GRAVITY First Results and Perspectives

Pierre Kervella LESIA, Paris Observatory

Capabilities and limitations

- 4-telescope dual field beam combiner
- K band (full), 3 resolutions LOW, MEDIUM, HIGH
 R=22 (11 pixels), 500 (210 pixels), 4000 (1740 pixels)
- SPLIT or COMBINED polarizations
- single or dual field < 2" for UTs or < 5" for ATs
- dual field astrometry
- $m_K \sim 7$ limiting magnitude of FT (ATs) to ~ 10 (UTs)
- Limit of $m_K \sim 18$ for the science combiner in dual field

Overview

- The Galactic Center, Sgr A* flaring
- Imaging / modeling: η Carinae and SS 433
- Spectro-astrometry: BP Crucis
- Astrometry: Gliese 65 AB and α Centauri AB

Overview

The Galactic Center, Sgr A* flaring

- Imaging / modeling: η Carinae and SS 433
- Spectro-astrometry: BP Crucis
- Astrometry: Gliese 65 AB and α Centauri AB

U

IRS 7 O AO ref.

U

IRS 7

AO ref.

Interferometric FO

2" FOV

I6NW

Sgr A*

Background: ESO

I6C

FT

16C 🔘

2" FOV

I6NVV OSC

Sgr A*

ET

16C 🔵

2" FOV

I6NW

SC

Sgr A*

Science Combiner

Fringe Tracker

Science Combiner

Phase + Metrology

Fringe Tracker

Science Combiner

Phase + Metrology

ImagingAstrometry

Single field spectroimaging/ astrometry with external fringe tracking on GCIRS 7

GRAVITY Collaboration 2017, A&A, 602, A94

ωCen

Binary: *α* Cru AB

Ćarina nebula

Science combiner fringes

alf01Cru (GRAVITY Science Combiner, 2016-01-21T07:02:05)

Science combiner fringes

alf01Cru (GRAVITY Science Combiner, 2016-01-21T07:02:05)

SC visibility amplitude waterfall view (VISAMP SC)

Wavelength channel number in horizontal axis, number of frame in sequence in vertical axis.

SC visibility amplitude waterfall view (VISAMP SC)

Wavelength channel number in horizontal axis, number of frame in sequence in vertical axis.

SC visibility amp. vs. spatial frequency (VISAMP SC)

Visibility vs. spatial frequency (megalambda).

FT visibility amp. vs. spatial frequency (VISAMP FT)

Visibility vs. spatial frequency (megalambda).

SC visibility amp. vs. spatial frequency (VISAMP SC)

Visibility vs. spatial frequency (megalambda).

FT visibility amp. vs. spatial frequency (VISAMP FT)

Visibility vs. spatial frequency (megalambda).

SC visibility amp. vs. spatial frequency (VISAMP SC)

Visibility vs. spatial frequency (megalambda).

Visibility vs. spatial frequency (megalambda).

SC closure phase vs. spatial frequency (T3PHI SC)

Closure phase (degrees) vs. mean spatial frequency over triangle (megalambda).

FT closure phase vs. spatial frequency (T3PHI FT)

η Carinae

K ~ 1.0 (central source)

GRAVITY Collaboration 2017, A&A, 602, A94; Sanchez-Bermudez+ in prep.

Weigelt et al. 2016, A&A, 594, A106

Microquasar SS 433

• Black hole (likely) - blue supergiant high mass X-ray binary (HMXB)

[250 AU

Mioduszewski, Rupen, Walker, & Taylor (2004)

[250 AU

Mioduszewski, Rupen, Walker, & Taylor (2004)

Distance 5.5 kpc Orbital period 13.1 days Precession period 162.5 days
GRAVITY on SS 433

- Observations with 4 UTs in July 2016
- Complex spectrum due to Doppler line shifts

Petrucci et al. 2017, A&A, 602, L11

Petrucci et al. 2017, A&A, 602, L11

SS 433's central engine

- Central continuum source 0.8 mas
- Unresolved transverse width of jets
- New observations are foreseen over the orbital and precession cycle

Petrucci et al. 2017, A&A, 602, L11

The HMXB BP Crucis

- Blue hypergiant donor (wind) ~40 Msun
- Accreting neutron star (pulsar) >1.8 Msun
- Orbital period 41.5 d
- Distance ~ 3 kpc
- mK~5.7
- Observed with 4 UTs in May 2016, R=4000

BP Cru spectro-astrometry

Figure 6. Differential visibility phases at $Br\gamma$ line (red) and normalized photospheric-corrected flux ratio (blue). For each baseline, the projected baseline length and the position angle are also shown. In black, we show model-independent fits to the visibility phases (see text for details).

BP Cru spectro-astrometry

Red dwarf binary GJ 65 AB

- Pair of M5.5V and M6V dwarfs
- Orbital period 26 years
- Distance 2.7 pc

Beam swapping of GJ 65 AB

(1/2) Residual dOPD from phase after FC+TEL GD fit

dOPD (mic) from WRAPPED phase vs. time (h), median over lbd.

Swap with disp. corr.: NO=Red, YES=Orange x (-1).

(2/2) Residual dOPD from phase after FC+TEL GD fit

dOPD (mic) from WRAPPED phase vs. time (h), median over lbd.

Swap with disp. corr.: NO=Red, YES=Orange x (-1).

1) Separation of GJ65AB from orbit (Kervella et al. 2016):

R = 2270.291 +/- 10.670 mas, theta = 4.03006 +/- 0.20000 deg

2) GD only solution

X[mas]	199.915788087	0.0607774902377
Y[mas]	2261.0195391	0.0942522207819
ZPT_A0[um]	0	0
ZPT_G1[um]	133.407410931	0.0344993361563
ZPT_J2[um]	-48.4683209371	0.0348231545561
ZPT_K0[um]	-46.0374447677	0.0345719101944
Reduced Chi2	1.79977488149e-13	-

Differential Astrometry

 Fit uncertainty on separation = 15 µas

R = 2269.840 + -0.099 mas, theta = 5.05286 + -0.00154 deg

dR = -0.450 mas = -0.0 sigmas, dtheta = 1.02280 deg = 5.1 sigmas

3) Second fit of residual phasor of GD fit with FC MET ONLY

X[mas]	0.00250325172341	0.00952135478288
Y[mas]	-0.015991971251	0.0147654802729
ZPT_A0[um]	0	0
ZPT_G1[um]	0.00530530497052	0.00540463941557
ZPT_J2[um]	0.00608495609402	0.00545536855652
ZPT_K0[um]	0.00889438343264	0.00541600880845
Reduced Chi2	4.41702805725e-15	-

R = 2269.825 + -0.016 mas, theta = 5.05296 + -0.00024 deg

dR = -0.466 mas = -0.0 sigmas, dtheta = 1.02290 deg = 5.1 sigmas

4) Second fit of residual phasor of GD fit with FC+TEL MET

X[mas]	-0.00602873937791	0.00900571530611
Y[mas]	-0.0205746112088	0.0139658393924
ZPT_A0[um]	0	0
ZPT_G1[um]	0.0065121615682	0.00511194520305
ZPT_J2[um]	0.00564429269308	0.00515992705138
ZPT_K0[um]	0.00905424130637	0.00512269887391
Reduced Chi2	3.95156462743e-15	-

R = 2269.819 +/- 0.015 mas, theta = 5.05276 +/- 0.00023 deg dR = -0.471 mas = -0.0 sigmas, dtheta = 1.02270 deg = 5.1 sigmas

GRAVITY Collaboration 2017, A&A, 602, A94

The α Centauri system

VLTI/PIONIER observations

Kervella et al. 2017, A&A, 597, A137

VLTI/PIONIER observations

Kervella et al. 2017, A&A, 597, A137

 α Cen A

Sun

 α Cen B

Proxima

Stellar conjunctions

- Now that we have the trajectories, let's see which stars come close
- Difficulty: star catalogues are incomplete around bright stars

Opportunities in the coming years

 1.643 ± 0.112

 1.354 ± 0.186

 2.433 ± 0.119

 0.015 ± 0.135

 0.269 ± 0.277

А

В

В

А

В

2023-04-27

2023-12-12

2024-10-26

2028-05-06

2031-05-25

S2

S3

S4

S5

S6

1184

1181

1113

0951

0856

 $15.7_{0.2}$

 $19.7_{0.3}$

 17.5_{02}

 $21.5_{0.9}$

 16.9_{02}

15.7

18.4

16.2

21.5

15.6

 $13.3_{0.2}$

 $16.0_{0.2}$

 $15.9_{0.2}$

 $18.7_{0.3}$

 $15.4_{0.2}$

13.9

15.6

15.5

19.3

14.9

 $11.14_{0.03}$

 $12.89_{0.11}$

7.760.02

_

12.6

13.5

_

9.3

_

14:39:24.283

14:39:24.264

14:39:23.485

14:39:21.586

14:39:20.518

Kervella et al.	A&A 594, A107	' (2016)
-----------------	---------------	----------

-60:49:53.80

-60:49:46.03

-60:49:42.91

-60:49:52.89

-60:49:41.41

2016.236

2009.152

2016.236

2016.236

2009.152

+2

+1

+6

-5

-6

-2

-4

+8

-5

-1

5

5

5

11

11

Opportunities in the coming years

 With GRAVITY, we can measure the differential position of α Cen A and B and the background S stars to ~10 µas.

Opportunities in the coming years

- With GRAVITY, we can measure the differential position of α Cen A and B and the background S stars to ~10 µas.
- Extraordinarily accurate differential parallax and proper motion Kervella et al. A&A 594, A107 (2016)

• In May 2028, α Cen A will come within 0.015 \pm 0.135" of star S5

- In May 2028, α Cen A will come within 0.015 ± 0.135 " of star S5
- S5 is faint in the visible, but bright in the infrared, $K_s = 7.76$

Declination

- In May 2028, α Cen A will come within 0.015 ± 0.135 " of star S5
- S5 is faint in the visible, but bright in the infrared, $K_s = 7.76$

Declination

 S5 is likely a very distant red supergiant

- In May 2028, α Cen A will ulletcome within 0.015 ± 0.135 " of star S5
- S5 is faint in the visible, but bright in the infrared, $K_s = 7.76$

Declination

- S5 is likely a very distant red supergiant
- About 1/2 probability to enter the Einstein ring

Gravitational lensing

LRG 3-757; ESA/Hubble/NASA

Future α Cen observations with GRAVITY

Sensitivity to planets: 2.5 M_{Earth} in the HZ Parallax target accuracy: 10 µas (now 610 µas) Proper motion accuracy goal: 1 µas / year (now 4 mas/yr)

An interstellar probe ?

• Project Breakthrough Starshot

- 4T interferometry (like PIONIER), with spectral resolution (like AMBER)
- Single field sensitivity ~ PIONIER
- Spectro-interferometry of stellar surfaces and environments at spectral resolution 4000
- Within a single field of view (60 / 250 mas)

Exoplanets

Exoplanets

 Astrometric wobble of star IIII Planet mass

Exoplanets

 Astrometric wobble of star IIII Planet mass

 Displacement of spatially resolved planets relative to their star Moons ?

Extragalactic science
Extragalactic science

• Astrometry of stars near globular cluster cores

Extragalactic science

• Astrometry of stars near globular cluster cores

 Brightest stars in the Magellanic Clouds and their surroundings

Extragalactic science

• Astrometry of stars near globular cluster cores

 Brightest stars in the Magellanic Clouds and their surroundings

 Spectro-imaging of AGN cores (including spectroastrometry)

