH(r) is plotted as a bold plain line, whereas the total gravity
torque Tg computed on the annulus between the planet orbit and
the circle of radius r is shown as a bold dashed line. The grav-
ity torque is computed using the direct terms due to the planet
(GMp/d2, d being the distance between the planet and the con-
sidered point) and to the star (GM∗/r2), as it is evaluated in an
inertial frame. The difference between FH and Tg is the thin
dashed line; it corresponds to the cumulative locally deposited
gravity torque (i.e. the fraction of the gravity torque that is not
evacuated by the pressure supported wave). The wave carries an
increasing flux near the planet (in the zone {1.15 � r � 1.5}),
and takes away a large fraction of the gravity torque; this cor-
responds to the radius where the pressure torque tp appears to
be of the same order as the gravity torque tg (see Fig. 6). This
angular momentum is then deposited further from the planet, in
particular in the {1.5 � r � 2} region, where FH(r) sharply de-
creases. Beyond r ∼ 2 the flux vanishes. At the outer boundary
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Fig. 13. Angular momentum flux carried by the wave launched by the planet [bold plain line, corresponding to Eq. (C.2)], compared to the total gravity torque (bold
dashed line) as functions of the distance to central star. The difference is plotted as a thin dashed line.
of our grid, the flux of angular momentum taken away by the
wave is negligible with respect to the total gravity torque.

This shows that the outer boundary of the grid is sufficiently
far from the planet so that the angular momentum transfer from
the wake to the disk is correctly described, while the angular
momentum leakage at the outer boundary is negligible. Thus,
we conclude that our simulations are realistic, and our gap pro-
files correspond to steady states in the nonmigrating planet hy-
pothesis.
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