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ABSTRACT
We consider constraints on the planetesimal population residing in the discs of AU Microscopii
(AU Mic), β Pictoris (β Pic) and Fomalhaut taking into account their observed thicknesses
and normal disc opacities. We estimate that bodies of radius 5, 180 and 70 km are responsible
for initiating the collisional cascade accounting for the dust production for AU Mic, β Pic
and Fomalhaut’s discs, respectively, at break radii from the star where their surface brightness
profiles change slope. Larger bodies, of radius 1000 km and with surface density of the order of
0.01 g cm−2, are required to explain the thickness of these discs assuming that they are heated
by gravitational stirring. A comparison between the densities of the two sizes suggests the size
distribution in the largest bodies is flatter than that observed in the Kuiper belt. AU Mic’s disc
requires the shallowest size distribution for bodies with radius greater than 10 km suggesting
that the disc contains planetary embryos experiencing a stage of runaway growth.

Key words: stars: individual: AU Microscopii – stars: individual: Beta Pictoris – stars: indi-
vidual: Fomalhaut – planetary systems: formation – planetary systems: protoplanetary discs.

1 I N T RO D U C T I O N

Recent visible band images taken with the Advanced Camera for
Surveys on the Hubble Space Telescope well resolve the vertical
scaleheight of two edge on debris discs, the 12-Myr-old (Barrado
y Navascues et al. 1999; Zuckerman et al. 2001) dusty circumstel-
lar discs of the M1Ve star AU Microscopii (AU Mic) and the A5V
star β Pictoris (β Pic) (Krist et al. 2005; Golimowski et al. 2006).
Also resolved is the inner edge of Fomalhaut’s eccentric ring, also
allowing a measurement of the disc scaleheight (Kalas, Graham &
Clampin 2005). The vertical scaleheight, H, is related to the incli-
nation dispersion of dust particles and so allows an estimate of the
velocity dispersion of the smallest particles. The velocity dispersion
of planetesimals sets the energy of interparticle collisions and so af-
fects a calculation of the dust production rate through a collisional
cascade (e.g. Kenyon 2002; Wyatt & Dent 2002; Dominik & Decin
2003; Wyatt et al. 2007). The velocity dispersion is also sensitive
to the presence of larger bodies in the disc as gravitational scat-
tering or stirring causes an increase in the velocity dispersion with
time (e.g. Stewart & Ida 2000; Kenyon & Bromley 2001). Here,
by combining observations of observed vertical thickness with es-
timates for the dust production and gravitational stirring rates, we
will place constraints on the underlying planetesimal population in
these discs. Because of the difficulty in resolving vertical structure,
previous cascade calculations have not used a velocity dispersion
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consistent with that estimated for these discs or estimated the role
of gravitational stirring.

2 S C A L I N G AC RO S S T H E C O L L I S I O NA L
C A S C A D E

We consider three discs with resolved vertical scaleheights. The
properties of these three systems along with the quantities we esti-
mate from them are listed in Table 1. For Fomalhaut, we list prop-
erties in the ring edge. For AU Mic and β Pic, we list properties
at the radius, r, from the star where there is break in the surface
brightness profile. Models taking into account dust collisions and
radiation pressure predict that interior to the break radius the disc is
likely to contain dust producing planetesimals whereas exterior to
this radius, the dust distribution could be dominated by small par-
ticles on highly eccentric orbits that were generated from the disc
interior (Augereau & Beust 2006; Strubbe & Chiang 2006).

One of the observed quantities listed in Table 1 is the optical
depth, τ̄ (λ), at wavelength, λ, normal to the disc plane. Because the
absorption or the emissivity coefficient of a dust grain with radius
a is reduced for λ > a, and there are more dust grains with smaller
radii, we expect the optical depth to be related to the number density
of particles of radius a ∼ λ (e.g. see discussion in section 4 by Wyatt
& Dent 2002). As we only detect the dust particles in scattered light
or in thermal emission, we use scaling arguments to estimate the
number of larger bodies residing in the disc.

Another observed quantity is the disc thickness that we describe
in terms of a scaleheight H that here is a half-width. The disc as-
pect ratio is the scaleheight divided by radius, h ≡ H/r. A popula-
tion of low-inclination orbits has 〈z2〉 ≈ r2〈i2〉

2 , so ī ∼ √
2h. Here,
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Table 1. Debris discs with measured thicknesses.

Stellar and disc properties
Row AU Mic β Pic Fomalhaut
1 M∗(M�) 0.59 1.75 2.0
2 Age (Myr) 12 12 200
3 r(au) 30 100 133
4 h 0.019 0.05 0.013
5 τ̄ (λ, r ) 3 × 10−3 5 × 10−3 1.6 × 10−3

6 λ (µm) 1 10 24

Estimated planetesimal properties
7 atop(km) 4 180 68
8 	(atop) (g cm−2) 0.000 05 0.005 0.002
9 	 m(atop) (g2 cm−2) 1014.5 1021.0 1018.8

10 	 m(as) (g2 cm−2) 1024.1 1026.2 1022.7

By Row. (1) References for the stellar masses: Houdebine & Doyle (1994),
Crifo et al. (1997) and Song et al. (2001), respectively. (2) References for
the ages: Barrado y Navascues et al. (1999), Barrado y Navascues (1998).
(3) The radii are chosen to be where there is a break in the surface brightness
profile as described by Krist et al. (2005), Golimowski et al. (2006) and
Kalas et al. (2005), respectively. (4) The aspect ratio h = H/r for H the
half-width half-max of the disc at radius r. Aspect ratios are taken from the
same references as the break radii listed in Row 3. (5, 6) The normal disc
opacity τ̄ at wavelength λ is given. References for normal disc opacities: the
normal disc opacity for AU Mic is estimated for 1µ sized particles from fig.
6 by Augereau & Beust (2006) based on images in the optical and near-IR.
That for β Pic is taken from Fig. 6 by Pantin et al. (1997) based on mid-IR
spectra. That for Fomalhaut is from table 1 by Marsh et al. (2005) predicted
for a reference wavelength of 24 µm based on 350, 160 and 70 µm imaging.
(7) The radius of objects initiating the collisional cascade, atop is estimated
using equation (16). (8) The surface density 	(atop) is estimated using equa-
tion (17). (9) The product of the surface density times the mass (	m)(atop)
is estimated for bodies initiating the collisional cascade. (10) The product
of the surface density times the mass is estimated using equation (18)
for bodies responsible for thickening the disc. Computed quantities listed
in Rows 7–10 have been done with parameter f τ = 4 (defined in equation 15).

ī =
√

〈i2〉 and 〈i2〉 is the inclination dispersion. Subsequently, we
also refer to ē =

√
〈e2〉 where 〈e2〉 is the eccentricity dispersion.

We assume a Rayleigh distribution of particle inclinations and ec-
centricities.

We review how the dust opacity and the disc thickness can be used
to estimate the planetesimal size distribution. Dust production in a
destructive collisional cascade can in its simplest form be studied
with a power-law size distribution. The single power-law form for
the size distribution is in part based on the simplest assumption that
the specific energy (kinetic energy per unit mass), Q∗

D, required to
catastrophically disrupt a body is a fixed number independent of
body radius (often 2 × 106 erg g−1 for icy bodies are used based
on the estimates by Kenyon & Luu 1999). The number of particles
with radius a in a logarithmic bin of size d ln a is predicted to be

dN

d ln a
≡ N (a) ∝ a1−q . (1)

Using a logarithmic bin gives the same scaling with a as a cumulative
distribution N>a (see appendix A in O’Brien & Greenberg 2005).
In an infinite destructive self-similar collisional cascade, the expo-
nent is predicted to be q = 3.5 (Dohnanyi 1968; Tanaka, Inaba &
Nakazawa 1996; Davis & Farinella 1997; Kenyon 2002). The main
asteroid belt, if fit with a single power law, has a lower exponent of
q ∼ 2.3 (Ivezic et al. 2001). It is collisionally evolved but de-
viates from q = 3.5 because of additional removal mechanisms
(e.g. Yarkovsky drift and resonances) and because the material prop-
erties depend non-trivially on size (O’Brien & Greenberg 2005). In

contrast, the larger bodies in the Kuiper belt are consistent with q ∼
5 (Bernstein et al. 2004). Because of their low number, these do not
collide often enough to be part of an ongoing destructive collisional
cascade. The high exponent probably reflects conditions during the
early Solar system when planetesimals were growing as well as
colliding (e.g. Wetherill & Stewart 1993; Kokubo & Ida 1996).

The number of objects of radius a can be estimated from another
of radius ad using the scaling relation:

N (a) = Nd

(
a

ad

)1−q

. (2)

This relates the number of larger particles to the smallest and so
observable particles. Estimates of the number of dust particles, Nd,
as a function of their radius, ad, can be made from studies of optical,
infrared (IR) and submm observations. It must be kept in mind that
because of the uncertainty in the exponent q, it is difficult to be
accurate when extrapolating over orders of magnitude in the size
distribution (e.g. Thebault, Augereau & Beust 2003; Krivov, Lohne
& Sremcevic 2006; Thebault & Augereau 2007).

The fractional area covered by particles of radius a or τ (a) in
a log radial bin can be similarly estimated. Because the opacity
depends on the number per unit area times the cross-section area,
our assumed power law gives for the opacity integrated over a log
radial bin

τ (a) = dτ

d ln a
= τd

(
a

ad

)3−q

, (3)

where τ d = π a2
ds(ad) and s(ad) is the number of particles per unit

area with radius ad in a log radial bin. Likewise, the surface mass
density:

	(a) = 	d

(
a

ad

)4−q

, (4)

where 	d ≈ τ dρdad. For q = 3.5, most of the disc mass is in the
largest particles or at the top of the cascade. Gravitational stirring
and dynamical friction heating and cooling rates are proportional to
the product of the surface density times the mass (e.g. equations 6.1
and 6.2 in Stewart & Ida 2000), scaling as

	(a)m(a) = 	dmd

(
a

ad

)7−q

, (5)

where 	dmd ≈ τ dρ
2
da4

d. Even when the size distribution is as steep
as that for the large objects in the Kuiper belt (q ∼ 5) gravitational
stirring is dominated by the largest bodies.

The optical depth is related to the collision time. For a population
of identical objects the collision time-scale

tcol ∼ (3τ�)−1 (6)

(Hanninen & Salo 1992), where � is the mean motion (angular
rotation rate for a particle in a circular orbit) at radius r. Since the
collision lifetime is proportional to the inverse of the optical depth,
the time-scale for a particle of radius a to hit another with the same
size scale (again in log radial bins) is

tcol,s(a) ≈ tcol,d

(
a

ad

)q−3

. (7)

As explored by Dominik & Decin (2003) and Wyatt et al. (2007),
smaller particles are capable of dispersing a larger one if the spe-
cific energy of the collision exceeds the critical value. The collision
lifetime is shorter by a factor of ≈ε1−q (equations 21 and 22, and
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associated discussion by Dominik & Decin 2003), where ε−1a is the
radius of a smaller particle capable of disrupting one with radius a.
The parameter ε is estimated by considering what energy projectile
object can disrupt the target,

ε ∼
[

v2
rel

2Q∗
D(a)

]1/3

(8)

(approximating equation 25 by Dominik & Decin 2003),1 where
v2

rel is the relative or interparticle velocity dispersion. We expect the
relative velocity dispersion is twice the particle velocity dispersion
or v2

rel ∼ 2u2.
We can now estimate the collisional lifetime for particles in a log

radial bin taking into account collisions with smaller particles. After
multiplying by equation (8), equation (7) becomes

tcol(a)

tcol,d
≈

(
a

ad

)q−3(
u2

Q∗
D

)(1−q)/3

. (9)

For q = 3.5, the time-scale tcol(a) ∝ a0.5 is consistent with equa-
tion (23) by Dominik & Decin (2003). The maximum radius object
that will disrupt during the lifetime of the system is found by setting
tcol(a) to the age of the system, tage, and solving equation (9) for a.
This estimate was also used by Wyatt & Dent (2002) in their section
5.3. In other words, we define a radius, atop, such that tcol(atop) =
tage or

atop = ad

(
u2

Q∗
D

)(q−1)/3(q−3)

(tage3τd�)1/(q−3). (10)

For q = 3.5, this gives

atop = ad

(
u2

Q∗
D

)5/3(
tage

P

)2

(6πτd)2 , (11)

where P is the rotation period at radius r. If the disc is hotter or
older, then a higher surface density disc that contains more massive
bodies is required to initiate the collisional cascade and account for
the dust production.

Objects of radius atop are those likely to be currently initiating the
collisional cascade. Using equation (4) with atop, we can estimate
the total surface density in these massive objects. As the disc grinds
up and is depleted, more massive but lower number density objects
can enter and generate the cascade.

2.1 In relation to observables

We first relate the disc aspect ratio, h, to the velocity dispersion and
the inclination and eccentricity dispersions. A population of low-
inclination orbits has 〈z2〉 ≈ r2〈i2〉

2 , so ī ∼ √
2h. An isotropically

scattering disc is expected to have ī ∼ ē/2 (e.g. Inaba et al. 2001).
At low eccentricity, the radial velocity dispersion is 〈v2

r 〉 ∼ 〈e2〉
v2

K /2, and the tangential and vertical velocity dispersions are 〈v2
φ〉 ∼

〈v2
z 〉 ∼ 〈e2〉v2

K /8, where vK is the velocity of a particle in a circular
orbit (e.g. see equations C10a,b by Wetherill & Stewart 1993). The
total velocity dispersion is the sum of the three velocity components
corresponding to u2 ∼ 3

4 〈e2〉v2
K or

u ∼
√

3 īvK ∼
√

6hvK . (12)

These approximations are consistent with v2
rel = (1.25ē2 + ī2)v2

K

1 The square root term in equation (25) by Dominik & Decin (2003) should
be positive.

used by previous studies (Wetherill & Stewart 1993; Wyatt & Dent
2002).

In equation (3), we described the scaling of opacity in a log radial
bin. The normal disc opacity inferred from observations at wave-
length λ depends on the disc emissivity or absorption coefficient
(here, denoted by Q)

τ̄ (λ) ≈
∫ amax

amin

τ (a)

a
Q(λ, a) da. (13)

This is consistent with our definition for τ (a) (equation 3) and
approximations commonly used in interpreting observed fluxes
[e.g. equation 1 in (Backman, Witteborn & Gillett 1992) relating
dust opacity to flux and the definition given in the caption of fig. 6
in (Pantin, Lagage & Artymowicz 1997)]. The simplest models for
the absorption or emissivity coefficient of a particle estimate that
these coefficients are

Q(λ, a) ≈
{

1 for λ � a(
λ

a

)−n
for λ > a

(14)

(e.g. Backman et al. 1992; Wyatt & Dent 2002) with n ∼ 1. For
n ∼ 1 and q ∼ − 3.5 by integrating equation (13), we find that
τ̄ (λ) ∼ 4τ (a = λ).

More detailed modelling of the absorption coefficients
(e.g. Pollack et al. 1994) shows deviations from this simplest model
with strong structure at specific wavelengths such as the 10 µm sil-
icate feature. In addition, the exponent q describing the dust size
distribution, may not be well-constrained, may not be the same for
small dust particles as for larger ones or the size distribution may
deviate from a power-law form (e.g. Thebault et al. 2003; Augereau
& Beust 2006; Krivov et al. 2006; Thebault & Augereau 2007). The
wavelength at which the absorption coefficient begins to drop for
equation (14) may depend on dust composition (see discussion in
appendix D by Backman et al. 1992). Multiwavelength observations
are required to better model the size distribution and composition
of the dust. To take this uncertainty into account, we describe our
estimates in terms of a factor f τ , such that

τ (a = λ) = τ̄ (λ)

fτ
(15)

that relates the opacity estimated at a wavelength based on obser-
vations to the size distribution of particles with radius equal to that
wavelength.

An estimate of normal disc opacity at a particular radius re-
quires modelling the surface brightness distribution (Krist et al.
2005; Augereau & Beust 2006; Golimowski et al. 2006). Unfor-
tunately, normal disc opacity estimates are available only at a few
wavelengths for the three discs, we are considering here and not all
of these are based on multiwavelength models. While optical and
near-IR wavelength observations tend to better resolve the discs,
they may not accurately predict the mm size distribution (e.g. see
the discussion comparing the optical and near-IR opacities to that
predicted from the submm for AU Mic by Augereau & Beust 2006).
We summarize the existing observed optical depth measurements
for these three discs in Table 1 and in the associated table notes, but
note that there is uncertainty in the conversion factor f τ between
the measured optical depths and the opacity function that we have
use here, τ (ad), the optical depth integrated in a log radial bin of
size 1 for dust particles of size ad = λ. As the opacity of smaller
grains is sensitive to the removal process as well as collisions, it is
important to use observed opacity that is dominated by particles that
are not affected by radiative forces (e.g. see discussion by Dominik
& Decin 2003).
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We now convert equation (11) into a form more easily computed
from observables. The observables are the disc aspect ratio, h and
the normal disc opacity τ̄ (λ) at wavelength λ. The size of the objects
initiating the collisional cascade when q = 3.5

atop ≈ 5.4 km

(
λ

10 µm

)(
M∗

M�

)8/3 ( r

100 au

)−14/3

×
(

Q∗
D

2 × 106 erg g−1

)−5/3 (
tage

107 yr

)2 (
h

0.02

)10/3

×
[

τ̄ (λ)

10−2

]2 (
fτ
4

)−2

. (16)

Because we have scaled with the inclination or aspect ratio instead
of the collision velocity, the exponent of r and M∗ differ from but
are consistent with equation (36) by Dominik & Decin (2003). The
relation also differs from previous work (Wyatt & Dent 2002; Do-
minik & Decin 2003; Wyatt et al. 2007) because we have based our
estimate on a collision time-scaled from the face on disc opacity at a
particular radius rather than the total fraction of starlight re-emitted
in the IR.

Inserting our value for the atop into equation (4) yields an estimate
for the total disc density,

	(atop) ≈ 0.0018 g cm−2

(
ρd

1 g cm−3

)(
M∗

M�

)4/3(
r

100 au

)−7/3

×
(

Q∗
D

2 × 106 erg g−1

)−5/6 (
tage

107 yr

)(
h

0.02

)5/3

×
(

λ

10 µm

)[
τ̄ (λ)

10−2

]2 (
fτ
4

)−2

. (17)

We have assumed here that the collision cascade started very early
in the life of the system; however, at early stages the interparticle
velocities were probably not high enough for destructive collisions
(Kenyon & Bromley 2001; Dominik & Decin 2003). If the time-
scale of the destructive cascade were smaller then atop and 	(atop)
would both be smaller than the estimates given above.

The product of the density times the mass for the bodies initiating
the cascade atop

(	m)(atop) ≈ 8.9 × 1015 g2 cm−2

×
(

M∗
M�

)28/3 ( r

100 au

)−49/3

×
(

Q∗
D

2 × 106 erg g−1

)−35/6 (
tage

107 yr

)7/2

×
(

λ

10 µm

)4 (
τd

10−3

)8
(

fτ
4

)−8

×
(

h

0.02

)35/3 (
ρd

1 g cm−3

)2

. (18)

3 H E AT I N G T H E D I S C W I T H
G R AV I TAT I O NA L S T I R R I N G

We explore the idea that the observed thickness of the disc is due to
gravitational stirring by bodies of mass, ms, surface density, 	s, and
size as. We define a mass ratio µs ≡ ms

M∗ and surface density ratio

σs ≡ 	sr2

M∗ . If the disc is in collisional equilibrium then we expect
that ē ∼ 2ī .

In the dispersion-dominated regime, and assuming that the dis-
persions of the tracer particles exceed those of the massive particles
doing the stirring (ī > īs and ē > ēs),

1

�

d〈i2〉
dt

≈ σsµs B Jz(β)β√
π〈i2〉 (19)

(based on equation 6.2 by Stewart & Ida 2000) where β = ī
ē ∼

0.5 (corresponding to equation 2.11 by Stewart & Ida 2000). The
function described by Stewart & Ida (2000) Jz(β = 0.5) ≈ 2.0. The
coefficient B ∼ 2 ln � and we estimate � using equation 2.7 by
Stewart & Ida (2000)

� ≈ 3µ−1
s ī3. (20)

As the coefficient, B, only depends logarithmically on �, we can
use the scaleheight estimated from observations to estimate � and
we can solve equation (19) finding that ī ∝ t−1/4, specifically

ī(t) ≈
(

2 ln ��tσsµs√
π

)1/4

. (21)

The above equation can be inverted at time tage

σsµs ≈ ī4 P

4 ln �
√

πtage
, (22)

where we have set P to be the rotation period at r.
In terms of observables, this leads to a constraint on the largest

bodies with size as

(	m)(as) ≈ 2.4 × 1024 g2 cm
−2

(
h

0.02

)4 (
tage

107 yr

)−1

×
(

M∗
M�

)3/2 ( r

100 au

)−1/2
(

ln �

12

)−1

. (23)

We note that the constraint on the product of the surface density times
the mass of the largest bodies is independent of the disc opacity. In
contrast, the estimates for the top of the collisional cascade (size of
object and density) are sensitive to the dust opacity.

3.1 Connecting the size distributions

Equation (16) gives us an estimate for the size of the bodies at the
top of the collisional cascade, and equation (18) gives us the surface
density times mass in the disc for these bodies. This product is well
below that needed to account for the disc thickness with gravitational
stirring (equation 23). To find the size, as, of the bodies responsible
for the gravitational stirring, we must extend the size distribution
beyond atop.

Unfortunately, for bodies with sizes a > atop, we can no longer as-
sume a size distribution consistent with a collisional cascade. There
are few guidelines on what type of power law to use for bodies
greater than 10 km. The only known system that differs significantly
from the size distribution expected from collisional evolution might
be the largest bodies in the Kuiper belt that have size distribution
with power law q ∼ 5 (Bernstein et al. 2004). A variety of size
distributions might be produced during the phase of planetesimal
growth with low values for the exponent q at the high-mass end
implying runaway growth (e.g. Wetherill & Stewart 1993; Kokubo
& Ida 1996; Inaba et al. 2001).

To place constraints on the size and density of the largest bodies
and exponent of the size distribution for these bodies, we compare

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 380, 1642–1648



1646 A. C. Quillen, A. Morbidelli and A. Moore

-6

-4

-2

 0

 2

 4

-1  0  1  2  3  4  5

lo
g 1

0 
Σ 

(g
 c

m
-2

)

log10 a (km)

AU Mic

q=5.0

q=3.5

Figure 1. The thick solid line shows the constraint on the product of the
surface density times mass in the most massive bodies present for AU Mic,
required to account for the disc thickness from heating by gravitational
stirring. This is computed using equation (23) and values listed in Table 1.
The upper dotted line shows the upper limit on the surface densities for these
massive bodies set by requiring that they be on averaged spaced further apart
than their mutual hill spheres (equation 24). The lower dotted line shows the
lower limit on their surface density set by requiring more than a few bodies
of this mass reside in the disc (equation 25). The large circle is placed at
the estimated location of the top of the collisional cascade (computed using
equations 16 and 18 and listed in Table 1). Arrows are shown with slopes
predicted for size distributions with q = 3.5 and 5. The size distribution must
connect the circle and the segment of the thick solid line that lies between the
two dotted thin lines. The large circle was estimated using a size distribution
with q = 3.5. For q = 3.6, the estimated top of the collisional cascade would
be at the location of the diamond.

our constraint on the product of the surface density and mass of the
largest bodies to the surface density and size of the bodies initiating
the collisional cascade.

In Fig. 1, we plot the constraint on the product of disc surface
density times mass for AU Mic. This constraint corresponds to a
surface density as a function of the radius of a body and is computed
from equation (23) using values listed in Table 1 and f τ = 4. The
horizontal axis is log radius instead of log mass, so the slope of this
constraint is −3. The conversion between mass and radius has been
done with a density of 1 g cm−3. On this plot, we have plotted as
dotted lines two other constraints on bodies in the disc. We estimate
that the most massive bodies cannot on average be closer together
than their mutual Hill spheres,

	(m) � m

r 2
mH

, (24)

where the mutual Hill radius for two bodies of similar mass rmH ≡
r ( 2m

3M∗ )1/3. This constraint gives the upper dotted line. We also require
that the number of bodies should not be extremely low,

	(m) � 10m

πr 2
. (25)

This constraint is plotted as the lower dotted line. The range of
densities for the most massive bodies in the disc must lie on the
solid one and between the two dotted ones. Also plotted on this plot
is the estimated density, 	(atop), and radius, atop, of the particles
initiating the cascade. Arrows are drawn for surface densities 	(a)
that have size distributions with exponents q = 3.5 and 5.0 and that
have 	(atop). The circle showing the top of the collisional cascade
must be connected to the thick solid line segment that lies between
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Figure 2. Similar to Fig. 1 except for β Pic’s disc.
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Figure 3. Similar to Fig. 1 except for Fomalhaut’s disc.

the two dotted ones to estimate the exponent of the size distribution
for a > atop.

The solid thick line segment between the two thin dotted lines
in Fig. 1 suggests that 1000 km bodies reside in AU Mic’s disc
even though the collisional cascade only requires bodies of radius a
few km. We have checked that our estimated value of 12 for log �

is consistent with the mass of these 1000 km bodies and the disc
thicknesses (equation 20). For q > 4, most of the disc mass resides
in the most massive bodies. Connecting the circle with the line
segment requires a slope shallower than q = 3.0. Most of the disc
mass must reside in 1000 km embryos in AU Mic’s disc to account
for its thickness even though only km-sized bodies are required to
account for its dust production.

Figs 2 and 3 are similar to Fig. 1 except computed for β Pic’s
and Fomalhaut’s discs also using parameters listed in Table 1. We
attribute the differences in these figures primarily to the observed
thickness as atop ∝ h10/3 (equation 16). β Pic’s disc is quite a bit
thicker than Fomalhaut’s or AU Mic’s so its collisional cascade is
more efficient and so requires higher mass progenitors. Fomalhaut
is older allowing a lower density disc to account for the thickness.

Gravitational stirring requires similar-sized embryos for the three
discs but for Fomalhaut the mass and surface density of the bodies is
only an order of magnitude larger than that predicted from estimating
the top of the collisional cascade. Nevertheless, the bodies we infer
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at the top of the collisional cascade are not sufficiently dense and
massive to account for the thickness of this disc.

A comparison between the surface densities in the bodies re-
quired to account for the disc thickness and that predicted at the
top of the collision cascade allows exponents q � 3, 3.5 and 4.5
for the three discs, AU Mic, β Pic and Fomalhaut, respectively. The
extremely shallow exponent for AU Mic at the top end suggests that
the size distribution deviates from power-law form. A curve in the
size distribution at the high-mass end has been predicted by models
and simulations of planetesimal accretion when the disc contains
embryos in a stage of runaway growth (Wetherill & Stewart 1993;
Kokubo & Ida 1996; Inaba et al. 2001).

We have only considered the effect of gravitational stirring in the
dispersion-dominated regime. Now that we have an estimate for the
masses of the most massive bodies residing in these discs, we check
this assumption. Only for a > 1.2 × 104 km does a body’s Hill
radius approach a scaleheight r ī for an inclination ī = 0.01. The
dispersion-dominated gravitational stirring estimate used in equa-
tion (19) (rather than a sheer dominated one) is therefore reasonable.
Previous work has found that passage through the sheer-dominated
regime is comparatively fast (e.g. Kenyon & Bromley 2001). A
better estimate would take into account both regimes, though the
improved constraints on the massive bodies should not significantly
deviate from those estimated here.

The largest uncertainty in our estimates is due to uncertainty in
the power-law exponent q since we have extrapolated over about 10
orders of magnitude in the size distribution. In Figs 1–3, we also
plot as diamonds atop and 	(atop) estimated for an exponent q = 3.6
that is 0.1 larger than assumed previously using equation (10). This
estimate is not self-consistent as only a change in the collisional
statistics (e.g. that would be caused by a size-dependent change in
Q∗

D) would change the size distribution. Nevertheless, this proce-
dure should allow us to estimate how our value for atop and 	(atop)
depends on q.

An increase in q causes a decrease in both the estimated size, atop

(equation 10) and surface density, 	(atop) (equation 4). Thus, vari-
ations in q cause the estimated point corresponding to the top of the
cascade to move along a line that is nearly parallel to the upper dotted
lines shown in the figures. Uncertainty in q only affects our estimate
of the size and mass density of objects likely to initiate the collisional
cascade (equation 10) and not those of objects responsible for grav-
itational stirring (equation 23). If the exponent is higher than q =
3.5 then the comparison between the top of the cascade and the mass
surface density required to account for the disc thickness yields
similar but stronger results to those discussed previously. All three
discs would require a low exponent, q � 3.5, in the largest bodies.

If q in the cascade is lower than 3.5, the estimated size and mass
surface density of objects initiating the collision cascade are higher.
This moves the top of the cascade to a point that is higher and to
the right-hand side of the circles shown in Figs 1–3. As we found
before, Fomalhaut’s estimated top of the cascade contains nearly
enough mass to account for the disc thickness. It is unlikely that
q � 3.4 for Fomalhaut or q � 3.3 for β Pic and AU Mic otherwise
bodies initiating the cascade would have produced a disc thicker
than observed. For β Pic and AU Mic, a value of q ∼ 3.3 would
imply that 1000 km-sized bodies could both initiate the collisional
cascade and account for the disc thickness.

4 D I S C U S S I O N

We have used estimates of collisional cascades (e.g. Kenyon 2002;
Dominik & Decin 2003; Wyatt et al. 2007) to estimate the size and

surface density of the bodies responsible for initiating the collisional
cascade. We have done this for three debris discs, that of AU Mic,
β Pic and Fomalhaut, with resolved vertical structure estimating
that these bodies have radii of 4, 180 and 70 km, respectively. We
have estimated these at the radius at which the surface brightness
profile changes slope (also called the break radius). The body sizes
are a few times larger than previous estimates (e.g. Wyatt & Dent
2002). The differences arise because we have based our estimate on
a collision time-scaled from the face on disc opacity at a particular
radius rather than the total fraction of starlight re-emitted in the
IR and we have used the observed disc aspect ratio to estimate the
velocity of collisions.

Assuming that the smallest particles are heated solely by gravita-
tional stirring from the largest ones, the disc thickness can be used
to place a constraint on the product of the surface density times
mass of the largest bodies (equation 18). From this we infer that
1000 km radius bodies or planetary embryos are likely to reside in
these three discs. The large body sizes do not conflict with the lack
of observed gaps in the discs (Quillen 2006, 2007) except possibly
for the extreme high-mass end allowed for β Pic’s disc. A compari-
son between the surface densities in these bodies and that predicted
at the top of the collision cascade allows exponents q � 3, 3.5, 4.5
for the three discs AU Mic, β Pic and Fomalhaut, respectively. The
shallow exponent for AU Mic at the top end suggests that this disc
contains embryos in a stage of runaway growth as predicted by
simulations (Wetherill & Stewart 1993; Kokubo & Ida 1996; Inaba
et al. 2001). For all three discs, we infer that most of the disc mass
is likely to reside in embryos and estimate that the surface densi-
ties are of the order of 10−2 g cm−2. The largest uncertainty in our
estimate of the size and mass surface density of bodies initiating
the collisional cascade arise from the uncertainty of the exponent q
describing the size distribution. If q � 3.5 for bodies in the cascade
then shallow exponents (q � 3.5) are required for the more massive
bodies responsible for gravitational stirring. The exponent of bodies
in the cascade must be q � 3.3 otherwise they would have caused
the disc to be thicker than observed. For Fomalhaut if q ∼ 3.3 then
the bodies initiating the collisional cascade are sufficiently massive
to account for the thickness of the disc.

A number of simplifying assumptions went into estimating the
properties of the top of the cascade. We assumed only a single power-
law form for the size distribution; however, the specific energy for
dispersion is predicted to depend on body size (Benz & Asphaug
1999) so a single power law is not a good assumption (e.g. Krivov
et al. 2006; Thebault & Augereau 2007). The discs may not have
been sufficiently excited for efficient dust production during the
entire lifetime of these systems (Dominik & Decin 2003). A shorter
collisional lifetime would lead to a lower surface density and size
estimated for the top of the cascade (see equations 17 and 16),
though taking into account the dependence of the specific energy
on size in the regime where self-gravity is important would increase
the surface density of larger bodies and might decrease the size at
the top of the cascade. The sizes at the top of the cascade predicted
here are nearing the threshold for a destructive equal-mass collision
at a velocity estimated from the disc thickness, particularly, in the
case of Fomalhaut that has a very thin disc but has a large estimated
atop.

Our estimate of the gravitational stirring rate neglected the role of
dynamical friction from smaller particles and the sheer-dominated
regime. Both should be taken into account to improve the estimate
of size and number of the largest bodies residing in these discs.

Better modelling of the dust distribution using multiwave-
length observations and high angular resolution imaging would
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significantly improve constraints on the small radius end of the size
distribution. While we have found normal disc opacity measure-
ments in a few wavelengths in the literature, the different wavelength
estimates, different assumptions for the assumed size distributions
and different procedures for modelling the data make it difficult to
constrain and compare the dust size distributions and normal disc
opacities among the discs.

We have discussed ways to improve the estimates introduced here.
We now discuss possible implications based on these predictions. If
the size distributions inferred here are common then longer lifetimes
would be predicted for dust production because the larger bodies
(inferred here), entering the cascade later, contain a reservoir of
mass available for dust production at later times. The distribution of
disc properties as a function of age can be used to place constraints
on planetesimal growth models as well as dust production.

We have only considered opacities at particular radii for these
discs. For AU Mic and β Pic, we chose radii at which there is a
break (or change in slope) in the surface brightness profile. If the
disc aspect ratios do not strongly vary with radius then equation (23)
implies that the product of the mass times the surface density in the
largest bodies, 	m(as) ∝ r−1/2 is only weakly decaying with radius.
Compare this to 	(atop) ∝ τ−2

d r−7/3 and atop ∝ τ−2
d r−14/3 predicted

via equations (16) and (17). Both 	(atop) and atop must drop rapidly
with radius. If discs are not extremely thin at larger radii then either
there is another source of heating at large radii accounting for the
disc thickness, or dust particles detected at large radii originate from
inner radii and are either blown out or are on highly eccentric orbits
(Augereau & Beust 2006; Strubbe & Chiang 2006). A thin and
sparse disc will not efficiently produce dust as the collisions are not
destructive. Consequently, multiwavelength observations resolving
discs as a function of radius should be able to test the utility of the
estimates explored here as well as better probe planetesimal growth
and evolution with radius.
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