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LAGRANGIAN AVERAGED GYROKINETIC-WATERBAG
CONTINUUM∗

NICOLAS BESSE†

Abstract. In this paper, we first present the derivation of the anisotropic Lagrangian averaged
gyrowaterbag continuum (LAGWBC-α) equations. The gyrowaterbag (short for gyrokinetic-waterbag)
continuum can be viewed as a special class of exact weak solution of the gyrokinetic-Vlasov equation, al-
lowing us to reduce the latter into an infinite-dimensional set of hydrodynamic equations while keeping
its kinetic features, such as Landau damping. In order to obtain the LAGWBC-α equations from the
gyrowaterbag continuum we use an Eulerian variational principle and Lagrangian averaging techniques
introduced by Holm, Marsden, and Ratiu [27, 28], Marsden and Shkoller [32, 33] for the mean motion
of ideal incompressible flows, extended to barotropic compressible flows by Bhat et al. [13] and some
supplementary approximations for the electrical potential fluctuations. Regarding the original gyrowa-
terbag continuum, the LAGWBC-α equations show some additional properties and several advantages
from the mathematical and physical viewpoints, which make this model a good candidate for accurately
describing gyrokinetic turbulence in magnetically confined plasma. In the second part of this paper, we
prove local-in-time well-posedness of an approximate version of the anisotropic LAGWBC-α equations,
which we call the isotropic LAGWBC-α equations, by using quasilinear PDE type methods and elliptic
regularity estimates for several operators.

Key words. Gyrokinetic-waterbag model, gyrowaterbag model, well-posed problem, gyrokinetic
turbulence, Lagrangian averaged models, Eulerian and Lagrangian variational principles, gyrokinetic-
Vlasov equations, multi-fluids systems, infinite-dimensional hyperbolic system of conservation laws in
several space dimension, magnetically confined fusion plasmas.

AMS subject classifications. 35Q83, 35Q35, 35F55, 35L65, 76F02, 76N10, 76B03.

1. Introduction
The problem of turbulence in fluids and a fortiori in plasmas is a major problem

of physics. Heat, particle, and momentum transport, which are crucial for plasma
confinement in fusion devices, usually result from turbulent processes. One main issue
of turbulent flow computations is the generation of smaller and smaller scales. In order
to reduce the computationnal cost of turbulent calculations and get new physical insights
in fluid dynamics, the traditional approach (such as Large Eddy Simulations or LES [34])
consists of averaging or filtering PDEs to compute accurately large-scale dynamics while
small scale interactions and their effects on large scales are modeled. Unlike traditional
averaging or filtering approaches, where PDEs are averaged or spatially filtered, recently
Holm, Marsden, and Ratiu [27, 28] introduced a Lagrangian averaging approach based
on averaging at the level of the variational principle. A nice property of this approach
is that, despite the presence of model terms which arise from solving the turbulence
closure problem, all geometrical properties (e.g. invariants, conservation laws) of the
dynamics are retained since the Hamiltonian principle is applied after the Lagrangian
averaging procedure. Since our objective is to better understand the turbulence arising
from Hamiltonian chaos, as it is the case for gyrokinetic-Vlasov equations, we believe
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that derivation of a Hamiltonian system which preserves a modified energy and is time-
reversible, by using a conservative regularization method, is more close to our turbulence
framework.

Using an ensemble average over the set of solutions of the incompressible Euler and
Navier–Stokes equations and a generalization of the G.I. Taylor’s “frozen turbulence”
assumption [35], Marsden and Shkoller [32, 33] obtained the LAE-α (Lagrangian av-
eraged Euler equations) and LANS-α (Lagrangian averaged Navier–Stokes equations)
equations, designed to accurately capture the dynamics of the incompressible Euler and
Navier–Stokes equations at length scales larger than α while averaging the motion at
scales smaller than α. In [13], the authors extend the derivation of LAE-α to the case
of inhomogeneous barotropic compressible flows and prescribed a new flow rule, called
rotation rule, which should be more relevant than the Lie advection rule for isotropic
turbulence models.

Motivations and issues addressed in this paper. Motivations for the deriva-
tion of Lagrangian averaged gyrowaterbag continuum (LAGWBC-α) are threefold. The
gyrowaterbag continuum equations on domains without boundary, such as a periodic
box of R3, is given by

∂tc+∇·(cV ) = 0,

∂tu+∇·(uV )+∂

(
1

2

(
c2

4
−u2

)
+φ

)
= 0,

Qφ=

∫ 1

0

da

∫
R+

dµc−n0, V = ((∇⊥⊥φ)T ,u)T ,

c(t= 0,x,a,µ) = c0(x,a,µ), u(t= 0,x,a,µ) =u0(x,a,µ),


(1.1)

where the differential operator Q is defined by

Qϕ=−∇⊥ ·(a0∇⊥ϕ)+b0ϕ, (1.2)

with a0, b0, and n0 some given positive smooth functions. The velocity vector-field V is
given by V = (−∂x2φ,∂x1φ,u)T = ((∇⊥⊥φ)T ,u)T , where φ=φ(t,x1,x2,x3) is the electrical
potential. Here, the couple x⊥= (x1,x2) represents the variables associated with the
transverse direction, while the variable associated with the longitudinal direction is de-
noted by x =x3. For each fixed value of the couple (a,µ), the quantities c= c(t,x,a,µ)
and u=u(t,x,a,µ) represent, respectively, the density and the longitudinal mean ve-
locity of the fluid labeled by the tag (a,µ) at the point x= (x⊥,x ) = (x1,x2,x3) of
the three-dimensional physical space. Moreover we use the notation ∇= (∂1,∂2,∂3)T =
(∂x1

,∂x2
,∂x3

)T = (∇Tx⊥ ,∂x )T = (∇T⊥,∂ )T . In Section 2.2 below, we deal with a more
refined model which is obtained as the reduction of the gyrokinetic-Vlasov equations
(see Section 2.1), by using a variational principle of least action (see Section 2.3).

Let us first notice that the gyrowaterbag continuum equation (1.1) can be seen as
an infinite-dimensional hyperbolic system of first-order conservation laws in R3, with
non-local fluxes, which is incompressible in the two-dimensional transverse direction and
compressible in the one-dimensionnal longitudinal direction. The gyrowaterbag contin-
uum equations share two common features with incompressible and compressible fluid
flows that require special attention. The first one is generation of smaller and smaller
scales in the transverse direction due to the intrinsic turbulent nature of Hamiltonian
incompressible flow. The second one is formation of shock in the longitudinal direction
coming from nonlinear convective terms (e.g. Burgers’ terms) which are common in
compressible models. In both cases the crucial point is to represent in a relevant way
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small scale effects. Instead of adding nonphysical and artificial viscous or dissipation
terms to regularize shock discontinuities on one hand and removing energy contained
in small scales in the other hand, the Lagrangian averaged variational principle, which
adds dispersion terms (see equation (1.3) below) with a nonlinear energy redistribution
mechanism, seems to be a reasonable alternative to balance the steepening effect of non-
linear convective terms in the longitudinal direction and the energy cascade to smaller
scales in the transverse direction.

For instance, the isotropic LAGWBC-α equations on domains without boundary,
such as a periodic box in R3, that we formally derive in Section 3 (cf. equations (3.29)–
(3.34)) and show the well-posedness in Section 4 (cf. Theorem 4.1), are given by

∂tc+∇·(cV ) = 0,

∂t
(
[1−α2A]u

)
+∇·

(
V [1−α2A]u

)
+∂

(
1

2

(
c2

4
−u2

)
+φ− α

2

2
|∇u|2

)
= 0,(

Q− α
2

2
[∆Q+Q∆]

)
φ=

∫ 1

0

da

∫
R+

dµc−
(

1− α
2

2
∆

)
n0,

c(t= 0,x,a,µ) = c0(x,a,µ), u(t= 0,x,a,µ) =u0(x,a,µ),


(1.3)

where the differential operator A is defined by Aϕ= c−1∇·(c∇ϕ).
In the derivation of LAGWBC-α equation (1.3), we show that the parameter α can

be chosen as the same order or some orders smaller or even larger than the Larmor
gyroradius ρi. Therefore, this model offers a large perspective regarding to scale range
on which we could average the motion. It should be emphasized that gyrokinetic-Vlasov
equations and therefore gyrowaterbag equations are designed to accurately capture the
dynamics of a magnetically confined plasma subjected to electrostatic turbulence, at
length scales larger than ρi, while averaging the motion (namely the gyromotion) at
scales smaller than ρi. Nevertheless, the incompressible nature of the flow in the trans-
verse direction allows generation of scales smaller that ρi, with no possibility that these
small scales are removed. Therefore, any model which attempts to cure this defect in a
consistent and accurate way is welcome in the plasma turbulence community.

A third motivation for derivation of a Lagrangian averaged gyrowaterbag continuum
is the Cauchy problem of the gyrowaterbag continuum equation (1.1). Indeed, the origin
of the difficulty in the analysis of system (1.1) comes from the so-called quasineutrality
limit for the Vlasov–Poisson equation, for which recent results [2–4, 24, 26] concerning
stability versus instability issues and ill-posedness of the formal limit equation are dis-
cussed. In fact, combining the approachs of the papers [2, 5, 6], we could show the
existence and uniqueness of the local-in-time classical solution to the gyrowaterbag con-
tinuum equation (1.1) under additional conditions which ensure the hyperbolicity of
the system. As regards the existence of global weak solutions, the problem is open
and actually very difficult, as it lies in the framework of infinite-dimensional hyperbolic
system of first-order conservation laws in several space-dimensions. For LAGWBC-α
equation (1.3), we can get rid of these additional assumptions yielding hyperbolicity,
since the nature of the problem has changed by addition of dispersive terms. Moreover,
in the system (1.1), the quasineutrality equation for the electrical potential fails to be
elliptic in the whole space, since the operator Q (1.2) is elliptic only in the transverse
direction. The loss of spatial derivatives in the longitudinal direction on the electrical
potential is a truly difficult problem since, in the longitudinal direction, the coupling
between fluid unknowns (density c and longitudinal mean velocity u) and electrostatic
field (electrostatic potential φ) is algebraic (i.e. strong coupling). This is, for instance,
the reason why the gyrowaterbag continuum equations (for the unknowns c, u, and φ)



596 LAGRANGIAN AVERAGED GYROKINETIC-WATERBAG CONTINUUM

must be considered as a hyperbolic system of first-order conservation laws with non-local
fluxes and not as a weakly coupled system, which is the case for LAGWBC-α equations.
Anisotropy in this kind of problem is a difficulty which has also been recently studied
in [23, 25]. In addition, the Lagrangian averaged least-action principle and additional
approximations for the electrical potential fluctuations allow us to recover the ellipticity
of the averaged quasineutrality equation in the whole space (cf. the third equation of
(1.3)). Concerning global well-posedness, at least for weak solutions, we could expect
more tractable results for the LAGWBC-α model than the gyrowaterbag continuum
equations. Let us note that various waterbag and gyrowaterbag models have given
convincing and promising numerical results [5–11,15,16].

Organization of the rest of the paper. In Section 2, we first recall the
gyrokinetic-Vlasov model in cylindrical geometry, from which we obtain the deriva-
tion of the gyrowaterbag continuum. The section ends by establishing the least-action
principle leading to gyrowaterbag continuum equations. Section 3 is devoted to the for-
mal derivation of LAGWBC-α equations by using the Lagrangian averaging techniques
applied to the variational principle established in Section 2, with some supplementary
approximations for the electrical potential fluctuations. In this section we also derive an
isotropic version of the LAGWBC-α equations (cf. equations (3.29)–(3.34)) which must
be seen as an approximation of the latter. Finally, in Section 4, we prove local-in-time
well-posedness of the isotropic Lagrangian averaged gyrowaterbag continuum equations
for periodic domains (cf. Theorem 4.1).

2. Gyrokinetic-waterbag equations

2.1. The gyrokinetic-Vlasov model. Within gyrokinetic Hamiltonian
formalism and cylindrical geometry framework [18], the gyrokinetic-Vlasov equation
expresses the fact that the ions gyrocenter distribution function f =f(t,x,v ,µ) =
f(t,x1,x2,x3,v ,µ) is constant along gyrocenter characteristic curves in gyrocenter
phase-space (t,x,v ,µ)∈R+

t ×R3
x×Rv ×Ξ:

∂tf+J⊥vE ·∇⊥f+v ∂ f+
qi
mi
J⊥E ∂v f = 0, ∀µ∈Ξ. (2.1)

The ions distribution function f is coupled to the electrical potential φ via the quasi-
neutrality equation

−∇⊥ ·
(

ni0
B0Ω0

∇⊥φ
)

+
eτni0
kBTi0

(φ−λ〈φ〉 ) =

∫
Ξ

∫
R
J⊥f(t,x,v ,µ)dv dµ−ni0, (2.2)

with 〈φ〉 denoting the average of the electrical potential φ over a magnetic field line
being straight lines parallel to the direction e3. The longitudinal or parallel direction,
denoted by the symbol ‖, is the direction parallel to the magnetic field B (parallel
to the axis of the cylindrical column), i.e. b=e3 and the variable associated to this
direction is denoted by x =x3∈R while the transverse direction denoted by the symbol
⊥ is perpendicular to b and the associated variable is denoted by x⊥= (x1,x2)∈R2.
In equations (2.1)–(2.2), qi=Zie and mi are, respectively, the ion charge and mass,
Zini0 =ne0 is the electronic density, Te=Te0 is the electronic temperature, τ =Ti0/Te0,
λ∈{0,1}, E=−∇φ is the electric field, E =E ·b, and vE =E×B/B2

0 =∇⊥⊥φ/B0 is the
electrical drift velocity. Let us note that the magnetic moment µ is an invariant and
thus it must be considered as a parameter or a label and not as a differential variable.
The invariant µ belongs to an open subset Ξ of R+, while dµ stands for the Lebesgue
measure. In addition of cylindrical geometry, we have supposed that the magnetic field



N. BESSE 597

B is uniform and constant along the axis of the column (i.e. B=B0b) which means
that the perpendicular (with respect to the unit vector b=e3) drift velocity does not
admit any magnetic curvature or gradient effect and that the ion cyclotron frequency,
Ω0 = qiB0/mi, is a constant.

Finally, the integral operator J⊥ stands for the gyroaverage operator defined by

J⊥f(x) =
1

2π

∫ 2π

0

dζf(x+ρ(ζ)),

where ζ is the gyroangle. The gyroradius vector ρ is given by ρ(ζ) =
√

2µ/(qiΩ0)â(ζ),
where the vector â(ζ) = x̂cosζ− ŷ sinζ is defined in terms of the fixed local unit vectors
basis (x̂, ŷ,b= x̂× ŷ). Using the Fourier transform gyroaverage operator gives

J⊥f(x) =

∫
R3

dkF [f ](k)exp(ik ·x)J0

(
k⊥

√
2µ

qiΩ0

)
,

where k2
⊥=k2

x̂+k2
ŷ and J0 is the Bessel function of the first kind and zero order.

Since the magnetic moment µ is not an independent variable but a parameter or a
label related to an invariant, we can consider the plasma as a superposition of a (possibly
uncountable) collection of a bunch of particles having the same initial magnetic moment
µ. In other words, we can consider solution for the Vlasov equation (2.1) written in the
form

f(t,x,v ,µ) =

∫
Ξ

fν(t,x,v )δν(µ)m(dν),

where ν is a parameter belonging to some probability space Ξ, m is a probability measure
on that space, and fν are smooth functions which still satisfy the Vlasov equation (2.1)
with µ=ν. For instance, we could take m(dν) =

∑
l$`δ(ν−µl), where $` are positive

constants. As a consequence, the distribution function f can be recast as

f(t,x,v ,µ) =
∑
`

$`fµ`(t,x,v )δ(µ−µ`),

where the function fµ`(t,x,v ) satisfies the Vlasov equation (2.1) with µ=µ`, for all
values of the index `.

2.2. The gyrokinetic-waterbag model. For the description of the waterbag
reduction concept applied to one-dimensional Vlasov equations, we refer the reader
to [10]. We now apply it to the gyrokinetic-Vlasov equation (2.1). To this purpose, for
every magnetic moment µ∈Ξ, we consider two three-dimensional Lagrangian foliations
of codimension one, of the four-dimensional phase-space (x,v )⊂R4, to be the families
of three-dimensional leaves v±µ (t,x,a), enumerated by the Lagrangian label a belonging

to the one-dimensional set [0,1]. The collection {vjµ}µ∈Ξ with j∈{−,+} is represented

in compact form by vj =vj(t,x,a,µ). Therefore, the leaves v± can be reinterpreted as
two three-dimensional Lagrangian foliations of codimension two, of the five-dimensional
phase-space (x,v ,µ)⊂R3×R×R+, where the leaves are enumerated by the label σ=
(a,µ)∈Σ = [0,1]×Ξ. We suppose that the leaves v± are smooth functions such that v−≤
v+, ∂av

+≤0, and ∂av
−≥0. If we now consider two non-closed single-valued smooth

branches v±(t,x,a,µ) of the (x,v ,µ)-phase space, we can define fµ(t,x,v ,µ) as

fµ(t,x,v ,µ) =

∫ 1

0

(
H
(
v+(t,x,a,µ)−v

)
−H

(
v−(t,x,a,µ)−v

))
m(da), (2.3)
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where m denotes a probability measure on [0,1] and H is the Heaviside unit step func-
tion. In the distribution function (2.3), if we choose m(da) =

∑
iAiδ(a−ai), where Ai

are positive constants, we recover the multiple waterbag distribution [10].

Remark 2.1 (Generalization to a distribution function withK−1 changes of mono-
tonicity in velocity). The distribution function (2.3) is a unimodal distribution in par-
allel velocity, i.e., with only one change of monotonicity in parallel velocity, such as the
bell-shaped or Gaussian distribution functions, for example. In order to represent an in-
tegrable unimodal velocity distribution function, we only need two branches vj, j∈{1,2},
such as has been done for the function (2.3). We can generalize the representation (2.3)
to the velocity distribution function with K−1 changes of monotonicity in velocity if we
consider K branches (continuum) vj, j∈{1,. ..,K}, where each branch vj is monotonic
with respect to the variable a. As an example of generalization of the representation
(2.3) to a distribution function fµ with K branches (K even), allowing us to represent
a nonnegative distribution function with K−1 changes of monotonicity in velocity, we
can define

fµ(t,x,v ) =

K∑
j=1

(−1)j−1

∫ bj

aj

H
(
vj(t,x,a,µ)−v

)
m(da),

where each branch vj is monotonic with respect to the variable a, and the compact subsets
[aj ,bj ]⊂R+ are such that aj<bj, a2p=a2p+1, b2p+1 = b2p+2, and a1 =aK = 0. The
representation formula (2.3) corresponds to the case K= 2, a1 =a2 = 0, and b1 = b2 = 1.
Another example could be the two-stream instability profile constituted by two bumps
(e.g., two Maxwellians) and represented by four branches (K= 4), such that a1 =a4 = 0,
a2 =a3 =a, and b1 = b2 = b3 = b4 = b, with 0≤a<b. Let us notice that a branch vj can
become multivalued as time goes on because of the presence of nonlinear advection terms
such as the Burgers’ term in the second equation of (1.1). Multivaluedness appears when
a branch ceases to be monotonic with respect to the a-variable or when contours intersect.
If, after some time, a branch becomes multivalued, it means that new branches develop,
and the distribution function must be represented by a larger number of branches than at
the beginning because the number of oscillations of the distribution function in velocity
increases. Nevertheless, we can force the number of branches in velocity to be fixed
at the cost of a loss of regularity in physical space (with apparition of shocks such as
in hydrodynamics or gaz dynamics) and a loss of information in phase-space (such as
wave-breaking and filamentation phenomena).

As long as the contours are smooth, single-valued, and do not cross, the waterbag
distribution function (2.3) is an exact weak solution of the gyrokinetic-Vlasov equation
(2.1) in the sense of distribution theory if and only if the set of following equations is
satisfied:

∂tv
±+∇⊥ ·(J⊥vEv±)+∂ h±= 0, ∀µ∈Ξ, ∀a∈ [0,1], (2.4)

with the contour Hamiltonians

h±=
1

2
v±

2
+
qi
mi
J⊥φ.

The quasi-neutrality equation can be rewritten as
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−∇⊥ ·
(

ni0
B0Ω0

∇⊥φ
)

+
eτni0
kBTi0

(φ−λ〈φ〉 )

=

∫ 1

0

m(da)

∫
Ξ

m(dµ)J⊥(v+−v−)−ni0. (2.5)

Let us introduce the density c= (v+−v−) and the average velocity u= (v+ +v−)/2.
After a little algebra, equation (2.4) leads to continuity and Euler-type equations namely,
∀µ∈Ξ, ∀a∈ [0,1],

∂tc+∇⊥ ·(cJ⊥vE)+∂ (cu) = 0, (2.6)

∂t(cu)+∇⊥ ·(cuJ⊥vE)+∂
(
cu2 +p

)
+
qi
mi

c∂ J⊥φ= 0, (2.7)

where the partial pressure takes the form p= c3/12. The connection between kinetic and
fluid description clearly appears in the previous multi-fluids equations (with an exact
adiabatic closure with γ= 3). To complete the system (2.4)–(2.5), we need to supply an
initial condition v±(t= 0,x,a,µ) =v0±(x,a,µ) or equivalently c(t= 0,x,a,µ) = c0(x,a,µ)
and u(t= 0,x,a,µ) =u0(x,a,µ), ∀µ∈Ξ, ∀a∈ [0,1].

2.3. The variational principle. In this section, we establish a variational
principle to derive the equations of motion (2.5)–(2.7) of the gyrowaterbag continuum
as the stationary point of an action functional.

For almost every σ∈Σ, letMσ be a bounded domain in R3 with smooth boundary
∂Mσ containing the fluid labeled by the tag σ. Suppose we are given a Lagrangian
function L=L(η,η̇,M0,φ) with, for almost every fixed σ∈Σ, ησ =η(·,σ)∈Diff(Mσ),
where Diff(Mσ) denotes the space of diffeomorphism of Mσ. For almost every fixed
σ∈Σ, let M0

σ =M0(·,σ)∈Λ3(Mσ) be the space of 3-forms on Mσ. We suppose that
φ∈W (D), where W (D) is the space of a real-valued function of some given Sobolev class
on a bounded domain D. Since M0

σ ∈Λ3(Mσ), we suppose that it can be written as
M0
σ = c0σdx1∧dx2∧dx3, where c0σ = c0(·,σ) is a smooth function on Mσ. The physical

interpretation of c0σ(X), X ∈Mσ is the initial density of the fluid σ at the material
point X. Now, if we denote by cσ(t,x) = c(t,x,σ) the spatial density of the fluid σ, we
define Mσ = cσdx1∧dx2∧dx3, and we have the relationship Mσ = (ησ)∗M

0
σ and M0

σ =
(ησ)∗Mσ, where (ησ)∗ and (ησ)∗ denotes, respectively, the push-forward and the pull-
back operators. With compact notation, we write M=η∗M

0 and M0 =η∗M. We next
suppose that for almost every σ∈Σ, the domains Mσ are identical to D, and we set
M=D×Σ. Let us define the probability measure ν(dσ) =m(dµ)⊗m(da) on Σ, i.e.,∫

Σ

ν(dσ) = 1.

Finally, let us define the functional space

Lpν(Σ) =Lp(dν;Σ) =

{
g : Σ→R, ν−measurable

∣∣∣∣∣ ‖g‖Lpν(Σ) =

(∫
Σ

ν(dσ)|g|p
)1/p

<∞

}
,

for 1≤p<∞ and set the norm ‖·‖Lpν∩L∞(Σ) =‖·‖Lpν(Σ) + ‖·‖L∞(Σ). We then suppose
that η∈C(I;Lpν(Σ;Diff(D))) and M0,M∈Lpν(Σ;Λ3(D)) for 1≤p<∞.

Let us now establish an energy conservation law in order to determine the La-
grangian L. Before that, from equations (2.6)–(2.7) it is worthwhile to note that

∂t

∫
Mσ

cdx= 0, ∀σ∈Σ, and ∂t

∫
Mσ

udx= 0, ∀σ∈Σ,
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where the first equality translates Liouville geometric invariants preservation. Now,
using equations (2.6)–(2.7), we obtain the energy conservation law

∂t

(e
2

)
+∇⊥ ·

(e
2
J⊥vE

)
+∂

(
u
[e

2
+p
])

+
qi
mi

cu∂ J⊥φ= 0, (2.8)

where e= (v+3−v−3

)/3 = cu2 +c3/12 denotes the energy density of the multi-fluids and
p= c3/12 the pressure. Now, from equation (2.8), using the quasineutrality equation
(2.5) and continuity equation (2.6) to rewrite the last term of the left-hand side of (2.8),
using integration by parts and the property

∫
ψJ⊥φdx=

∫
φJ⊥ψdx, after integration

on M, we obtain

d

dt
H(t) = 0,

where H is the time-dependent Hamiltonian defined by

H =

∫
M
dxm(da)m(dµ)

e

2
+

1

2

qi
mi

∫
D
dx

(
ni0
B0Ω0

|∇⊥φ|2 +
eτni0
kBTi0

|φ−〈φ〉 |2
)

=
1

2

∫
M
dxν(dσ)

{
e+

qi
mi

(
ni0
B0Ω0

|∇⊥φ|2 +
eτni0
kBTi0

|φ−〈φ〉 |2
)}

.

In the definition of H, we recognize the kinetic energy K defined by

K(t) =
1

2

∫
M
dxν(dσ)cu2,

and thus the Hamiltonian can be rewritten as H =K+V , where V is the potential
energy. Therefore we define the Lagrangian L as

L=K−V

=
1

2

∫
M
dxν(dσ)cu2− 1

2

∫
M
dxν(dσ)

{
c3

12
+
qi
mi

(
ni0
B0Ω0

|∇⊥φ|2 +
eτni0
kBTi0

|φ−〈φ〉 |2
)}

=
1

2

∫
M
dxν(dσ)cu2− 1

2

∫
M
dxν(dσ)

{
c3

12
− qi
mi

(
ni0
B0Ω0

|∇⊥φ|2 +
eτni0
kBTi0

|φ−〈φ〉 |2
)

+2
qi
mi

φ(J⊥c−ni0)

}
. (2.9)

If X is a material point in the reference configuration of the fluid σ, we then define
the Lagrangian flow (a path in Diff(D), i.e. a one-parameter family of smooth material
deformation map of D) associated to the fluid σ, ηt= (ησ)t=η(t,X,σ), for σ∈Σ and
X ∈D, by

η̇(t,X,σ) =
d

dt
η(t,X,σ) =V (t,η(t,X,σ),σ) = (V ◦η)(t,X,σ),

with the initial condition η(t= 0,X,σ) =X, ∀σ∈Σ and where the Eulerian velocity field
V =V (t,x,σ) = η̇(t,η−1(t,x,σ),σ) is defined by

V (t,x,σ) =

(
J⊥vE(t,x,µ)
u(t,x,σ)

)
=

(
1
B0
b×∇J⊥[µ]φ(t,x)

u(t,x,σ)

)
,

where u and φ are supposed to be smooth functions. Provided that velocity field V is
regular in space (typically Lipschitz continuous) and the density c is integrable on M,
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we can integrate the continuity equation (2.6) using the characteristic curves ηt and we
find that the unique solution of (2.6) is given by

c(t,x,σ) = c0(X,σ)det−1(∇Xη(t,X,σ))

= c0(η−1(t,x,σ),σ)det(∇xη−1(t,x,σ)) =η∗c
0 =η−1∗c0,

where

det(∇Xη(t,X,σ)) = exp

(∫ t

0

(∇·V )(s,η(s,X,σ),σ)ds

)
= exp

(∫ t

0

(∂ u)(s,η(s,X,σ),σ)ds

)
.

Therefore the variational principle in Lagrangian coordinates is determined as follows.
The gyrowaterbag equations (2.5)–(2.7) are obtained as the stationary point of the
action functional S :C(I;Lpν(Σ;Diff(D)))×Lpν(Σ;Λ3(D))×W (D)→R defined by

S(η,M0,φ) =

∫ T

0

L(η(t), η̇(t),M0,φ(t))dt, (2.10)

where using (2.9), L(η,η̇,M0,φ) is given by

L(η,η̇,M0,φ)

=

∫
D
dX

∫
Σ

ν(dσ)det(∇Xη)

(
1

2
c0(X,σ)det−1(∇Xη)η̇2− 1

24
c0(X,σ)3det−3(∇Xη)

)
+

1

2

qi
mi

∫
D
dx

∫
Σ

ν(dσ)

(
ni0
B0Ω0

|∇⊥φ|2 +
eτni0
kBTi0

|φ−〈φ〉 |2 +2φni0

)
− qi
mi

∫
D
dX

∫
Σ

ν(dσ)J⊥φ(t,η)c0(X,σ) (2.11)

=

∫
D
dX

∫
Σ

ν(dσ)det(∇Xη)

(
1

2
c0(X,σ)det−1(∇Xη)η̇2− 1

24
c0(X,σ)3det−3(∇Xη)

)
+

1

2

qi
mi

∫
D
dx

∫
Σ

ν(dσ)

(
ni0
B0Ω0

|∇⊥φ|2 +
eτni0
kBTi0

|φ−〈φ〉 |2
)

− qi
mi

∫
D
dx

∫
Σ

ν(dσ)φ(J⊥c−ni0) . (2.12)

Setting to zero the functional derivative δS/δη , using (2.10)–(2.11), we obtain the
equation

cη̈ +∂ p+(qi/mi)c∂ J⊥φ= 0,

which is equivalent to (2.7) (since η̈ =Dtu, with Dt=∂t+V ·∇), while, the functional
derivative has vanished δS/δφ, using (2.10) and (2.12), we get equation (2.5).

We can also derive the gyrowaterbag equations (2.5)–(2.7) from a least-action prin-
ciple in Eulerian coordinates from the Lagrangian L=L(u,M,φ) defined by (2.9) by
using the Euler–Poincaré equations [28]. One advantage of the Euler–Poincaré theory is
that computations are more straightforward than in the case of Hamilton’s variational
principle in Lagrangian coordinates, for which computations are often cumbersome.
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3. Lagrangian averaged gyrokinetic-waterbag equations
This section is concerned with the derivation of the Lagrangian averaged gyrowa-

terbag equations. The idea is to construct an averaged action Sα(η,M0,φ) where α
is the spatial length scale characterizing the coarseness of the average and then to use
a least-action principle in Lagrangian (Hamilton’s variational principle) or Eulerian
(Euler–Poincaré theory) coordinates to obtain the equation of motion. Let us precise
that the asymptotic analysis performed below remains formal and that convergence
issues within a defined functional framework are not handled since the asymptotic ex-
pansions are not explicitly solvable.

3.1. Lagrangian averaging framework. Following methods exposed in [13,
32], we first introduce the deformation map ξε(t,x,σ) to be the family of diffeomorphism
about the identity, i.e. for each ε≥0, ξε(t, ·,σ)∈Diff(D) for all t∈ I and for almost every
σ∈Σ and ξε(t,x,σ) =x at ε= 0 for almost every (t,x,σ)∈ I×D×Σ. We suppose that
the deformation map ξε admits a Taylor expansion series with respect to the parameter
ε, i.e.,

ξε= Id+εξ′+
1

2
ε2ξ′′+ .. .+

1

n!
εnξ(n) + .. ., where, ξ(n) =

∂n

∂εn

∣∣∣∣
ε=0

ξε. (3.1)

Using ξε, we construct a perturbed Lagrangian flow ηε close to η by setting

ηε(t,X,σ) = ξε(t,η(t,X,σ),σ), (shortly ηε= ξε ◦η). (3.2)

From the perturbed flow ηε we can define a perturbed velocity field V ε such that

V ε(t,x,σ) = η̇ε(t,(ηε)−1(t,x,σ),σ), (shortly V ε= η̇ε ◦(ηε)−1, or η̇ε=V ε ◦ηε). (3.3)

We now assume the existence of an ensemble averaging operation 〈·〉 whose prop-
erties are described below. To this purpose, let us introduce X(M) as a space of fluc-
tuation fields (e.g. ξ(n)) defined on M modeling the perturbations (which can been
seen as multivariate random variables) and set Y = [0,α]×X. Let F(Y ) be the space of
smooth real-valued functions on Y . Therefore, we assume that the averaging operation
〈·〉 :F(Y )→F(M) satisfies the following properties:

1) linearity: 〈af+bg〉=a〈f〉+b〈g〉;
2) independence: 〈ψh〉= (1/α)〈h〉

∫ α
0
ψ(ε)dε, with ψh∈F(Y ) being understood as

the pointwise product;
3) commutativity: 〈

∫
Mfdxdσ〉=

∫
M〈f〉dxdσ, 〈∂f〉=∂〈f〉, with ∂∈{∂t,∂x};

where in the above properties f, g∈F(Y ), a, b∈R, ψ∈F([0,α]) and h∈F(X). For
examples of such averaging operation, we refer to [13,32]. As an example, if P denotes
a probability measure on the unit sphere S in X(M) and if we define the ensemble
average of vector-valued function f(ε,w) on [0,α]×S (i.e. f ∈F(Y ), Y = [0,α]×S) by

〈f〉 := 1

α

∫ α

0

dε

∫
S
P (dw)f(ε,w),

then we can check that this ensemble averaging operation satisfies the above required
properties.

In order to have the fluctuations ξε centered on average about the identity (so that
the average will not be skewed in an arbitrary direction), i.e. 〈ξε(t,x,σ)〉=x, for almost
every (t,x,σ)∈ I×D×Σ, it is sufficient to assume that the nth-order fluctuation vector
fields have means zero for n≥1, i.e.〈

∂nξε

∂εn

∣∣∣∣
ε=0

〉
= 0, n≥1. (3.4)
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Using definitions (3.2)–(3.3) and property (3.4), we obtain that 〈ηε(t,X,σ)〉=η(t,X,σ)
and 〈V ε ◦ξε(t,x,σ)〉=V (t,x,σ), which means that the flow η and the velocity field V
can be seen as Lagrangian means of ηε and V ε, respectively.

Now the perturbed fields cε, uε, φε, and thus V ε are Taylor expanded with respect
to the small perturbation parameter ε,

cε(t,x,σ) = c(t,x,σ)+εc′(t,x,σ)+
1

2
ε2c′′(t,x,σ)+ .. .+

1

n!
εnc(n)(t,x,σ)+ .. ., (3.5)

uε(t,x,σ) =u(t,x,σ)+εu′(t,x,σ)+
1

2
ε2u′′(t,x,σ)+ .. .+

1

n!
εnu(n)(t,x,σ)+ .. ., (3.6)

φε(t,x,σ) =φ(t,x)+εφ′(t,x,σ)+
1

2
ε2φ′′(t,x,σ)+ .. .+

1

n!
εnφ(n)(t,x,σ)+ .. ., (3.7)

V ε(t,x,σ) =V (t,x,σ)+εV ′(t,x,σ)+
1

2
ε2V ′′(t,x,σ)+ .. .+

1

n!
εnV (n)(t,x,σ)+ .. ..,

where X (n) =∂nε X ε|ε=0
with X ∈{c,u,φ,V } and

V (n)(t,x,σ) =

(
1
B0
b×∇J⊥φ(n)(t,x,σ)

u(n)(t,x,σ)

)
,

by linearity. Since we will only retain fluctuation effects of order less than or equal to
second order in ε, the goal is now to find expressions for u′, u′′, φ′, φ′′, c′, c′′, V ′, and
V ′′ in terms of c, u, φ, V , ξ′, and ξ′′.

By Taylor expansion of (3.3) in x-space around the point η, using the definition
(3.2) and the Taylor expansion (3.1), we obtain the following results, originally derived
in [32],

V ′=∂tξ
′+[V,ξ′], (3.8)

V ′′=∂tξ
′′+[V,ξ′′]−2(ξ′ ·∇)V ′−ξ′⊗ξ′ :∇∇V, (3.9)

where [A,B] = £AB= (A ·∇)B−(B ·∇)A is the standard Jacobi-Lie bracket of vector
fields on D (see [1] for example) and (ξ′⊗ξ′ :∇∇V )k = ξ′iξ

′
j∂

2
ijVk for k∈{1,2,3}. Here

we use the convention that an index variable appearing twice in a single term, implies
the summation of that term over all the values of the index.

By assuming that M0 is independent from ε (i.e. ∂nε M
0
|ε=0

= 0, n>0; M0 =η∗M,
n= 0), differentiating equation M0 = (ηε)∗Mε, with respect to ε and using the Lie deriva-
tive Theorem for time-dependent vector fields (see [1] for example), we obtain the fol-
lowing results, originally performed in the appendix of [13]:

c=η∗c
0, (3.10)

c′=−∇·(cξ′), (3.11)

c′′=∇·(∇·(cξ′⊗ξ′))−∇·(cξ′′). (3.12)

If we now start from the action

S(uε,cε,φε) =

∫ T

0

dt

∫
M
dxdν(σ)

{
1

2

(
cuε

2

− c
ε3

12

)
− qi
mi

φεJ⊥(cε−c0)

+
1

2

qi
mi

(
ni0
B0Ω0

|∇⊥φε|2 +
eτni0
kBTi0

|φε−〈φε〉 |2
)}

,
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where we have assumed that ni0 =
∫

Σ
J⊥c0dν(σ), and plug into it the Taylor expansion

series (3.5)–(3.7), we obtain at the second order in ε

S(uε,cε,φε) =

∫ T

0

dt

∫
M
dxdν(σ)

{
1

2

(
cu2− c3

12

)
− qi
mi

φJ⊥(c−c0)

+
1

2

qi
mi

(
ni0
B0Ω0

|∇⊥φ|2 +
eτni0
kBTi0

|φ−〈φ〉 |2
)}

+ ε

∫ T

0

dt

∫
M
dxdν(σ)

{
cuu′+

1

2
c′u2− 1

8
c2c′− qi

mi
φ′J⊥(c−c0)− qi

mi
c′J⊥φ

+
qi
mi

ni0
B0Ω0

∇⊥φ ·∇⊥φ′+
qi
mi

eτni0
kBTi0

(φ−〈φ〉 )(φ′−〈φ′〉 )

}
+ ε2

∫ T

0

dt

∫
M
dxdν(σ)

{
c′u′u+

1

4
c′′u2 +

1

2
c(u′

2
+uu′′)− 1

8

[
cc′

2
+

1

2
c2c′′

]
+

qi
mi

(
−1

2
φ′′J⊥(c−c0)−c′J⊥φ′−

1

2
φJ⊥c′′

)
+

1

2

qi
mi

(
ni0
B0Ω0

(|∇⊥φ′|2 +∇⊥φ′′ ·∇⊥φ)

+
eτni0
kBTi0

[
(φ′−〈φ′〉 )2 +(φ−〈φ〉 )(φ′′−〈φ′′〉 )

])}
+O(ε3). (3.13)

3.2. Modeling rules. From assumption (3.4), i.e., 〈ξ′〉= 〈ξ′′〉= 0, and expres-
sions (3.8)–(3.12), we observe that all linear functions of ξ′ and ξ′′ and their derivatives
in (3.13) will vanish after averaging operation and particularly the entire O(ε) collection.
Assumption (3.4) also implies that in the O(ε2) collection, after averaging operation,
all terms will depend on nonlinear functions of ξ′ only. Therefore, we need a strategy
for modeling the fluctuation ξ′. Like in the turbulence closure problem, modeling ξ′

consists of specifying the Lagrangian fluctuation ξ′ in terms of the mean quantities u,
φ, and c. To do so, we shall invoke the generalization (introduced by the authors of [32])
of the classical frozen turbulence hypothesis introduced by Taylor in [35], which states
that scalar fluctuation is simply advected by the mean flow. Following Taylor’s ideas,
in [32], Marsden and Shkoller assume that the Lagrangian fluctuation ξ′ is Lie advected
by the mean flow, i.e.

∂tξ
′+£V ξ

′= 0. (3.14)

Remark 3.1. Let us note that the Lie-advection flow rule (3.14) is reminiscent to
what is done in the quasilinear theory of electrostatic plasma turbulence [12,19–21,29,
39] where, fluctuations also satisfy quasilinear equations, i.e. advection-type equations
where advection coefficients are determined through mean flow quantities and where
nonlinear terms in the fluctuations are neglected since they are terms of one order
smaller. Even if a rigorous mathematical proof of the validity of the quasilinear theory of
electrostatic plasma turbulence is still missing, numerical [12,21] and experimental [38]
tests of quasilinear theory show that it works very well. Therefore, the classical frozen
turbulence hypothesis according to which fluctuations are transported by the mean
flow seems recurrent in different turbulence theories both in plasma physics and fluid
mechanics, which gives a kind of rational but of course not a rigorous argument to use
it, according to its numerical or experimental (a posteriori) success.

From closure Assumption (3.14), using (3.8)–(3.9), we deduce that

V ′= 0, i.e. u′= 0, and φ′= 0,
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and

〈V ′′〉=−F :∇∇V, with F = 〈ξ′⊗ξ′〉.

The previous equation is equivalent to

−∂2J⊥〈φ′′〉=∂2
jk(∂2J⊥φ)F jk =F :∇∇∂2J⊥φ,

∂1J⊥〈φ′′〉=−∂2
jk(∂1J⊥φ)F jk =−F :∇∇∂1J⊥φ,

〈u′′〉=−∂2
jkuF

jk =−F :∇∇u.

From the previous equations, we infer that −∆⊥J⊥〈φ′′〉=g with g :=∇⊥ ·
(F ij∂ij∇⊥J⊥φ) =∇⊥ ·(F :∇∇∇⊥J⊥φ). If we now suppose the boundary condition
F|∂D = 0 for all t and σ∈Σ (which is consistent with the fact that fluctuations must
vanish along the boundary), then the source term g has zero mean with respect to
the x-variable. Therefore, F [J⊥〈φ′′〉](k= 0) = (J0F [〈φ′′〉])(k= 0) is unspecified, where
F [·] denotes the space Fourier transform in the x-variable. Therefore it is consistent
to impose (J0F [〈φ′′〉])(k= 0) = 0, which is equivalent to imposing F [〈φ′′〉](k= 0) = 0 or∫
Ddx〈φ

′′〉= 0 for all t and σ∈Σ. Consequently, we can invert ∆⊥ to obtain

J⊥〈φ′′〉=−∆−1
⊥ ∇⊥ ·(F :∇∇∇⊥J⊥φ). (3.15)

From (3.15), we would like to isolate 〈φ′′〉, but it is not possible since the integral
operator J⊥ is not invertible. Therefore, we have two choices to solve this problem.
The first one consists of modifying the action functional (3.13) by high-order terms of
order O(εβ), with β>2, in such a way that we can replace 〈φ′′〉 by J⊥〈φ′′〉 in (3.13).
This procedure is easy to perform but weakens the regularity on φ, and even worse it
does not make the quasineutrality operator (right-hand side of (2.5)) elliptic in R3 since
the zeros of the Bessel function J0 will cancel elliptic estimates. The second method
consists of approximating the integral operator J⊥ by an invertible operator with an
approximation error of order at least O(αβ), with β>0. Provided that k⊥ρi<1, by
using first-order Taylor expansion of the Bessel function J0 and first-order Padé rational
approximation, we have

F [J⊥] =J0(k⊥ρi) = 1− 1

4
(k⊥ρi)

2
+O

(
(k⊥ρi)

4
)

=

(
1+

1

4
(k⊥ρi)

2

)−1

+O
(
(k⊥ρi)

4
)
,

and thus we obtain

J⊥= ∆̃−1
⊥ +O

(
ρ4
i

)
:=

(
1− ρ

2
i

4
∆⊥

)−1

+O
(
ρ4
i

)
.

Substituting operator J⊥ by ∆̃−1
⊥ := (1−ρ2

i∆⊥/4)−1 into (3.15) leads to an error term
of order O(α2ρ4

i ) in (3.13). Therefore, we can choose α such that α2ρ4
i .α

2+β , with

β>0, i.e. we can take α∈]ρ
4/β
i ,ρ0[, with ρ0<1. Typically, we are allowed to take α>ρi.

It should also be interesting to consider high-order Taylor and Padé expansion series of
the Bessel function J0 to obtain higher-order approximation of the gyroaverage operator
J⊥. Now, in order to regularize the system in the parallel direction, we will modify the
coupling terms (the fifth and seventh terms in the O(ε2) collection in the right-hand
side of (3.13)) in the action functional (3.13). To this purpose, we introduce regularizing
linear operators Rαi in R3 with i= 1,2, such that
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1) Regularity: Rαi :Hs(D)→Hs+si(D) with si≥0,

2) Self-adjointness: (Rαi )∗=Rαi ,

3) Commutativity: [J⊥,Rαi ] = 0, [∂`,Rαi ] = 0,

4) Approximation error: Id−Rαi =O(αβ) with β>0.

An example of such operator could be Jm,αβ/2 , where F [Jm,αβ/2 ](k) =Jm0 (kαβ/2),
with β,m>0, and J0 the Bessel function of the first kind and zero-order.

3.3. Lagrangian averaged gyrokinetic-waterbag model. From modeling
rules of the previous section (3.2), after averaging the action functional (3.13) and using
the rescaling α 7→α/

√
3 to get rid of the factor of 1/3 coming from ε-integration we

obtain

Sα(u,c,φ) = 〈S(uε,cε,φε)〉

=

∫ T

0

dt

∫
M
dxdν(σ)

{
1

2

(
cu2− c3

12

)
− qi
mi

φJ⊥(c−c0)

+
1

2

qi
mi

(
ni0
B0Ω0

|∇⊥φ|2 +
eτni0
kBTi0

|φ−〈φ〉 |2
)}

+α2

∫ T

0

dt

∫
M
dxdν(σ)

{
1

4

(
u2− c

2

4

)
∇·(∇·(cF ))

− 1

2
cuF :∇∇u − 1

8
c
(
c2H+∇T cF∇c+2cG ·∇c

)
+

1

2

qi
mi

(
J⊥∆̃⊥∆−1

⊥ ∇⊥ ·(F :∇∇∇⊥∆̃−1
⊥ φ)

)
Rα1 (c−c0)

− 1

2

qi
mi

(J⊥φ)Rα2∇·(∇·(cF ))

+
1

2

qi
mi

[
− ni0
B0Ω0

∇⊥φ ·∇⊥∆̃⊥∆−1
⊥ ∇⊥ ·(F :∇∇∇⊥∆̃−1

⊥ φ)

− eτni0
kBTi0

(φ−〈φ〉 )
(

∆̃⊥∆−1
⊥ ∇⊥ ·(F :∇∇∇⊥∆̃−1

⊥ φ)

−〈∆̃⊥∆−1
⊥ ∇⊥ ·(F :∇∇∇⊥∆̃−1

⊥ φ)〉
)]}

+ε(α)

= Ŝα(u,c,φ)+ε(α) =

∫ T

0

L̂α(u(t),c(t),φ(t))dt+ε(α), (3.16)

where

F ij = 〈ξ′iξ′j〉, Gi= 〈ξ′i∂jξ′
j〉, and H= 〈∂iξ′

i
∂jξ
′j〉, (3.17)

and from the modeling rules Section 3.2, with β>0,

ε(α) =O
(
α3
)

+O
(
α2ρ4

i

)
+O

(
(I−Rαi )α2

)
=O

(
αmin(2+β,3)

)
.

Applying Euler–Poincaré equations [28] to the Lagrangian L̂α defined by (3.16) or equiv-
alently applying the Hamilton’s variational principle in Lagrangian coordinates directly
to the action functional Ŝα defined by (3.16), we obtain the following Lagrangian aver-
aged gyrowaterbag equations:
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∂t
(
c
[
1−α2A

]
u
)

+∇·
(
V c
[
1−α2A

]
u
)

+∂

(
c3

12

)
+
qi
mi

c∂ J⊥φ−α2c∂ uAu

− α
2

2
c∂

(
∇TuF∇u− c

2

4
[∇·(∇·F )+3H−2∇·G]

+
qi
mi
Rα1J⊥D∗Fφ−

qi
mi

F :∇∇Rα2J⊥φ
)

= 0, (3.18)

(
Q− α

2

2
[DFQ+(DFQ)∗]

)
φ

=

∫
Σ

ν(dσ)

{(
1− α

2

2
DFRα1

)
J⊥(c−c0)+

α2

2
Rα2J⊥∇·(∇·(cF ))

}
, (3.19)

∂tc=−∇·(cV ), (3.20)

∂tF =−£V F =−(V ·∇)F −∇V ·F − [∇V ·F ]T , (3.21)

∂tG=−£VG+F∇(∇·V ) =−(V ·∇)G−(G ·∇)V +F∇∂ u, (3.22)

∂tH=−(V ·∇)H+2G ·∇(∇·V ) =−(V ·∇)H+2G ·∇∂ u. (3.23)

Let us recall that V = (J⊥vET ,u)T . Let ψ :M→R and ϕ :D→R, regular enough func-
tions which are integrable onM and D, respectively. In equation (3.18) the differential
operator A is defined by

Aψ=
1

c
∇·(cF∇ψ). (3.24)

In equations (3.18)–(3.19), the operator D∗F is the dual of the differential operator DF

defined by

DFψ= ∆̃−1
⊥ ∇·∇·∇⊥ ·(F∇⊥∆−1

⊥ ∆̃⊥ψ), (3.25)

i.e.

D∗Fψ= ∆̃⊥∆−1
⊥ ∇⊥ ·(F :∇∇∇⊥∆̃−1

⊥ ψ). (3.26)

In equation (3.19), the symmetric differential operator Q is defined by

Qϕ=−∇⊥ ·
(

ni0
B0Ω0

∇⊥ϕ
)

+
eτni0
kBTi0

(ϕ−〈ϕ〉 ), (3.27)

while ψ denotes the ν-average of ψ over Σ, i.e.

ψ=

∫
Σ

ν(dσ)ψ.

The derivation of equations (3.21)–(3.23) comes simply from the linear flow rule (3.14)
and the definitions (3.17), while continuity equation (3.20) is equivalent to (3.10) and
translates preservation of Liouville and waterbag geometric invariants. Using continuity
equation (3.20), equation (3.18) can be recast as

∂t
([

1−α2A
]
u
)

+∇·
(
V
[
1−α2A

]
u
)

+∂

(
−1

2
u2 +

c2

8
+
qi
mi
J⊥φ

)
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− α
2

2
∂

(
∇TuF∇u− c

2

4
[∇·(∇·F )+3H−2∇·G]

+
qi
mi
Rα1J⊥D∗Fφ−

qi
mi

F :∇∇Rα2J⊥φ
)

= 0.

In addition, by using the property

c

[
d

dt
,(1−α2A)

]
u=α2c(∂ u)Au+α2

(
dc

dt

)
Au= 0,

where [·, ·] denotes the commutator and dt=∂t+V ·∇=∂t+vE ·∇⊥+u∂ is the mate-
rial derivative, equation (3.18) can be rewritten as(

1−α2A
) du
dt

=α2(∂ u)Au−∂
(
c2

8
+
qi
mi
J⊥φ−

α2

2

{
∇TuF∇u

−c
2

4
[∇·(∇·F )+3H−2∇·G]+

qi
mi
Rα1J⊥D∗Fφ−

qi
mi

F :∇∇Rα2J⊥φ
})

.

Equations (3.18)–(3.27) constitute the anisotropic Lagrangian averaged gyrowaterbag
equations, where anisotropy appears through the covariance tensor F . Now for an
isotropic version of equations (3.18)–(3.23), we can assume that the covariance tensor
F is a multiple of the identity, G is zero, and H is a constant which, without loss of
generality, can be assumed to be zero. More precisely, we make the assumptions

F = Id, G= 0, and H= 0. (3.28)

Let us note that the assumptions (3.28) are inconsistent with the Lie advection flow
rule (3.14) since (3.28) is not a solution of (3.21)–(3.22). Therefore, the modeling
assumptions (3.28) can only be seen as an approximation of the isotropic model and
remain valid only for flows which almost preserve these properties. If we take Rαi = Id,
for i= 1,2, then from the modeling assumptions (3.28) and equations (3.21)–(3.22), we
obtain the following isotropic model:

∂tc+∇·(cV ) = 0, (3.29)

(1−α2A)(∂t+V ·∇)u=α2∂ uAu−∂
(
c2

8
+
qi
mi
J⊥φ−

α2

2
|∇u|2

)
, (3.30)(

Q− α
2

2
[∆Q+Q∆]

)
φ=

∫
Σ

ν(dσ)J⊥c−
(

1− α
2

2
∆

)
ni0, (3.31)

where for all ϕ :D→R, regular enough, the differential operator Q is defined by

Qϕ=−∇⊥ ·
(

ni0
B0Ω0

∇⊥ϕ
)

+
eτni0
kBTi0

(ϕ−〈ϕ〉 ), (3.32)

and for all ψ :M→R, regular enough, the differential operator A is defined by

Aψ=
1

c
∇·(c∇ψ), (3.33)

and with

V (t,x,σ) =

(
1
B0
b×∇φ(t,x)

u(t,x,σ)

)
=

 − 1
B0
∂2J⊥φ(t,x)

1
B0
∂1J⊥φ(t,x)

u(t,x,σ)

. (3.34)

We believe that such an isotropic model could accurately describe turbulent flow only
on domains without boundary, such as a periodic box.
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4. Well-posedness of the isotropic Lagrangian averaged gyrokinetic-
waterbag equations

In this section, we prove the existence and uniqueness of classical solutions to the
dimensionless isotropic Lagrangian averaged gyrowaterbag continuum (ILAGWBC-α)
formed by equations (3.29)–(3.34). Here, we consider the three-dimensional periodic-
box Ω =T3

L= Π3
i=1(R/LiZ) with Li>0, 1≤ i≤3. We set Ω⊥=T2

L= Π2
i=1(R/LiZ). In

order to prove well-posedness of (3.29)–(3.34), we need to get a priori estimates on
the density c and its inverse % := 1/c through (3.29), the velocity u through (3.30),
and finally the electrical potential φ through (3.31). In order to show existence, we
define an iteration scheme, which consists of a regularized approximation (with some
linearizations) of the system (3.29)–(3.34), and we use a priori estimates to deduce
the existence of weakly convergent solution sub-sequences. To pass to the limit in
nonlinear terms (to show that the limit points of these sub-sequences satisfy the original
model) we need strong convergence of these sub-sequences, which is obtained by proving
directly that these sequences are Cauchy sequences in Banach spaces, since we cannot
use Sobolev embeddings and the Arzelà–Ascoli theorem to get compactness (due to the
lack of regularity estimates with respect to the variable σ). Finally, we show uniqueness
of the solutions.

4.1. Main theorem. Here, we state the theorem for existence and uniqueness
of classical solutions (local-in-time) to the isotropic Lagrangian averaged gyrowaterbag
continuum formed by equations (3.29)–(3.34).

Theorem 4.1. Let us assume that ni0 =ni0(x⊥), a0 =a0(x⊥) =ni0/B0Ω0, and
b0 = b0(x⊥) =eτ/(kBΩ0) are positive functions in Hs+2(Ω⊥) with s>5/2 which depend
only on the transverse variables and are such that α‖∇⊥ logp0‖L∞(Ω⊥)�1 for p0∈
{ni0, a0, b0}. Let us assume that c0,u0∈Lpν ∩L∞(Σ;Hs(Ω)) for s>5/2 and 1≤p<∞,
and c0≥ c◦ with the constant c◦>0, then there exists a time T >0, which depends on
initial data, such that the system (3.29)–(3.31) admits a unique solution (c,u,φ), and

c∈L∞([0,T ];Lpν ∩L∞(Σ;Hs(Ω)))∩Lip([0,T ];Lpν ∩L∞(Σ;Hs−1(Ω))), c>0,

u∈L∞([0,T ];Lpν ∩L∞(Σ;Hs+1(Ω))∩Lip([0,T ];Lpν ∩L∞(Σ;Hs(Ω))),

φ∈L∞([0,T ];Hs+2(Ω))∩Lip([0,T ];Hs+1(Ω)).

4.2. A priori estimates. Energy estimates on the density c and its inverse % ob-
tained from continuity equation (3.29), are standard. On the contrary elliptic estimates
in Sobolev spaces Hs of high index for operators (1−α2A), and

(
Q−α2[∆Q+Q∆]/2

)
(see quasineutrality equation (3.31)) are not standard and are more technical to estab-
lish. In fact, before being allowed to use Kato–Ponce type commutator estimates and
Sobolev embeddings to deal with Hs-estimates of high index s, we have to use particular
methods to treat intermediate indices. For the operator (1−α2A) and 1≤s≤3, we use
mainly

Gagliardo–Nirenberg and Young inequalities on one hand and Sobolev embeddings
on the other hand, while for the operator

(
Q−α2[∆Q+Q∆]/2

)
and 1≤s≤4, we use

multiple integration by parts and equivalence between some semi-norms. Of course, the
condition α‖∇⊥ logp0‖L∞(Ω⊥)�1 of Theorem 4.1 is crucial to prove the coercivity of
quasineutrality equation (3.31). Energy estimates for the longitudinal mean velocity u
obtained from equation (3.30) have to be done carefully since they involve the operator
(1−α2A) and additional nonlinear terms.

We start with a basic estimate that we use many times in the following section.



610 LAGRANGIAN AVERAGED GYROKINETIC-WATERBAG CONTINUUM

Lemma 4.2. Let β and γ, some multi-indices such that |β|+ |γ|=m with m≥0 an
integer. Then for all f , g∈C0(Rn)∩Hm(Rn)

‖(∂βf)(∂γg)‖L2(Rn)≤C
(
‖f‖L∞(Rn)‖g‖Hm(Rn) +‖f‖Hm(Rn)‖g‖L∞(Rn)

)
. (4.1)

Proof. See the proof of Proposition 3.6 in Chapter 13 of [36].

We next establish some a priori elliptic estimates for the operators A and (1−
α2A)−1.

4.2.1. A priori estimates for the operators A and (1−α2A)−1.
Lemma 4.3. If we assume c(t,·,σ)∈Hs+1(Ω) and %(t,·,σ)∈Hs(Ω) for almost every
σ∈Σ and time t≥0, with s>3/2, then there exists a constant C, such that

‖Aψ‖Hs(Ω)≤C‖ψ‖Hs+2(Ω)(1+‖%‖Hs(Ω)‖c‖Hs+1(Ω)). (4.2)

Proof. Let β be a multi-index such that |β|≤s. Then, using Lemma 4.2 and Sobolev
imbedding Hs(Ω) ↪→L∞(Ω) with s>3/2, we get

‖∂βxAψ‖L2(Ω)≤‖∂βx (∆ψ+%∇c ·∇ψ)‖L2(Ω)

≤‖ψ‖Hs+2(Ω) +
∑
γ≥0

(
β
γ

)
‖∂γx(%∇c) ·∂β−γx (∇ψ)‖L2(Ω)

≤‖ψ‖Hs+2(Ω) +C‖ψ‖Hs+1(Ω)‖%∇c‖Hs(Ω)

≤‖ψ‖Hs+2(Ω) +C‖ψ‖Hs+1(Ω)‖c‖Hs+1(Ω)‖%‖Hs(Ω),

which ends the proof of (4.2).

Proposition 4.4. If we assume that c(t,·,σ), %(t, ·,σ)∈Hmax(s−1,5/2)(Ω) for all
almost every σ∈Σ and time t≥0, with s≥1, then, for f ∈H−1(Ω), the equation

(1−α2A)ψ=f, in Ω, (4.3)

with periodic boundary conditions, has a unique solution ψ∈H1(Ω). Moreover, if f ∈
Hs−2(Ω), then there exists a nondecreasing polynomial function G :R+×R+→R+ such
that

‖(1−α2A)−1f‖Hs(Ω)≤G
(
‖c‖Hmax(s−1,5/2)(Ω),‖%‖Hmax(s−1,5/2)(Ω)

)
‖f‖Hs−2(Ω).

Proof. Let us define the scalar product of L2(Ω) by (ϕ,ψ) =
∫

Ω
ϕψdx. Here,

integration and derivation are always performed with respect to the space variables
x∈Ω. Moreover we denote by Dk any partial derivative of order k with respect to x∈Ω.
If we multiply the equation (4.3) by cϕ, with ϕ∈H1(Ω) and periodic, integrate it with
respect to x over Ω, and use integration by parts with periodic boundary conditions,
we obtain

a(ψ,ϕ) := (cψ,ϕ)+α2(c∇ψ,∇ϕ) = (cf,ϕ). (4.4)

H1 estimate: Taking ϕ=ψ in (4.4), we obtain

‖ψ‖H1(Ω)≤C(α)‖%‖L∞(Ω)‖c‖W 1,∞(Ω)‖f‖H−1(Ω)

≤C(α)‖%‖L∞(Ω)‖c‖H5/2(Ω)‖f‖H−1(Ω). (4.5)
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Since a is a continuous bilinear form on H1(Ω)×H1(Ω) elliptic or coercive on H1(Ω),
then from the Lax–Milgram theorem, for any f ∈H−1(Ω), there exists a unique solution
ψ∈H1(Ω) to (4.3) and we have the isomorphism (1−α2A) :H1(Ω)→H−1(Ω).
H2 estimate: Taking ϕ=−D2ψ in (4.4), after integration by parts, we obtain

(cDψ,Dψ)+α2(cD∇ψ,D∇ψ) =−(Dcψ,Dψ)−α2(Dc∇ψ,D∇ψ)−(cf,D2ψ). (4.6)

Using the Poincaré inequality, there exists a constant λ=λ(Ω) depending on Ω, such
that the left-hand side of (4.6) is bounded below by

(cDψ,Dψ)+α2(cD∇ψ,D∇ψ)≥C(λ,α)‖%‖−1
L∞(Ω)‖ψ‖

2
H2(Ω). (4.7)

Using Young’s inequality, the third term of the right-hand side of (4.6) is bounded by

(cf,D2ψ)≤C(ε)(‖c‖L∞(Ω)‖f‖L2(Ω))
2 +ε‖ψ‖2H2(Ω).

Using the Cauchy–Schwarz inequality, Sobolev embedding H3/4(Ω) ↪→L4(Ω), and (4.5),
the first term of the right-hand side of (4.6) is bounded by

(Dcψ,Dψ)≤‖Dc‖L4(Ω)‖ψ‖L4(Ω)‖ψ‖H1(Ω)

≤C‖c‖H2(Ω)(‖c‖W 1,∞(Ω)‖%‖L∞(Ω)‖f‖H−1(Ω))
2.

Using the Cauchy–Schwarz inequality, Sobolev embedding H3/4(Ω) ↪→L4(Ω), the

Gagliardo–Nirenberg inequality ‖Dϕ‖L4(Ω)≤C‖D2ϕ‖3/4L2(Ω)‖Dϕ‖
1/4
L2(Ω) (see Proposition

3.4, Chapter 13 of [36] for example), and Young’s inequality, we get for the second term
of the right-hand side of (4.6)

(Dc∇ψ,D∇ψ)≤‖Dc‖L4(Ω)‖∇ψ‖L4(Ω)‖ψ‖H2(Ω)

≤C‖c‖H7/4(Ω)‖ψ‖
1/4
H1(Ω)‖ψ‖

7/4
H2(Ω)

≤C(ε)‖c‖8H2(Ω)‖ψ‖
2
H1(Ω) +ε‖ψ‖2H2(Ω). (4.8)

Gathering estimates (4.7)–(4.8), using Sobolev embedding Hs−1(Ω) ↪→L∞(Ω), s>5/2,
and (4.5), equation (4.6) gives

‖ψ‖2H2(Ω)≤C(ε,λ,α)‖%‖H2(Ω)‖c‖2H5/2(Ω)(
1+‖%‖2H2(Ω)

[
‖c‖H2(Ω) +‖c‖8H2(Ω)

])
‖f‖2L2(Ω). (4.9)

H3 estimate: Taking ϕ=D4ψ in (4.4), after integration by parts, we obtain

(cD2ψ,D2ψ)+α2(cD2∇ψ,D2∇ψ) = (cf,D4ψ)−(D2cψ,D2ψ)

−2(DcDψ,D2ψ)−α2(D2c∇ψ,D2∇ψ)−2α2(DcD∇ψ,D2∇ψ). (4.10)

Using the Poincaré inequality, there exists a constant λ=λ(Ω) such that the left-hand
side of (4.10) is bounded below by

(cD2ψ,D2ψ)+α2(cD2∇ψ,D2∇ψ)≥C(λ,α)‖%‖−1
L∞(Ω)‖ψ‖

2
H3(Ω). (4.11)

Using Young’s inequality, the first term of the right-hand side of (4.10) is bounded by
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(cf,D4ψ)≤‖c‖W 1,∞(Ω)‖f‖H1(Ω)‖D4ψ‖H−1(Ω)

≤C(ε)‖c‖2W 1,∞(Ω)‖f‖
2
H1(Ω) +ε‖ψ‖2H3(Ω). (4.12)

From Sobolev embedding Hs(Ω) ↪→L∞(Ω), s>3/2 and using the Cauchy–Schwarz in-
equality, the second term of the right-hand side of (4.10) is bounded by

(D2cψ,D2ψ)≤‖D2c‖L2(Ω)‖ψ‖L∞(Ω)‖D2ψ‖L2(Ω)≤C‖c‖H2(Ω)‖ψ‖2H2(Ω). (4.13)

From Sobolev embedding H3/4(Ω) ↪→L4(Ω), and using the Cauchy–Schwarz inequality
the third term of the right-hand side of (4.10) is bounded by

(DcDψ,D2ψ)≤‖Dc‖L4(Ω)‖Dψ‖L4(Ω)‖D2ψ‖L2(Ω)≤C‖c‖H2(Ω)‖ψ‖2H2(Ω). (4.14)

Using the Cauchy–Schwarz inequality, Sobolev embedding W 1,4(Ω) ↪→L∞(Ω), the

Gagliardo–Nirenberg inequality ‖D2ϕ‖L4(Ω)≤C‖ϕ‖
7/8
H3(Ω)‖ϕ‖

1/8
H1(Ω) (see Proposition 3.4,

Chapter 13 of [36] for example), and Young’s inequality we get for the fourth term of
the right-hand side of (4.10)

(D2c∇ψ,D2∇ψ)≤‖D2c‖L2(Ω)‖∇ψ‖L∞(Ω)‖ψ‖H3(Ω)

≤‖c‖H2(Ω)‖D2ψ‖L4(Ω)‖ψ‖H3(Ω)

≤C‖c‖H2(Ω)‖ψ‖
1/8
H1(Ω)‖ψ‖

15/8
H3(Ω)

≤C(ε)‖c‖16
H2(Ω)‖ψ‖

2
H1(Ω) +ε‖ψ‖2H3(Ω) (4.15)

and for fifth term of the right-hand side of (4.10)

(DcD∇ψ,D2∇ψ)≤‖Dc‖L4(Ω)‖D∇ψ‖L4(Ω)‖ψ‖H3(Ω)

≤C‖Dc‖H3/4(Ω)‖ψ‖
1/8
H1(Ω)‖ψ‖

15/8
H3(Ω)

≤C(ε)‖c‖16
H2(Ω)‖ψ‖

2
H1(Ω) +ε‖ψ‖2H3(Ω). (4.16)

Gathering estimates (4.11)–(4.16), using Sobolev embedding Hs−1(Ω) ↪→L∞(Ω), s>
5/2, and estimates (4.5) and (4.9), equation (4.10) gives

‖ψ‖2H3(Ω)≤C(ε,λ,α)‖%‖H2(Ω)‖c‖2H5/2(Ω)

{
1+‖%‖2H2(Ω)‖c‖

16
H2(Ω)

+ ‖%‖H2(Ω)‖c‖H2(Ω)

(
1+‖%‖2H2(Ω)

[
‖c‖H2(Ω) +‖c‖8H2(Ω)

])}
‖f‖2H1(Ω). (4.17)

Hk estimate, k≥4: Taking ϕ= (−1)k−1D2k−2ψ in (4.4), after integration by parts, we
obtain

(cDk−1ψ,Dk−1ψ)+α2(cDk−1∇ψ,Dk−1∇ψ) = (Dk−1(cf),Dk−1ψ)

−α2([Dk−1,c]∇ψ,Dk−1∇ψ)−([Dk−1,c]ψ,Dk−1ψ), (4.18)

where [·,·] denotes the commutator. Using the Poincaré inequality, there exists a con-
stant λ=λ(Ω) such that the left-hand side of (4.18) is bounded below by

(cDk−1ψ,Dk−1ψ)+α2(cDk−1∇ψ,Dk−1∇ψ)≥C(λ,α)‖%‖−1
L∞(Ω)‖ψ‖

2
Hk(Ω). (4.19)
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Using duality between H1(Ω) and H−1(Ω), Lemma 4.2, and Sobolev embedding
Hs(Ω) ↪→L∞(Ω), s>3/2, the first term of the right-hand side of (4.18) is bounded
by

(Dk−1(cf),Dk−1ψ)≤‖Dk−2(cf)‖L2(Ω)‖ψ‖Hk(Ω)

≤C‖ψ‖Hk(Ω)

∑
γ≥0

(
k−2
γ

)
‖∂γxc∂k−2−γ

x f‖L2(Ω)

≤C‖c‖Hk−2(Ω)‖f‖Hk−2(Ω)‖ψ‖Hk(Ω). (4.20)

Using the Cauchy–Schwarz inequality, commutator estimates (see Proposition 3.7 of
Chapter 13 of [36], for example), and Sobolev embedding Hk−2(Ω) ↪→L∞(Ω), k>7/2,
we get for the second term of the right-hand side of (4.18)

([Dk−1,c]∇ψ,Dk−1∇ψ)≤‖[Dk−1,c]∇ψ‖L2(Ω)‖ψ‖Hk(Ω)

≤C‖ψ‖Hk(Ω)

(
‖c‖Hk−1(Ω)‖∇ψ‖L∞(Ω) +‖c‖W 1,∞(Ω)‖∇ψ‖Hk−2(Ω)

)
≤C‖c‖Hk−1(Ω)‖ψ‖Hk−1(Ω)‖ψ‖Hk(Ω) (4.21)

and for the third term of the right-hand side of (4.18)

([Dk−1,c]ψ,Dk−1ψ)≤‖[Dk−1,c]ψ‖L2(Ω)‖ψ‖Hk(Ω)

≤C‖c‖Hk−1(Ω)‖ψ‖Hk−1(Ω)‖ψ‖Hk(Ω). (4.22)

Gathering estimates (4.19)–(4.22) and using Sobolev embedding Hk−1(Ω) ↪→L∞(Ω),
k>5/2, equation (4.18) gives

‖ψ‖Hk(Ω)≤C(ε,λ,α)‖%‖Hk−1(Ω)‖c‖Hk−1(Ω)

(
‖f‖Hk−2(Ω) +‖ψ‖Hk−1(Ω)

)
.

Using the previous recurrence formula and (4.17), we obtain that

‖ψ‖Hk(Ω)≤
k−4∑
i=0

‖f‖Hk−2−i(Ω)

i∏
j=0

‖%‖Hk−1−j(Ω)‖c‖Hk−1−j(Ω)

+‖ψ‖H3(Ω)

k∏
i=4

‖%‖Hk−i(Ω)‖c‖Hk−i(Ω)

≤P
(
‖c‖Hk−1(Ω),‖%‖Hk−1(Ω)

)
‖f‖Hk−2(Ω),

where P :R+×R+→R+ is a polynomial with nonnegative coefficients and thus is a
nondecreasing function in its arguments, which completes the proof.

4.2.2. A priori estimates for the electrical potential φ. In this section, we
obtain a priori estimates on the electrical potential φ through the Lagrangian averaged
quasineutrality equation (3.31), where ni0 =ni0(x⊥)>0, a0 =a0(x⊥) =ni0/B0Ω0>0,
and b0 = b0(x⊥) =eτ/(kBΩ0)>0 are smooth functions which depends only on the trans-
verse (with respect to the magnetic field direction b) variables x⊥. We now establish
the following proposition.

Proposition 4.5. Let us assume that ni0, a0, and b0 are positive func-
tions in Hs+2(Ω⊥) which depend only on the transverse variables and such that
α‖∇⊥ logp0‖L∞(Ω⊥)�1 for p0∈{ni0, a0, b0}. Let us assume that, for s≥1, c(t,·, ·)∈
L2
ν(Σ;Hs−2(Ω)) for almost every time t≥0. Then the quasineutrality equation (3.31)
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has a unique solution in φ∈H1(Ω) and there exists a constant C depending on s, α,
a0, b0, ni0, Σ, and Ω such that

‖φ‖Hs(Ω)≤C (s,α,a0,b0,ni0,Ω)(1+‖c‖L2
ν(Σ;Hs−2(Ω))), ∀s≥1. (4.23)

Remark 4.6. It is well known in the magnetic fusion community [18] that trans-
verse equilibrium profiles p0∈{ni0,B0,a0,b0} have length scales much larger than the
Larmor gyroradius ρi, typically with the ratio ρi‖∇⊥ logp0‖L∞(Ω⊥)'10−3�1. Since
the parameter α could be of the same order as or even some orders larger than ρi, we
then get α‖∇⊥ logp0‖L∞(Ω⊥)�1, too. The condition α‖∇⊥ logp0‖L∞(Ω⊥)�1 is linked
to the existence and stability of an equilibrium configuration and thus to the existence
of a stable confinement in the sense that, if the length scale of perturbation of order α,
represented here by the electrical potential φ, were of the same order of length scale of
equilibrium quantities, represented by p0, then the plasma could not be confined.

Proof. By taking the parallel average of (3.31) along the -direction, we obtain
for 〈φ〉 the equation

B〈φ〉 =−∇⊥ ·(a0∇⊥〈φ〉 )− α
2

2
[−∆⊥∇⊥ ·(a0∇⊥〈φ〉 )−∇⊥ ·(a0∇⊥∆⊥〈φ〉 )]

= 〈ρ〉 , (4.24)

where we have set

ρ=

∫
Σ

ν(dσ)J⊥c−
(

1− α
2

2
∆

)
ni0. (4.25)

Therefore the potential φ satisfies the equation

Bφ=−∇⊥ ·(a0∇⊥φ)+b0φ−
α2

2
[−∆∇⊥ ·(a0∇⊥φ)+∆(b0φ)−∇⊥ ·(a0∇⊥∆φ)+b0∆φ]

= ρ̃, (4.26)

where

ρ̃=ρ+b0〈φ〉 −
α2

2
[−∆⊥(b0〈φ〉 )+b0∆⊥〈φ〉 )]. (4.27)

From (4.25) and using the Cauchy–Schwarz inequality, a simple computation shows
that, for s≥−2, we have

‖〈ρ〉 ‖Hs(Ω⊥)≤C(s,α,n0,L3)(1+‖c‖L2
ν(Σ;Hs(Ω))). (4.28)

H1 estimate: By taking ψ=ϕ, using integration by parts, we obtain∫
Ω⊥

dx⊥

{
α2a0|∇2

⊥ϕ|2 +a0

(
1− α

2

2

∆⊥a0

a0

)
|∇⊥ϕ|2

}
= (Bϕ,ψ)≤‖Bϕ‖H−2(Ω)‖ϕ‖H2(Ω).

Since a0>0 and α‖∇⊥ loga0‖L∞(Ω⊥)�1, using the Poincaré inequality, we get from
the previous equation that

‖〈φ〉 ‖H2(Ω⊥)≤C(α,a0,Ω⊥)‖〈ρ〉 ‖H−2(Ω⊥). (4.29)
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Using Theorem 3.1 of Chapter 2, Section 3.2 of [30], we get for s≥0,

‖〈φ〉 ‖Hs(Ω⊥)≤C(‖〈ρ〉 ‖Hs−4(Ω⊥) +‖〈φ〉 ‖Hs−1(Ω⊥)).

Therefore, from the previous estimates and (4.29), we obtain for s≥3

‖〈φ〉 ‖Hs(Ω⊥)≤C(s,α,a0,Ω⊥)‖〈ρ〉 ‖Hs−4(Ω⊥). (4.30)

Using (4.28) and (4.30), we obtain that, for s≥−1,

‖ρ̃‖Hs(Ω)≤‖ρ‖Hs(Ω) +‖b0〈φ〉 ‖Hs(Ω) +
α2

2

(
‖∆⊥(b0〈φ〉 )‖Hs(Ω) +‖b0∆⊥〈φ〉 ‖Hs(Ω)

)
≤C(s,α,n0,a0,b0,Ω)(1+‖c‖L2

ν(Σ;Hs(Ω))). (4.31)

Now, if we take ψ=ϕ, using some integration by parts, we obtain∫
Ω

dx

{
b0

(
1− α

2

2

∆⊥b0
b0

)
|ϕ|2 +a0

(
1− α

2

2

∆⊥a0

a0

)
|∇⊥ϕ|2

+α2b0|∇ϕ|2 +a0|∇∇⊥ϕ|2
}

= (Bϕ,ψ)≤‖Bϕ‖H−1(Ω)‖ϕ‖H1(Ω). (4.32)

Since a0, b0>0, α‖∇⊥ loga0‖L∞(Ω⊥)�1, and α‖∇⊥ logb0‖L∞(Ω⊥)�1, then (B·, ·) is a
continuous bilinear form on H1(Ω)×H1(Ω) elliptic or coercive on H1(Ω). Therefore,
from Lax–Milgram theorem, for any f ∈H−1(Ω), there exists a unique solution ϕ∈
H1(Ω) to Bϕ=f , and we have the isomorphism B :H1(Ω)→H−1(Ω). Moreover, from
(4.32), we get

‖ϕ‖H1(Ω)≤C(α,a0,b0)‖Bϕ‖H−1(Ω). (4.33)

Equations (4.33) and (4.31) yield estimates (4.23) for s= 1.
H2 estimate: As regards the H2-norm, if we take ψ=−∆ϕ, after some integration by
parts, we obtain∫

Ω

dx

{
−1

2
|∇⊥ϕ|2∆⊥

(
1− α

2

2
∆⊥

)
a0−α2∇ϕ ·∇2b0∇ϕ+a0|∇⊥∇ϕ|2 +b0|∇ϕ|2

−α2∇∇⊥ϕ ·∇2a0∇∇⊥ϕ−
1

2
|ϕ|2∆⊥

(
1− α

2

2
∆⊥

)
b0 +α2b0|∆ϕ|2 +α2a0|∇⊥∆ϕ|2

}
= (Bϕ,ψ)≤‖Bϕ‖L2(Ω)‖∆ϕ‖L2(Ω),

which, using a0>0, leads to∫
Ω

dx

{
α2b0|∆ϕ|2 +a0|∇∇⊥ϕ|2

(
1−Cα2 ‖∇

2
⊥a0‖L∞(Ω⊥)

a0

)}
≤‖Bϕ‖L2(Ω)‖∆ϕ‖L2(Ω) +C(α,a0,b0)‖ϕ‖2H1(Ω). (4.34)

Above and in the sequel, we use the notation ∇∇⊥ϕ ·∇2a0∇∇⊥ϕ=
∑
i,j,k∂i∂⊥j

ϕ∂2
ika0∂k∂⊥jϕ. Using a0, b0>0, α‖∇⊥ loga0‖L∞(Ω⊥)�1, (4.33) and the Poincaré in-

equality, since the semi-norm ‖∆ ·‖L2(Ω) and semi-norm | · |H2(Ω) are equivalent, expres-
sion (4.34) leads to

‖ϕ‖H2(Ω)≤C(α,a0,b0,Ω)‖Bϕ‖L2(Ω). (4.35)
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H3 estimate: Concerning the H3-norm estimate, if we take ψ= ∆2ϕ, using some inte-
gration by parts, we obtain∫

Ω

dx

{
1

2
|ϕ|2∆2

⊥b0 +
1

2
|∇⊥ϕ|2∆2

⊥a0 +b0|∆ϕ|2−2∇ϕ ·∇2b0∇ϕ+a0|∇⊥∆ϕ|2

−2∇∇⊥ϕ ·∇2a0∇∇⊥ϕ−
α2

2

(
−1

2
∆2
⊥a0|∇∇⊥ϕ|2 +∆⊥a0|∇∇⊥ϕ|2

+
1

2
∆3
⊥a0|∇⊥φ|2−2∇∇⊥ϕ ·∇2∆a0∇∇⊥ϕ−

1

2
∆2
⊥a0|∇∇⊥ϕ|2

+∆⊥a0|∇⊥∆ϕ|2 +4∇2∇⊥ϕ ·∇2a0∇2∇⊥ϕ−∆⊥a0|∇2∇⊥ϕ|2

+
1

2
∆3
⊥b0|ϕ|2−∆2

⊥b0|∇ϕ|2−∇ϕ ·∇2∆b0∇ϕ+∆⊥b0|∆ϕ|2−2b0|∇∆ϕ|2

+4∇2ϕ ·∇2b0∇2ϕ+2∇2ϕ ·∇3b0∇ϕ−2a0|∇⊥∇∆ϕ|2
)}

= (Bϕ,ψ)≤‖Bϕ‖H1(Ω)‖∆2ϕ‖H−1(Ω),

which, using a0>0, semi-norm equivalence between ‖∆s ·‖L2(Ω) (resp. ‖∇∆s ·‖L2(Ω))
and | · |H2s(Ω) (resp. | · |H2s+1(Ω)), and the Cauchy–Schwarz inequality, leads to

∫
Ω

dx

{
α2b0|∇∆ϕ|2 +a0|∇⊥∆ϕ|2

(
1−Cα2 ‖∇

2
⊥a0‖L∞(Ω⊥)

a0

)}
≤‖Bϕ‖H1(Ω)‖∆2ϕ‖H−1(Ω) +C(α,a0,b0)‖ϕ‖2H2(Ω). (4.36)

Above and in the sequel we use the notations
∇2∇⊥ϕ ·∇2a0∇2∇⊥ϕ=

∑
i,j,k,l∂

2
il∂⊥jϕ∂

2
ika0∂

2
kl∂⊥jϕ,

∇2ϕ ·∇2b0∇2ϕ=
∑
i,j,k∂

2
ikϕ∂

2
ijb0∂

2
jkϕ, and ∇2ϕ ·∇3b0∇ϕ=

∑
i,j,k∂

2
ijϕ∂

3
ijkb0∂kϕ.

Using a0, b0>0, α‖∇⊥ loga0‖L∞(Ω⊥)�1, (4.35), and the Poincaré inequality, since the

semi-norm ‖∆ ·‖L2(Ω), and semi-norm | · |H2(Ω) are equivalent, expression (4.36) leads to

‖ϕ‖H3(Ω)≤C(α,a0,b0,Ω)‖Bϕ‖H1(Ω). (4.37)

H4 estimate: Finally, we deal with the H4-norm estimate. If we take ψ=−∆3ϕ, using
some integration by parts, we obtain∫

Ω

dx
{(
∇∆a0∇⊥ϕ+∆a0∇∇⊥ϕ+2∇2a0∇∇⊥ϕ

)
·∇∇⊥∆ϕ

+(2∇a0 ·∇(∇∇⊥ϕ)+∇a0∇⊥∆ϕ) ·∇∇⊥∆ϕ+a0|∇∇⊥∆ϕ|2

+
(
ϕ∇∆b0 +∆b0∇ϕ+2∇2b0∇ϕ+2∇2ϕ∇b0 +∆ϕ∇b0 +b0∇∆ϕ

)
·∇∆ϕ

− α
2

2

[
−(∆2a0∇⊥ϕ+4∇∆a0 ·∇∇⊥ϕ) ·∇⊥∆2ϕ+3∇∆a0 ·∇∇⊥∆ϕ ·∇⊥∆ϕ

+3∆⊥a0|∇∇⊥∆ϕ|2 +3∇∇⊥∆ϕ ·∇2a0∇∇⊥∆ϕ−2a0|∆2∇⊥ϕ|2

−(ϕ∆2b0 +4∇∆b0 ·∇ϕ+3∆b0∆ϕ+6∇b0 ·∇∆ϕ+4∇2b0 ·∇2ϕ)∆2ϕ

−4∇2∇⊥a0 ·∇2∇⊥ϕ∆2ϕ−4∇2a0 ·∇2∆⊥ϕ∆2ϕ−2b0|∆2ϕ|2
]}

= (Bϕ,ψ)≤‖Bϕ‖H2(Ω)‖∆3ϕ‖H−2(Ω), (4.38)
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which, using a0>0, some integrations by parts for the penultimate term of left-hand
side of equality (4.38), semi-norm equivalence between ‖∆s ·‖L2(Ω) (resp. ‖∇∆s ·‖L2(Ω))
and | · |H2s(Ω) (resp. | · |H2s+1(Ω)), and the Cauchy–Schwarz inequality, leads to

∫
Ω

dx

{
α2b0|∆2ϕ|2 +a0|∇∇⊥∆ϕ|2

(
1−Cα2 ‖∇

2
⊥a0‖L∞(Ω⊥)

a0

)}
≤‖Bϕ‖H2(Ω)‖∆3ϕ‖H−2(Ω) +C(α,a0,b0)‖ϕ‖H3(Ω)‖ϕ‖H4(Ω). (4.39)

Using a0, b0>0, α‖∇⊥ loga0‖L∞(Ω⊥)�1, (4.37), and the Poincaré inequality, expression
(4.39) leads to

‖ϕ‖H4(Ω)≤C(α,a0,b0,Ω)‖Bϕ‖H2(Ω).

Hs estimate, s>4: From estimates (4.34), (4.36), and (4.39) we observe, for s>1, a
recurrence formula given by∫

Ω

dx

{
α2b0|Dbϕ|2 +a0|Da∇⊥ϕ|2

(
1−Cα2 ‖∇

2
⊥a0‖L∞(Ω⊥)

a0

)}
≤‖Bϕ‖Hs−2(Ω)‖(−1)s−1∆s−1ϕ‖H−s+2(Ω) +C(α,a0,b0)‖ϕ‖Hs−1(Ω)‖ϕ‖Hs(Ω), (4.40)

with Db = ∆s/2 (resp. Db =∇∆(s−1)/2) and Da =∇∆(s−2)/2 (resp. Da = ∆(s−1)/2) for
s even (resp. odd). Before proving (4.40), let us see the consequence of (4.40). Using
a0, b0>0, α‖∇⊥ loga0‖L∞(Ω⊥)�1, (4.33), and the Poincaré inequality, we obtain

‖ϕ‖Hs(Ω)≤C(α,a0,b0,Ω)‖Bϕ‖Hs−2(Ω), ∀s≥1,

which combined with estimate (4.31), ends the proof. We now prove the estimate (4.40)
with s≥5, for s even, the proof being the same for s odd. If we take ψ= (−1)s−1∆s−1ϕ,
after some integrations by parts, we obtain∫

Ω

dx
{

(−1)s
[
∆

s−2
2 (∇a0∇⊥ϕ) ·∆

s−2
2 ∇∇⊥ϕ

+∆
s−2
2 (a0∇∇⊥ϕ) ·∆

s−2
2 ∇∇⊥ϕ+∆

s−2
2 (∇b0ϕ) ·∆

s−2
2 ∇ϕ

+∆
s−2
2 (b0∇ϕ) ·∆

s−2
2 ∇ϕ

]
− α2

2
(−1)s−1

[
2∆

s
2 (a0∇⊥ϕ) ·∆ s

2∇⊥ϕ

+∆
s
2 (b0ϕ)∆

s
2ϕ−2∆

s−1
2 (∇a0 ·∇∇⊥ϕ) ·∆

s−1
2 ∇⊥ϕ+∆

s−2
2 (b0∆ϕ)∆

s−2
2 ∆ϕ

]}
= (Bϕ,ψ)≤‖Bϕ‖Hs−2(Ω)‖(−1)s−1∆s−1ϕ‖H−s+2(Ω). (4.41)

In the sequel, we use the following Kato–Ponce type commutator estimates, whose proof
can be found in Section 3.6 of Chapter 3 of [37]. Let P ∈OPSs1,0, then

‖[P,f ]g‖L2(Ω)≤C(‖f‖Lip(Ω)‖g‖Hs−1(Ω) +‖f‖Hs(Ω)‖g‖L∞(Ω)), (4.42)

where [P,f ]g=P (fg)−fPg. Using (4.42) with s>7/2, the first term of the left-hand
side of (4.41) can be bounded by

‖∇⊥a0‖L∞(Ω⊥)‖ϕ‖Hs−1(Ω)‖ϕ‖Hs−1(Ω)‖ϕ‖Hs(Ω) +‖[∆
s−2
2 ,∇⊥a0]∇⊥ϕ‖L2(Ω)‖ϕ‖Hs(Ω)

≤C(s,a0)‖ϕ‖Hs−1(Ω)‖ϕ‖Hs(Ω). (4.43)
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For the second term of the left-hand side of (4.41), we get

(−1)s
∫

Ω

dx∆
s−2
2 (a0∇∇⊥ϕ) ·∆

s−2
2 ∇∇⊥ϕ

=

∫
Ω

dx
{
a0|∆

s−2
2 ∇∇⊥ϕ|2 +∆

s−2
2 ∇∇⊥ϕ · [∆

s−2
2 ,a0]∇∇⊥ϕ

}
, (4.44)

where the second term of the right-hand side of (4.44) is bounded by

‖[∆
s−2
2 ,a0]∇∇⊥ϕ‖L2(Ω)‖ϕ‖Hs(Ω)≤C(a0)‖ϕ‖Hs−1(Ω)‖ϕ‖Hs(Ω), (4.45)

by using (4.42) with s>9/2. The third term of the left-hand side of (4.41) is bounded
by

‖∇⊥b0‖L∞(Ω⊥)‖ϕ‖Hs−2(Ω)‖ϕ‖Hs−1(Ω) +‖[∆
s−2
2 ,∇b0]ϕ‖L2(Ω)‖ϕ‖Hs−1(Ω)

≤C(s,b0)‖ϕ‖Hs−1(Ω)‖ϕ‖Hs(Ω), (4.46)

using (4.42) with s>3/2, while the fourth term is bounded by

‖b0‖L∞(Ω⊥)‖ϕ‖2Hs−1(Ω) +‖[∆
s−2
2 ,b0]∇ϕ‖L2(Ω)‖ϕ‖Hs−1(Ω)

≤C(s,b0)‖ϕ‖Hs−1(Ω)‖ϕ‖Hs(Ω), (4.47)

using (4.42) with s>5/2. By using the fact that ∆1/2[∆s/2,a0] = [∆s/2,∆1/2a0], and
integration by parts, we obtain, for the fifth term of the left-hand side of (4.41), the
expression

(−1)sα2

{∫
Ω

dxa0|∆s/2∇⊥ϕ|2 +

∫
Ω

dx∆
s−1
2 ∇⊥ϕ · [∆s/2,∆1/2a0]∇⊥ϕ

}
. (4.48)

Using equivalence between semi-norms |∇⊥ · |Hs−1(Ω), |∇∇⊥ · |Hs−2(Ω), and ‖∆ s−2
2 ∇∇⊥ ·

‖L2(Ω), the Poincaré inequality ‖∇⊥ϕ‖Hs−1(Ω)≤C(Ω)|∇⊥ϕ|Hs−1(Ω), and commutator
estimate (4.42) with s>5/2, the second term of (4.48) is bounded by

Cα2‖∇2
⊥a0‖L∞(Ω⊥)

∫
Ω

dx|∆
s−2
2 ∇∇⊥ϕ|2 +C(α,a0)‖ϕ‖Hs−1(Ω)‖ϕ‖Hs(Ω). (4.49)

The sixth term of the left-hand side of (4.41) can be rewritten as

(−1)s
α2

2

{∫
Ω

b0|∆s/2ϕ|2 +

∫
Ω

∆s/2ϕ[∆s/2,b0]ϕ

}
, (4.50)

where the second term of (4.50) can be bounded by

C(α)‖[∆ s
2 ,b0]ϕ‖L2(Ω)‖ϕ‖Hs(Ω)≤C(α,b0)‖ϕ‖Hs−1(Ω)‖ϕ‖Hs(Ω) (4.51)

by using (4.42) with s>5/2. Using integration by parts, commutator estimate (4.42)
with s>9/2, the Poincaré inequality, and equivalence between some semi-norms, the
seventh term of the left-hand side of (4.41) can be estimated as

(−1)sα2

∫
Ω

dx∆
s−1
2 (∇a0 ·∇∇⊥ϕ) ·∆

s−1
2 ∇⊥ϕ
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≤α2

{∫
Ω

dx
1

2
|∆a0||∆

s−1
2 ∇⊥ϕ|2 +‖[∆

s−1
2 ,∇a0]∇∇⊥ϕ‖L2(Ω)‖∆

s−1
2 ∇⊥ϕ‖L2(Ω)

}
≤Cα2‖∇2

⊥a0‖L∞(Ω⊥)

∫
Ω

dx|∇∆
s−2
2 ∇⊥ϕ|2

+Cα2
(
‖∇2
⊥a0‖L∞(Ω⊥)‖∇∇⊥ϕ‖Hs−2(Ω)‖∆

s−2
2 ∇∇⊥ϕ‖L2(Ω)

+‖a0‖Hs+1(Ω⊥)‖ϕ‖Hs−1(Ω)‖ϕ‖Hs(Ω)

)
≤Cα2‖∇2

⊥a0‖L∞(Ω⊥)

∫
Ω

dx|∇∆
s−2
2 ∇⊥ϕ|2 +C(α,a0)‖ϕ‖Hs−1(Ω)‖ϕ‖Hs(Ω). (4.52)

Finally, the eighth term of the left-hand side of (4.41) can be rewritten as

(−1)s
α2

2

{∫
Ω

b0|∆s/2ϕ|2 +

∫
Ω

∆s/2ϕ[∆(s−2)/2,b0]∆ϕ

}
, (4.53)

where the second term of (4.53) can be bounded by

C(α)‖[∆
s−2
2 ,b0]∆ϕ‖L2(Ω)‖ϕ‖Hs(Ω)≤C(α,b0)‖ϕ‖Hs−1(Ω)‖ϕ‖Hs(Ω), (4.54)

by using (4.42) with s>9/2. Gathering all estimates (4.43)–(4.54), (4.41) leads to
(4.40), which ends the proof.

4.2.3. A priori estimates for the density c and its inverse %. In this
section, we obtain a priori estimates on the density c and its inverse %. The density c
satisfies equation (3.29), which can be recast as

∂tc+V ·∇c+c∂ u= 0. (4.55)

In order to obtain a priori estimates on % := 1/c, we easily deduce from (3.29) that %
satisfies

∂t%+V ·∇%−%∂ u= 0. (4.56)

If we now consider an application ψ :R2→R, then thanks to the properties of the Bessel
function J0, we have ‖J⊥ψ‖Hs(R2)≤‖ψ‖Hs(R2) which leads to

‖vE‖Hs(Ω)≤‖J⊥∇⊥⊥φ‖Hs(Ω)≤‖φ‖Hs+1(Ω)≤C(1+‖c‖L2
ν(Σ;Hs−1(Ω))). (4.57)

Using (4.57) and standard energy estimates (see [17, 31] for examples) for continuity
equation (4.55), we get, for s>5/2,

d

dt
‖c‖Hs(Ω)≤C(s,α,a0,b0,ni0,Ω,Σ)‖c‖Hs(Ω)

(1+‖u‖Hs+1(Ω) +‖c‖L2
ν(Σ;Hs−1(Ω))). (4.58)

Since equations (4.56) and (4.55) have the same mathematical structure, we also obtain,
for s>5/2,

d

dt
‖%‖Hs(Ω)≤C(s,α,a0,b0,ni0,Ω,Σ)‖%‖Hs(Ω)

(1+‖u‖Hs+1(Ω) +‖c‖L2
ν(Σ;Hs−1(Ω))). (4.59)

Thus we arrive at estimates for c and %.
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4.2.4. A priori estimates for the velocity u. In this section, we obtain a
priori estimate on the velocity u which satisfies equation (3.30). Let β be a multi-index
such that |β|≤s+1. From Proposition 4.4, we know that the operator (1−α2A) is
invertible as long as c and % are regular enough. Therefore, if we apply the operator
∂βx (1−α2A)−1 to (3.30), multiply the result by ∂βxu, and integrate over Ω, we obtain,
for almost σ∈Σ and t>0,

1

2

d

dt
‖∂βxu‖2L2(Ω) +

∫
Ω

dx∂βxu∂
β
x (u∂ u)+

∫
Ω

dx∂βxu∂
β
x (vE ·∇⊥u)

−α2

∫
Ω

dx∂βxu∂
β
x

(
(1−α2A)−1(∂ uAu)

)
+

∫
Ω

dx∂βxu∂
β
x

(
(1−α2A)−1∂ (c2/8)

)
∫

Ω

dx∂βxu∂
β
x

(
(1−α2A)−1∂ J⊥φ

)
− α

2

2

∫
Ω

dx∂βxu∂
β
x

(
(1−α2A)−1∂ |∇u|2

)
= 0. (4.60)

Using integration by parts, the Cauchy–Schwarz inequality, estimate (4.1), and Sobolev
embedding Hs(Ω) ↪→L∞(Ω), with s>3/2, the second term of the left-hand side of (4.60)
with |`′|= 1 can be bounded by∫

Ω

dx∂βxu∂
β
x (u∂ u) =−1

2

∫
Ω

dx |∂βxu|2∂ u

+

∫
Ω

dx∂βxu

β∑
`>0

(
β
`

)
∂`−`

′

x (∂`
′

x u) ·∂β−`x ∂ u≤C‖u‖3Hs+1(Ω). (4.61)

Using integration by parts associated with the fact that ∇⊥ ·vE = 0 and the Cauchy–
Schwarz inequality, the third term of the left-hand side of (4.60), with |`′|= 1, can be
bounded by∫

Ω

dx∂βxu∂
β
x (vE ·∇⊥u) =

∫
Ω

dx∂βxu(∇⊥∂βxu) ·vE+

∫
Ω

dx∂βxu

β∑
`>0

(
β
`

)
∂`xvE ·∂β−`x ∇⊥u

≤
β∑
`>0

(
β
`

)
‖∂`−`

′

x (∂`
′

x vE) ·∂β−`x ∇⊥u‖L2(Ω)‖u‖Hs+1(Ω)

≤C‖u‖2Hs+1(Ω)(1+‖c‖L2
ν(Σ;Hs(Ω))), (4.62)

where we have used estimate (4.1), Sobolev embedding Hs(Ω) ↪→L∞(Ω), with s>3/2
and estimate (4.57). Using Cauchy–Schwarz inequality, Lemma 4.3, Proposition 4.4,
estimate (4.1) and Sobolev embedding Hs−1(Ω) ↪→L∞(Ω), with s>5/2, the fourth term
of the left-hand side of (4.60), can be bounded by

α2

∫
Ω

dx∂βxu∂
β
x

(
(1−α2A)−1(∂ uAu)

)
≤‖u‖Hs+1(Ω)‖∂βx

(
(1−α2A)−1(∂ uAu)

)
‖L2(Ω)

≤‖u‖Hs+1(Ω)G
(
‖c‖Hmax(s,5/2)(Ω),‖%‖Hmax(s,5/2)(Ω)

)
‖∂ uAu‖Hs−1(Ω)

≤‖u‖Hs+1(Ω)G
(
‖c‖Hmax(s,5/2)(Ω),‖%‖Hmax(s,5/2)(Ω)

)
∑
|γ|≤s−1

γ∑
`≥0

(
γ
`

)
‖∂`x(∂ u)∂γ−`x (Au)‖L2(Ω)

≤C‖u‖2Hs+1(Ω)‖u‖Hs(Ω)
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G
(
‖c‖Hmax(s,5/2)(Ω),‖%‖Hmax(s,5/2)(Ω)

)
(1+‖%‖Hs−1(Ω)‖c‖Hs(Ω)). (4.63)

Using Cauchy–Schwarz inequality, Proposition 4.4, estimate (4.1) and Sobolev embed-
ding Hs−1(Ω) ↪→L∞(Ω), with s>5/2, the fifth term of the left-hand side of (4.60), can
be bounded by∫

Ω

dx∂βxu∂
β
x

(
(1−α2A)−1∂ (c2/8)

)
≤‖u‖Hs+1(Ω)‖∂βx

(
(1−α2A)−1∂ (c2/8)

)
‖L2(Ω)

≤C‖u‖Hs+1(Ω)G
(
‖c‖Hmax(s,5/2)(Ω),‖%‖Hmax(s,5/2)(Ω)

)
‖c∂ c‖Hs−1(Ω)

≤C‖u‖Hs+1(Ω)G
(
‖c‖Hmax(s,5/2)(Ω),‖%‖Hmax(s,5/2)(Ω)

)
∑
|γ|≤s−1

γ∑
`≥0

(
γ
`

)
‖∂`xc∂γ−`x (∂ c)‖L2(Ω)

≤C‖c‖2Hs(Ω)‖u‖Hs+1(Ω)G
(
‖c‖Hmax(s,5/2)(Ω),‖%‖Hmax(s,5/2)(Ω)

)
. (4.64)

Using Cauchy–Schwarz inequality, Proposition 4.4, and estimate (4.57) the sixth term
of the left-hand side of (4.60), for s≥1, can be bounded by∫

Ω

dx∂βxu∂
β
x

(
(1−α2A)−1∂ J⊥φ

)
≤‖u‖Hs+1(Ω)‖∂βx

(
(1−α2A)−1(∂ J⊥φ)

)
‖L2(Ω)

≤C‖u‖Hs+1(Ω)G
(
‖c‖Hmax(s,5/2)(Ω),‖%‖Hmax(s,5/2)(Ω)

)
‖φ‖Hs(Ω)

≤C‖u‖Hs+1(Ω)(1+‖c‖L2
ν(Σ;Hs−2(Ω)))G

(
‖c‖Hmax(s,5/2)(Ω),‖%‖Hmax(s,5/2)(Ω)

)
. (4.65)

Using the Cauchy–Schwarz inequality, Proposition 4.4, estimate (4.1), and Sobolev em-
bedding Hs−1(Ω) ↪→L∞(Ω), with s>5/2, the seventh term of the left-hand side of
(4.60), can be bounded by

α2

2

∫
Ω

dx∂βxu∂
β
x

(
(1−α2A)−1∂ |∇u|2

)
≤‖u‖Hs+1(Ω)‖∂βx

(
(1−α2A)−1(∂ |∇u|2)

)
‖L2(Ω)

≤‖u‖Hs+1(Ω)G
(
‖c‖Hmax(s,5/2)(Ω),‖%‖Hmax(s,5/2)(Ω)

)
‖∂ |∇u|2‖Hs−1(Ω)

≤‖u‖Hs+1(Ω)G
(
‖c‖Hmax(s,5/2)(Ω),‖%‖Hmax(s,5/2)(Ω)

)
∑
|γ|≤s−1

γ∑
`≥0

(
γ
`

)
‖∂`x(∇u) ·∂γ−`x (∇∂ u)‖L2(Ω)

≤C‖u‖2Hs+1(Ω)‖u‖Hs(Ω)G
(
‖c‖Hmax(s,5/2)(Ω),‖%‖Hmax(s,5/2)(Ω)

)
. (4.66)

From expression (4.60) and estimates (4.61)–(4.66), we obtain, for s>5/2,

d

dt
‖u‖Hs+1(Ω)≤C

{
‖u‖2Hs+1(Ω) +‖u‖Hs+1(Ω)(1+‖c‖L2

ν(Σ;Hs(Ω)))

+G
(
‖c‖Hmax(s,5/2)(Ω),‖%‖Hmax(s,5/2)(Ω)

)[
‖c‖2Hs(Ω) +

(
1+

‖c‖L2
ν(Σ;Hs−2(Ω))

)
+ ‖u‖Hs(Ω)‖u‖Hs+1(Ω)(1+‖%‖Hs(Ω)‖c‖Hs(Ω))

]}
≤G

(
‖u‖Hs+1(Ω),‖c‖Hmax(s,5/2)(Ω),‖%‖Hmax(s,5/2)(Ω),‖c‖L2(Σ;Hs(Ω))

)
, (4.67)
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where the function G is positive and nondecreasing with respect to its arguments.
If we set X(t) =‖c(t)‖L∞(Σ;Hs(Ω)) +‖%(t)‖L∞(Σ;Hs(Ω)) +‖u(t)‖L∞(Σ; Hs+1(Ω)), since

‖·‖Lpν(Σ;Hs(Ω))≤‖·‖L∞(Σ;Hs(Ω)) for 1≤p<∞ (because ν is a finite measure), then, using
(4.58), (4.59), and (4.67), after time integration, we obtain

X(t)≤X(0)+

∫ t

0

F(X(τ))dτ,

where the function F :R+→R+ is a positive and nondecreasing function. Therefore
from Gronwall’s lemma (see Appendix A of [10]), there exist a time T >0 and a positive
function K(t), finite on [0,T ], such that X(t)<K(t), ∀t∈ [0,T ]. Consequently, using
equations (3.30)–(3.31), (4.56), and (4.55) we obtain that, for s>5/2 and 1≤p<∞,

c,%∈L∞([0,T ];Lpν ∩L∞(Σ;Hs(Ω)))∩Lip([0,T ];Lpν ∩L∞(Σ;Hs−1(Ω))),

u∈L∞([0,T ];Lpν ∩L∞(Σ;Hs+1(Ω)))∩Lip([0,T ];Lpν ∩L∞(Σ;Hs(Ω))),

φ∈L∞([0,T ];Hs+2(Ω))∩Lip([0,T ];Hs+1(Ω)).

 (4.68)

4.3. Existence. In this section, using a priori estimates (4.68) and an iterative
scheme, we prove the existence of sequences of solutions for a modified problem and
their convergence to limit points which are solutions of the unmodified problem formed
by equations (3.29)–(3.31) and (4.56). Let ζδk be a sequence of mollifier such that
ζδ = ζ(x/δ)/δ3 (0<δ<1,

∫
R3 ζdx= 1) and δk→0 as k→∞. We define the iteration

scheme through the solution (ck+1,%k+1,uk+1,φk+1) of the following modified problem

∂tc
k+1 +vE

k ·∇⊥ck+1 +uk∂ ck+1 +ck∂ uk = 0, ck+1(t= 0) = ζδk+1
∗c0,

∂t%
k+1 +vE

k ·∇⊥%k+1 +uk∂ %k+1−%k∂ uk = 0, %k+1(t= 0) = ζδk+1
∗%0,(

Q− α2

2 [∆Q+Q∆]
)
φk =

∫
Σ

dν(σ)J⊥ck−
(

1− α
2

2
∆

)
ni0,

∂tu
k+1 +vE

k ·∇⊥uk+1 +uk∂ uk+1−α2(1−α2Ak)−1(∂ ukAkuk)

+(1−α2Ak)−1∂
(
ck

2

8 +J⊥φk− α2

2 |∇u
k|2
)

= 0, uk+1(t= 0) = ζδk+1
∗u0.


(4.69)

Let us show the existence and convergence of the sequences ({ck}k≥0, {%k}k≥0, {uk}k≥0,
{φk}k≥0). Following the proof of a priori estimates (4.68) obtained in the pre-
vious section, we can show in the same way that the sequences of solutions
({ck}k≥0, {%k}k≥0, {uk}k≥0, {φk}k≥0) of (4.69) satisfied the following bounds, for all
k≥0, s>5/2, and 1≤p<∞:

ck,%k ∈L∞([0,T ];Lpν ∩L∞(Σ;Hs(Ω))∩Lip([0,T ];Lpν ∩L∞(Σ;Hs−1(Ω))),

uk ∈L∞([0,T ];Lpν ∩L∞(Σ;Hs+1(Ω))∩Lip([0,T ];Lpν ∩L∞(Σ;Hs(Ω))),

φk ∈L∞([0,T ];Hs+2(Ω))∩Lip([0,T ];Hs+1(Ω)).

 (4.70)

The lack of regularity of a priori estimates with respect to the variable σ∈Σ prevents us
from using Ascoli–Arzelà compactness theorem and compact Sobolev embeddings to get
strong convergence of the sub-sequences of ({ck}k≥0, {%k}k≥0, {uk}k≥0, {φk}k≥0) (which
converge weakly thanks to weak compactness and bounds (4.70)). In order to recover
strong convergence, we have to show directly that the sequences are Cauchy sequences
in a Banach space. Let us define δck = ck−ck−1, δuk =uk−uk−1, δφk =φk−φk−1 and
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the operator Aδk = (δck)−1∇·(δck∇ ). By subtraction of two consecutive stages k and
k−1 of the system (4.69) we obtain the system for the difference sequences ({δck}k>0,
{δuk}k>0, {δφk}k>0)

∂tδc
k+1 +vE

k ·∇⊥δck+1 +uk∂ δck+1 +δvE
k ·∇⊥ck

+δuk∂ ck+ck∂ δuk+δck∂ uk−1 = 0,

δck+1(t= 0) = (ζδk+1
−ζδk)∗c0,

 (4.71)

∂tδu
k+1 +vE

k ·∇⊥δuk+1 +uk∂ δuk+1 +δvE
k ·∇⊥uk+δuk∂ uk

−α2(1−α2Ak−1)−1
{
∂ δukAkuk+∂ uk−1Ak−1δuk+∂ uk−1%kδckAδkuk

− ∂ uk−1%kδckAk−1uk−δck∂ (ck+ck−1)/8

− ∂ J⊥δφk+∇δuk ·∂ ∇uk+∇uk−1 ·∂ ∇δuk

+ δck%kAδk(∂tu
k+1 +vE

k ·∇⊥uk+1 +uk∂ uk+1)

− δck%kAk−1(∂tu
k+1 +vE

k ·∇⊥uk+1 +uk∂ uk+1)
}

= 0,

δuk+1(t= 0) = (ζδk+1
−ζδk)∗u0,


(4.72)

and (
Q− α

2

2
[∆Q+Q∆]

)
δφk =

∫
Σ

dν(σ)J⊥δck, (4.73)

Starting from equations (4.71) and (4.73) and thus performing the same kind of en-
ergy estimates done in Section 4.2.3 except for the second (resp. third) term of (4.71)
for which we rewrite the terms ∇⊥δck+1 (resp. ∂ δck+1) as Λ(Λ−1∇⊥δck+1) (resp.
Λ(Λ−1∂ δck+1)) with Λ =(1−∆)1/2 before applying estimate (4.1), we obtain for
s>5/2,

d

dt
‖δck+1‖Hs−1(Ω)

≤C
(
s,α,a0,b0,n0,Ω,Σ,‖ck‖L∞([0,T ]×Σ;Hs(Ω)),{‖u`‖L∞([0,T ]×Σ;Hs(Ω))}`=k−1,k

)(
‖δck+1‖Hs−1(Ω) +‖δck‖Hs−1(Ω) +‖δuk‖Hs(Ω) +‖δck‖L2

ν(Σ;Hs−2(Ω))

)
. (4.74)

Considering equations (4.72) and (4.73) and then performing the same kind of energy
estimates done in Section 4.2.4, except for the seventh, thirteenth, fourteenth, and fif-
teenth terms of (4.72), for which we rewrite the terms Ak−1δuk, ∂ ∇δuk, Aδk(∂tu

k+1 +
vE

k ·∇⊥uk+1 +uk∂ uk+1) and Ak−1(∂tu
k+1 +vE

k ·∇⊥uk+1 +uk∂ uk+1) respectively as
Λ(Λ−1Ak−1δuk), Λ(Λ−1∂ ∇δuk), Λ(Λ−1Aδk(∂tu

k+1 +vE
k ·∇⊥uk+1 +uk∂ uk+1)) and

Λ(Λ−1Ak−1(∂tu
k+1 +vE

k ·∇⊥uk+1 +uk∂ uk+1)) with Λ = (1−∆)1/2 before applying
estimate (4.1), we obtain, for s>5/2,

d

dt
‖δuk+1‖Hs(Ω)≤C (s,α,a0,b0,n0,Ω,Σ,

{‖c`‖L∞([0,T ]×Σ;Hs+1(Ω))}`=k−1,k,{‖u`‖L∞([0,T ]×Σ;Hs+1(Ω))}`=k−1,k,k+1,

{‖%`‖L∞([0,T ]×Σ;Hs(Ω))}`=k−1,k,‖∂tuk+1‖L∞([0,T ]×Σ;Hs(Ω))

)(
‖δuk+1‖Hs(Ω) +‖δck‖Hs−1(Ω) +‖δuk‖Hs(Ω) +‖δck‖L2

ν(Σ;Hs−1(Ω))

)
. (4.75)
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If we set Y k+1(t) =‖δck+1(t)‖Lpν∩L∞(Σ;Hs−1(Ω)) +‖δuk+1(t)‖Lpν∩L∞(Σ;Hs(Ω)), with 2≤
p<∞, then, using (4.74)–(4.75), we get the differential inequality

d

dt
Y k+1(t)≤C(Y k(t)+Y k+1(t)),

which leads, after using a Gronwall lemma to the estimate

sup
t∈[0,T ]

Y k+1(t)≤Y k+1(0)exp(CT )+CT exp(CT ) sup
t∈[0,T ]

Y k(t), (4.76)

where

Y k+1(0)exp(CT )

= exp(CT )
(
‖(ζδk+1

−ζδk)∗c0‖Lpν∩L∞(Σ;Hs−1(Ω)) + ‖(ζδk+1
−ζδk)∗u0‖Lpν∩L∞(Σ;Hs(Ω))

)
≤C

(
T,‖c0‖Lpν∩L∞(Σ;Hs(Ω)),‖u0‖Lpν∩L∞(Σ;Hs+1(Ω))

)
|δk+1−δk|δk+1/δk = εk.

As a result, any good choice of δk (e.g. δk = 1/k) makes the series
∑
k εk convergent

(εk =O(k−2) if δk = 1/k). Therefore, using (4.76), if T is small enough, there exists a
constant κ<1 such that, for k>0,

sup
t∈[0,T ]

Y k+1(t)≤κ sup
t∈[0,T ]

Y k(t)+εk, (4.77)

which proves that ‖ck+1−ck‖L∞([0,T ];Lpν∩L∞(Σ;Hs−1(Ω))),

‖%k+1−%k‖L∞([0,T ];Lpν∩L∞(Σ;Hs−1(Ω))) (since %k+1−%k =−(ck+1−ck)%k+1%k), ‖uk+1−
uk‖L∞([0,T ];Lpν∩L∞(Σ;Hs(Ω))) and ‖φk+1−φk‖L∞([0,T ];Hs+1(Ω)) (using equation (4.73)) are
bounded for any k≥0, and 1≤p<∞. Using (4.77) with δk = 1/k, we obtain, for s>5/2,
and 1≤p<∞, that

‖cq−cq′‖L∞([0,T ];Lpν∩L∞(Σ;Hs−1(Ω)))

≤
∑q
k=q′+1‖ck−ck−1‖L∞([0,T ];Lpν∩L∞(Σ;Hs−1(Ω))) ≤ C |q−q

′|
qq′ ,

‖%q−%q′‖L∞([0,T ];Lpν∩L∞(Σ;Hs−1(Ω)))

≤
∑q
k=q′+1‖%k−%k−1‖L∞([0,T ];Lpν∩L∞(Σ;Hs−1(Ω))) ≤ C |q−q

′|
qq′ ,

‖uq−uq′‖L∞([0,T ];Lpν∩L∞(Σ;Hs(Ω)))

≤
∑q
k=q′+1‖uk−uk−1‖L∞([0,T ];Lpν∩L∞(Σ;Hs(Ω))) ≤ C |q−q

′|
qq′ ,

‖φq−φq′‖L∞([0,T ];Hs+1(Ω))

≤
∑q
k=q′+1‖φk−φk−1‖L∞([0,T ];Hs+1(Ω)) ≤ C |q−q

′|
qq′ ,

which proves that the sequences {ck}k≥0, {%k}k≥0, {uk}k≥0, and {φk}k≥0 are a Cauchy
sequences in the Banach space L∞([0,T ];Lpν ∩L∞(Σ;Hs−1(Ω))), L∞([0,T ];Lpν ∩
L∞(Σ;Hs−1(Ω))), L∞([0,T ];Lpν ∩L∞(Σ;Hs(Ω))), and L∞([0,T ];Hs+1(Ω)),
respectively, with s>5/2 and 1≤p<∞, and have strong limit points
(c,%,u,φ)∈ (L∞([0,T ];Lpν ∩L∞(Σ;Hs(Ω))))2×L∞([0,T ];Lpν ∩L∞(Σ;Hs+1(Ω)))×
L∞([0,T ];Hs+2(Ω)), with s>5/2, 1≤p<∞ and of course %= 1/c. Using strong
convergence of the sequences {ck}k≥0, {%k}k≥0, {uk}k≥0 and {φk}k≥0, we can
pass to the limit in the iterative scheme (4.69) and consequently the limit point
(c,%,u,φ) satisfies the original unmodified system (3.29)–(3.31) and (4.56). In addition,
from equations (3.29)–(3.31), and (4.56), we deduce that (c,%,u,φ)∈ (Lip([0,T ];Lpν ∩
L∞(Σ;Hs−1(Ω))))2×Lip([0,T ];Lpν ∩L∞(Σ;Hs(Ω)))×Lip([0,T ];Hs+1(Ω)) with s>5/2
and 1≤p<∞.
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4.4. Uniqueness. Here, we prove the uniqueness of solutions built in the
previous section. For this purpose, we consider two solutions (ci,ui,φi), i= 1,2,
of the system formed by equations (3.29)–(3.31). If we set c= c1−c2, u=u1−u2,
and φ=φ1−φ2, then after subtracting equations (3.29)–(3.31) for each solution,
we get a system similar to (4.71)–(4.73). Therefore, following the same kind of
analysis done for the existence proof where we have obtained a priori estimates
(4.74)–(4.75), we show that, for s>5/2, there exists a constant C?, depending on
s, α, a0, b0, n0, Ω, Σ, {‖ci‖L∞([0,T ]×Σ;Hs(Ω))}i=1,2, {‖ui‖L∞([0,T ]×Σ;Hs+1(Ω))}i=1,2,
{‖%i‖L∞([0,T ]×Σ;Hs(Ω))}i=1,2, and {‖∂tui‖L∞([0,T ]×Σ;Hs(Ω))}i=1,2 such that

d

dt
‖c‖Hs−1(Ω)≤C?

(
‖c‖Hs−1(Ω) +‖u‖Hs(Ω) +‖c‖L2(Σ;Hs−2(Ω))

)
(4.78)

and

d

dt
‖u‖Hs(Ω)≤C?

(
‖c‖Hs−1(Ω) +‖u‖Hs(Ω) +‖c‖L2(Σ;Hs−1(Ω))

)
. (4.79)

If we set Z(t) =‖c(t)‖Lpν∩L∞(Σ;Hs−1(Ω)) +‖u(t)‖Lpν∩L∞(Σ;Hs(Ω)), with 2≤p<∞, then,
using (4.78)–(4.79), we get the differential inequality dtZ(t)≤C(t)Z(t), which leads,
after using a Gronwall lemma, to the estimate

sup
t∈[0,T ]

Z(t)≤Z(0)exp

(∫ T

0

C(τ)dτ

)
≤CZ(0).

This last stability inequality proves uniqueness.

5. Conclusion
In this paper, we have derived a new model to deal with small scales in gyrokinetic

turbulence problems, using Lagrangian averaging techniques. It turns out that this
modeling also improves the well-posedness of the model, which should be numerically
and physically more robust than the original one. There are two prospects following
this work. The first one is numerical simulations of this new model and its comparison
with orginal one [8,15,16] and the gyrokinetic-Vlasov model [22]. The second one is to
understand the long-time behaviour of solutions and thus global-in-time well-posedness
of at least weak solutions.
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