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Abstract

In this paper we present a new method for the numerical solution of the relativistic Vlasov–Maxwell system on
a phase-space grid using an adaptive semi-Lagrangian method. The adaptivity is performed through a wavelet mul-
tiresolution analysis, which gives a powerful and natural refinement criterion based on the local measurement of
the approximation error and regularity of the distribution function. Therefore, the multiscale expansion of the dis-
tribution function allows to get a sparse representation of the data and thus save memory space and CPU time.
We apply this numerical scheme to reduced Vlasov–Maxwell systems arising in laser–plasma physics. Interaction of
relativistically strong laser pulses with overdense plasma slabs is investigated. These Vlasov simulations revealed a
rich variety of phenomena associated with the fast particle dynamics induced by electromagnetic waves as electron
trapping, particle acceleration, and electron plasma wavebreaking. However, the wavelet based adaptive method
that we developed here, does not yield significant improvements compared to Vlasov solvers on a uniform mesh
due to the substantial overhead that the method introduces. Nonetheless they might be a first step towards more
efficient adaptive solvers based on different ideas for the grid refinement or on a more efficient implementation.
Here the Vlasov simulations are performed in a two-dimensional phase-space where the development of thin fila-
ments, strongly amplified by relativistic effects requires an important increase of the total number of points of the
phase-space grid as they get finer as time goes on. The adaptive method could be more useful in cases where these
thin filaments that need to be resolved are a very small fraction of the hyper-volume, which arises in higher
dimensions because of the surface-to-volume scaling and the essentially one-dimensional structure of the filaments.
Moreover, the main way to improve the efficiency of the adaptive method is to increase the local character in
phase-space of the numerical scheme, by considering multiscale reconstruction with more compact support and
by replacing the semi-Lagrangian method with more local – in space – numerical scheme as compact finite
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difference schemes, discontinuous-Galerkin method or finite element residual schemes which are well suited for par-
allel domain decomposition techniques.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Vlasov models have long been used to study short pulse high intensity laser–plasma interaction where col-
lisions can be ignored. This is the case for parametric instabilities, beat wave, Raman, Brillouin scattering or
particle acceleration mechanisms. Since the suggestion by Tajima and Dawson [45] of particle acceleration by
means of plasma waves in 1979, various schemes have been proposed to excite large amplitude electron plasma
waves (EPW) (theoretically capable of reaching an electric field of the order of GV/m). Such a wave is of inter-
est as a particle accelerator concept since electron plasma wave amplitude can largely exceed the breaking limit
of the standard metallic cavity based accelerators, which is of the order of 30 MV/m.

One effective way to produce such a wave uses the forward stimulated Raman scattering (SRS) which is a
stimulated decay of incident light wave (pump wave) into a scattered wave and a forward-going plasma wave
[24]. The driven version of this process, the plasma beatwave accelerator (PBWA), relies upon the non-linear
resonant interaction of two parallel intense laser beams [45] with a frequency difference close to the plasma
frequency. In these conditions, the beat of theses two waves resonantly induces a high-phase velocity longitu-
dinal plasma wave which traps and accelerates electrons to relativistic energies. More information can be
found for instance in [23].

Intensities above 1019 W cm�2 are reached with recently developed pulsed lasers and relativistic plasma
wavebreaking can now be experimentally investigated. Particularly, one of the most interesting problems in
this domain is the laser propagation through overdense plasma, in which the propagation is classically forbid-
den (i.e. plasmas having densities above nc ¼ 1:1� 1021k2

0 cm�3, where k0 is the laser wavelength in microns).
However, at very high intensities, two penetration mechanisms have been considered: relativistic self-induced
transparency, and conventional hole boring or forward motion of the critical surface caused by the ponder-
omotive pressure. Furthermore large amplitude waves can be unstable being subject to parametric instabilities.
We will come back to this effect in Sections 6.1 and 6.2.

Since collisions can be ignored, the Vlasov–Maxwell system has to be used. Although very interesting ana-
lytical results are obtained from more simple fluid models such as non-linear dispersion relations, growth
rates, envelope models, Manley–Rowe partition between photons, plasmons or phonons, etc., the importance
of resonant wave–particle interaction leads to the use of the full kinetic relativistic Vlasov equation and fur-
thermore to the use of numerical simulation.

However, the simulations based on the well-known Particle-In-Cell (PIC) method, have difficulty in supply-
ing a usefully precise description of the electron acceleration process. This is because the PIC codes lack
enough particles to display the detailed phase-space structure of the distribution function which is often
obtained in those regions of phase-space where particle and phase velocities are comparable and where trap-
ping occurs. For some work related to laser–plasma interaction and other tasks, using PIC code, we refer to
[30,46,10].

On the other hand, direct solution of the Vlasov partial differential equation itself on a phase-space grid (the
so called Vlasov codes) have been found to be a powerful tool for studying in details the particle dynamics due
to the very fine resolution in phase-space [11,43,41,8,9]. For previous work concerning laser–plasma interac-
tion using Vlasov codes we refer to [37,38,4]. Vlasov simulations are slowly introduced in place of Lagrangian
PIC models for two main reasons: the lack of numerical noise and the fine resolution in velocity space, pro-
vided that the dimension of velocity space is as low as possible. This efficiency (in terms of accuracy and com-
putational time) is however lost when filamentation takes place in phase-space which then requires an
important increase of the total number of points of the phase-space grid to follow this filamentation. Usual
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semi-Lagrangian Vlasov models are not well adapted to describe the Dirac-like distribution functions or fine
phase-space filaments which characterize, for instance, the particle acceleration in laser–plasma interaction or
the well-known phase-space filamentation in velocity of the Vlasov equation. Much progress is then expected
from new adaptive time dependent grids with small mesh size in the non-zero regions and large mesh size for
the sparse regions. This approach bears the promise to improve Vlasov solvers in terms of performance and
accuracy. In the present work we introduce a two-dimensional phase-space mesh which can be refined or dere-
fined adaptively in time. For this purpose we use a technique based on multiresolution analysis which is in the
same spirit as the methods developed in [5,13,34]. The method was first conceived in [6] for the Vlasov–Poisson
system, then used in the context of beam physics in [31,7], and parallelized with optimized data structure in
[35]. In [32] the same method allows to conserve moments up to any order by using the lifting method intro-
duced in [44].

Let us make clear however, that the wavelet based adaptive method that we developed here, does not yield
significant improvements compared to Vlasov solvers on a uniform mesh due to the substantial overhead that
the method introduces. Nonetheless they might be a first step towards more efficient adaptive solvers based on
different ideas for the grid refinement or on a more efficient implementation.

2. PIC versus Vlasov codes

The question arises of the choice between PIC and Vlasov codes, even though PIC simulations (like any
Monte Carlo method) become numerically more interesting as the dimension increases.

Before deciding which code should be the best for a given problem it must be pointed out that solving Pois-
son equation (or Maxwell equations) is the same task for both PIC and Vlasov codes and needs the same spa-
tial grid, with a mesh size Dx of the order of the Debye length kD. Let Nx the number of mesh points for each
spatial direction; the total number of mesh points of the spatial grid for both codes can be estimated as
ðNxÞdx ¼ ðL=DxÞdx for a plasma with a typical length L, dx being the spatial dimension of the problem
(dx = 1, 2 or 3).

On the other hand solving the Vlasov equation with a semi-Lagrangian method consists in a numerical
computation of the characteristics ending at each mesh point (which is the equation of motion for the parti-
cles) followed by an interpolation procedure. This can be compared with a PIC solve which consists in the
computation of the particle motion for each particle followed by a charge and current deposition procedure.
Therefore, it is clear that pushing one particle in a PIC code needs roughly the same numerical effort as recon-
structing a phase-space mesh point in an Eulerian Vlasov code.

Consequently the ratio between the numerical effort for a PIC code and a Vlasov code (CPU time as well as
memory requirement) will scale as the ratio
N vlas

Npart

;

where Nvlas is the total number of mesh points in phase-space for the Vlasov equation and Npart is the total
number of macro-particles in the corresponding PIC code.

For a Vlasov code Nvlas can be written simply as the product of the spatial grid by the velocity grid
N vlas ¼
L
Dx

� �dx

ðNvÞdv ; ð1Þ
where dv is the dimension of the velocity space (dv = 1, 2 or 3). Usually dx = dv but in some cases especially
when the characteristics of the Vlasov equation possess an exact invariant the two numbers may be different.

For a PIC code with a density of macro-particles n0, Npart can be written
Npart ¼ n0Ldx ¼ n0ðDxÞdx L
Dx

� �dx

: ð2Þ
In (2) N dx
x can be easily recognised and we see also the appearance of n0Dxdx which is nothing else but the

inverse of the graininess parameter due to particle discreteness of the PIC code
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gpic ¼
1

n0ðkDÞdx
: ð3Þ
This relation deserves a few comments. A PIC code exhibits a paradoxical situation where the introduction
of a spatial grid Dx � kD allows one to describe the collective effects through the mean field approximation but
at the price of the reintroduction of individual effects due to the finite number of macro-particles. These indi-
vidual effects are often considered as a numerical noise whose measure is clearly gpic as given by (3). Thus
keeping the coherence of the macro-particle model needs gpic to be as small as possible. Npart can be now
written
N part ¼ g�1
pic

L
Dx

� �dx

: ð4Þ
Finally from (1) and (4) we get the ratio
N vlas

N part

¼ gpicðNvÞdv : ð5Þ
To illustrate this relation consider a typical value Nv = 100 which is quite reasonable to have a fine sampling
of the velocity space. From (5) we can draw Table 1.

Although these numbers must be considered with caution they give the general ideas for deciding the use of
PIC or Vlasov Eulerian code. Below the principal diagonal, Vlasov codes offers a better resolution at a smaller
cost, while, above the diagonal, PIC codes must be preferred. To be more precise

� The use of a low gpic value is needed when kinetic effects are dominant (e.g. resonant wave–particle inter-
action as considered). This points to the use of Vlasov codes. Moreover, in the PIC model, particles are
usually loaded so as to reproduce the velocity distribution function f. It means that the velocity space res-
olution on a tail region of f, where resonant wave–particle interaction occurs, would be coarser than in
other regions where f peaks. On the contrary, in a Vlasov code, phase-space resolution is always guaran-
teed, whatever the velocity profile of f.
� Finally the crucial point is the dimension of velocity space. As already demonstrated in [40] when the char-

acteristics of the Vlasov equation possess an exact invariant a drastic reduction in velocity space can be
done. This will be the case in Section 3 below. To sum up:
– For 1D velocity space Vlasov codes must be preferred.
– For 2D velocity space the question is open and depends on the level of noise which is bearable in the PIC

code; if a small level is needed to study the onset of instabilities in laser–plasma interaction with gpic

smaller than 10�4 for instance a Vlasov code has to be used. On the contrary, for gross phenomena
(where a small gpic is not needed) a PIC code will do the job at a lower price.

– For 3D velocity space unless the need of ultra low noise with very small gpic PIC codes remain the only
choice.

Actually, a 1D velocity space is relevant for some important applications to fusion plasmas. This is the case,
for instance, in gyrokinetic modelling of magnetized plasmas: the recently developed gyrokinetic Vlasov code
GYSELA [33] offers powerful capacities to study ion temperature gradient driven turbulence in a tokamak
plasma. This is also the case (see Eq. (15)) for laser plasma interaction and obviously Vlasov codes are pow-
erful tools to study wave–particle interaction with interesting results for trapping and action transfer from par-
ticles and waves.
1
de versus Vlasov code: ratio Nvlas/Npart for Nv = 100

dv = 1 dv = 2 dv = 3

10�2 1 102 104

10�4 10�2 1 102

10�6 10�4 10�2 1



Table 2
PIC code versus Vlasov code: ratio Nvlas/Npart for Nv = 1000

dv = 1 dv = 2 dv = 3

gpic = 10�2 10 104 107

gpic = 10�4 10�1 102 105

gpic = 10�6 10�3 1 103
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Nevertheless we would point out the problem of simulating ultra high intensity lasers. Due to strong accel-
eration, it may happen that most of the particles are localized in tiny regions of phase-space while large regions
are empty of particles. Very fine grids are needed and the number of mesh points in velocity space must be
greater than the value considered in Table 1.

Clearly for those mesh points where f is close to zero, the computer is spending a lot of CPU time in com-
puting only zeros. For instance if filamentation is thin enough to require a finer velocity resolution with
Nv = 1000 instead of Nv = 100, results are less in favor of Vlasov codes as seen in Table 2.

This is a major drawback of Vlasov methods using a uniform and fixed mesh.
Since the non-zero regions evolve continuously with time, there is the need to have adaptive time dependent

grids with small mesh size in the non-zero regions and large mesh size for the sparse regions. This would
decrease Nv to more interesting values for Vlasov simulation purpose.

This paper might be considered as a first attempt to investigate the possible use of adaptive techniques espe-
cially when the interesting physical phenomena occur in a localized phase-space region and do not require a
fine mesh everywhere. The adaptive method can be overlaid to the classical semi-Lagrangian method which is
based on the conservation of the distribution function along particle trajectories. The phase-space mesh can be
updated using a multiresolution technique as wavelet expansion, which gives a sparse representation and a
natural criterion to perform local grid refinements.

Our last remark, before we concentrate on the adaptive mesh Vlasov code, is that this general approach is
also valid for non-neutral plasmas. Non-neutral plasmas, like electrically neutral plasma, exhibit a broad
range of collective properties as equivalent Debye shielding, the fundamental role being played by the confine-
ment (electric or magnetic) fields. An appropriate thermal Debye length may be introduced for the equilibrium
constructed in the presence of the confinement fields. Basic theoretical studies of one component pure electron
plasmas showed that collective oscillation properties of non-neutral plasma [17–19] are directly analogous to
the collective properties of neutral plasma, as long as the equilibrium self-field effects due to the space charge
are appropriately modified.

3. The relativistic Vlasov–Maxwell model

In this section we present the reduced relativistic Vlasov–Maxwell model that we want to solve numerically.
We aim at describing the behavior of an electromagnetic wave propagating in a relativistic electron gas in a
fixed neutralizing ion background. Here we consider a one-dimensional plasma in space along the x-direction.
Since non-linear kinetic effects are important in laser–plasma interaction, we choose a kinetic description for
the plasma, which implies to solve a Vlasov equation for a four-dimensional distribution function
F ¼ Fðt; x; px; py ; pzÞ
oF

ot
þ px

mc
oF

ox
þ e Eþ p� B

mc

� �
� oF
op
¼ 0; ð6Þ
where p = (px,py,pz) is the momentum variable, (E,B) the electromagnetic field and c the Lorentz factor
c2 ¼ 1þ
p2

x þ p2
y þ p2

z

m2c2
: ð7Þ
We now reduce the four-dimensional Vlasov equation to a two-dimensional Vlasov equation by using the
invariants of the system. The Hamiltonian of a relativistic particle in the electromagnetic field (E,B) for a
one-dimensional spatial system reads
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H ¼ mc2 1þ ðPc � eAÞ2

m2c2

 !1=2

þ e/ðt; xÞ; ð8Þ
where / is the electrostatic potential, A the vector potential, and Pc the canonical momentum related to the
particle momentum p by Pc = p + eA. In order that the field is well determined by the potentials we have to
add a gauge. We choose the Coulomb gauge (div A = 0), which implies that A = A\(t,x). If we write the Ham-
ilton equation
dPc

dt
¼ � oH

oq
;

with q = (x,y,z), then along the longitudinal x-direction of propagation of the electromagnetic wave we have
dPcx

dt
¼ � oH

ox
; ð9Þ
and for the transverse (y,z)-direction
dPc?

dt
¼ �o?H ¼ 0: ð10Þ
The Eq. (10) means Pc? ¼ constant ¼ Pc? and Pc\ is no more an independent or free variable but a param-
eter. Therefore the structure of the solution is of the form
F ðt; x; px; p?Þ ¼
Z
Pc?

f ðt; x; px;Pc?Þdðp? � ðPc? � eA?ÞÞdPc?;
where Pc? has to be understood as a parameter or a label in f. Since the parameter Pc? is associated to an
invariant of the system we can consider a coarse sampling of it, which implies a substantial reduction of
the numerical effort. Therefore we can mimic a perpendicular temperature profile (recovering of transverse ki-
netic effects) or study various beam interaction systems. On the contrary, the independent variables (x,px) are
associated to local partial differential operators, thus we need sufficiently dense sampling of them. Therefore,
without loss of generality, we now consider a plasma initially prepared so that particles are divided into N
bunches of particles, each bunch i, 1 6 i 6 N having the same initial perpendicular canonical momentum
Pc? ¼ Pc?;i. From (9) the i-particles have any longitudinal px with a distribution fi(t,x,px). The Hamiltonian
of one particle of bunch i is given by
Hiðt; x; pxÞ ¼ mc2ðciðt; x; pxÞ � 1Þ þ e/ðt; xÞ ð11Þ

with the corresponding ci Lorentz factor
c2
i ¼ 1þ p2

x

m2c2
þ ðPc?;i � eA?ðt; xÞÞ2

m2c2
: ð12Þ
Each group i is described by a distribution function fi(t,x,px) which must obey the Vlasov equation
dfi

dt
¼ ofi

ot
þ ½Hi; fi� ¼ 0; i ¼ 1 . . .N ; ð13Þ
where [�, �] is the Poisson bracket in (x,px) variables, namely ½u;w� ¼ opx
uoxw� oxuopx

w. Eqs. (11)–(13) lead to
ofi

ot
þ px

mci

ofi

ox
þ eEx þ

1

2mci

o

ox
ðPc?;i � eA?ðt; xÞÞ2

� �
ofi

opx

¼ 0; i ¼ 1 . . .N ð14Þ
and the structure of the solution is now
F ðt; x; px; p?Þ ¼
XN
i¼1

fiðt; x; pxÞdðp? � ðPc?;i � eA?ÞÞ; ð15Þ
thus reducing a four-dimensional phase-space to a two-dimensional one (plus N values Pc?;i for the invariant
Pc\). We now add the Maxwell equations which couple the different fi through the scalar potential / and the
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potential vector A\. The one-dimensional wave-propagation model allows to separate the electric field into
two parts, namely E = Exex + E\, where Ex = �ox/ is a pure electrostatic field, which obeys Poisson’s equa-
tion, and E\ = �otA\ is a pure electromagnetic field. In absence of any external magnetic field, B is purely
perpendicular and is given by B\ = $ � A\. The two Maxwell equations $ � E + otB = 0 and $ � B = 0
are automatically satisfied. The two others couple the fi. The Maxwell–Gauss equation oxEx = q/e0 becomes
oEx

ox
¼ e

e0

XN
i¼1

niðt; xÞ � n0

 !
; ð16Þ
where the charge density ni of the bunch i is defined by
niðt; xÞ ¼
Z 1

�1
fiðt; x; pxÞdpx: ð17Þ
Let us notice that we can equivalently replace the Poisson’s equation by the longitudinal x-component of the
Ampère equation to compute Ex,
oEx

ot
¼ � 1

e0

XN
i¼1

J x;iðt; xÞ; ð18Þ
where the current density Jx,i of the bunch i is defined by
J x;iðt; xÞ ¼
e
m

Z 1

�1
pxfiðt; x; pxÞ

dpx

ci
: ð19Þ
Introducing the propagator fields E± = Ey ± cBz and F± = Ez ± c By, the Maxwell–Ampère equations
$ � B\ = l0(J\ + e0otE\) give the transport equations
oE�

ot
� c

oE�

ox
¼ � 1

e0

XN
i¼1

J y;i; ð20Þ

oF �

ot
	 c

oF �

ox
¼ � 1

e0

XN
i¼1

J z;i; ð21Þ
where the current density J\,i = (Jy,i,Jz,i) is defined by
J?;iðt; xÞ ¼
e
m
ðPc?;i � eA?ÞÞ

Z 1

�1
fiðt; x; pxÞ

dpx

ci

: ð22Þ
Let us notice that the Eqs. (20) and (21) can be integrated exactly along their vacuum characteristics
x ± ct = constant if we can integrate exactly the source term J\. In the sequel we will consider the particular
case N ¼ 1, thus from (15) it corresponds to a cold plasma distribution in the perpendicular direction. Since
usually no streaming effects are considered we take Pc?;1 ¼ 0. In the context of laser–plasma interaction, this is
consistent with the fact that particle acceleration and heating is very strong in the longitudinal laser direction
with temperature T k 
 T?, provided that the transverse Weibel instability may be neglected.

4. The wavelet multiresolution analysis

This section introduces the ideas and the main tool, the wavelet multiresolution analysis (MRA), we use to
construct our adaptive numerical scheme. We first present the framework of bi-orthogonal wavelets intro-
duced in [14], because it shows how our scheme can be extended to any wavelet which enters within this frame-
work, and it gives also a better theoretical understanding of the way to construct our adaptive method.
Afterwards, we describe the special bi-orthogonal wavelet we have used for our simulation: the interpolet.
Then we can reinterpret the method as a prediction–projection process. Finally, in order to take benefit of
adaptivity, we have to compute in an adaptive fashion the fluid moments of the distribution function (charge
and current densities). This task should be cautiously looked into.
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4.1. The bi-orthogonal wavelet framework

Bi-orthogonal wavelets such as interpolating and orthonormal wavelets, can be obtained in a systematic
way, once we are given a pair of dual scaling function. Thus the main theoretical difficulties in the construction
of wavelet bases mostly reside in the selection of an appropriate pair of dual scaling functions which possess
the desired properties for the analysis (oscillations, vanishing moments, singularities localization, compact
support, refinability), and for the reconstruction (smoothness, high-order accuracy approximation, stability,
compact support). The scaling function u and its dual counterpart ~u are refinable functions which satisfy
the following refinement equations
uðxÞ ¼
ffiffiffi
2
p X

n2Z
hnuð2x� nÞ; and ~uðxÞ ¼

ffiffiffi
2
p X

n2Z

~hn ~uð2x� nÞ; ð23Þ
where the coefficient sequences fhngn2Z and f~hngn2Z, called filters, are given (or have to be constructed such
that the refinement equations (23) are satisfied). We define new coefficients
gn ¼ ð�1Þnþ1~h1�n and ~gn ¼ ð�1Þnþ1h1�n; ð24Þ

and a pair of dual wavelets by
wðxÞ ¼
ffiffiffi
2
p X

n2Z
gnuð2x� nÞ; and ~wðxÞ ¼

ffiffiffi
2
p X

n2Z
~gn ~uð2x� nÞ: ð25Þ
Moreover the pair of dual scaling functions ðu; ~uÞ and wavelet functions ðw; ~wÞ satisfy orthogonal relations
(stability properties), more precisely
hwð�Þ; ~wð� � kÞi ¼ d0;k; hwð�Þ; ~uð� � kÞi ¼ 0;

huð�Þ; ~uð� � kÞi ¼ d0;k; h~wð�Þ;uð� � kÞi ¼ 0;
ð26Þ
where h�, �i denotes the duality bracket between two functions, one belonging to a functional space S and the
other in the dual space S 0, i.e.
hu;wi ¼
Z

R

uðxÞwðxÞdx:
The orthogonality equations (26) imply some ‘‘orthogonality” relations that the filters must also satisfy,
namely
X

n2Z
hn

~hnþ2k ¼
X
n2Z

gn~gnþ2k ¼ d0;k;X
n2Z

hn~gnþ2k ¼
X
n2Z

gn
~hnþ2k ¼ 0:

ð27Þ
If we use the notations uj
kð�Þ ¼ 2j=2uð2j � �kÞ; ~uj

kð�Þ ¼ 2j=2 ~uð2j � �kÞ;wj
kð�Þ ¼ 2j=2wð2j � �kÞ; ~wj

kð�Þ ¼ 2j=2 ~wð2j�
�kÞ and if we define V j ¼ Spanfuj

kgk2Z;
eV j ¼ Spanf~uj

kgk2Z, W j ¼ Spanfwj
kgk2Z;

eW j ¼ Spanf~wj
kgk2Z, then from

orthogonality relations (26) we have the following spaces decompositions
V jþ1 ¼ V j � W j; V jþ1 ¼ V �| � W �| � � � � � W j;eV jþ1 ¼ eV j � eW j; eV jþ1 ¼ eV �| � eW �| � � � � � eW j;
with �| 2 Z and where Wj\Wi if i 6¼ j and ~W j ? ~W i if i 6¼ j. The spaces Vj are defined on the dyadic grids
Gj ¼ fxj

k ¼ k2�j; k 2 Zg and satisfy the inclusions {0} � � � � � Vj � Vj+1 � � � � �L2. From the previous spaces
decompositions a function fj+1 = Pj+1f 2 Vj+1 can be expressed on either basis
fjþ1 ¼ P jþ1f ¼
X
k2Z

cjþ1
k ujþ1

k ¼
X
k2Z

cj
ku

j
k þ

X
k2Z

dj
kw

j
k ¼ P jf þ

X
k2Z

dj
kw

j
k ¼

X
k2Z

c�|
ku

�|
k þ

Xj

l¼�|

X
k2Z

dl
kw

l
k

¼
X
l6j

X
k2Z

dl
kw

l
k
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with cj
k ¼ hf ; ~uj

ki; d
j
k ¼ hf ; ~wj

ki, and where Pj denotes the projection operator onto Vj. As we work at least on a
two-dimensional phase-space we have to generalize univariate wavelets to multivariate wavelets, which can be
done by tensor product construction. A d-dimensional multiresolution analysis can be constructed from a 1-
dimensional multiresolution analysis by tensor products as follows
Table
Coeffic

N = 1
N = 2
N = 3
Vj ¼ 
ð ÞnV j:
If we define R ¼ fe ¼ ðe1; . . . ; edÞ 2 Zd ; e 6¼ 0; ei 2 f0; 1g; i ¼ 1 . . . dg, then we get the space decomposition
Vj ¼ Vj�1 �
e2R

We
j�1;
where We
j�1 ¼ U e1

j�1 
 � � � 
 U ed
j�1 with U i

j�1 ¼
V j�1 if i ¼ 0;
W j�1 if i ¼ 1:

�
Using the notations x = (x1, . . . ,xd) and k = (k1, . . . ,kd) the projection of a function f onto VJ can be

decomposed as
fJ ðxÞ ¼
X
k2Zd

c�|
kw

0;�|
k ðxÞ þ

XJ�1

j¼�|

X
e2R

X
k2Zd

de;j
k we;j

k ðxÞ;�

where we;j

k ðxÞ ¼ wi1;j
k1
ðx1Þ � � �wid ;j

kd
ðxdÞ with wi;j

k ¼
uj

k if i ¼ 0;
wj

k if i ¼ 1:
For an exhaustive overview on wavelets and its applications in numerical analysis we refer to [15,12] and

references therein.

4.2. Interpolating wavelets: interpolets

In this section we describe the bi-orthogonal wavelet that we choose to build our scheme, namely an
interpolating wavelet based on Lagrange interpolating polynomials. In fact this interpolating wavelets
(interpolets) are based on an interpolating subdivision scheme whose task is to build an interpolant for
a given data sequence. For example we are given a sequence of samples of some unknown function at
regular intervals and the task is to fill intermediate values in a smooth way. The iterative Lagrangian
interpolation scheme, first introduced in the works of Deslauriers and Dubuc [20,21], solves this problem
by defining a recursive procedure for finding the values of an interpolating function at all dyadic points.
This algorithm proceeds by inserting a predicted coefficient between each pair of existing coefficients. Since
none of the already existing coefficients are changed, interpolation of the original function is preserved.
This recursive subdivision process is extensively used in CAGD to generate curves and surfaces, see for
example the 4-points scheme [22]. In fact some interpolating subdivision schemes as the 4-points scheme
or the Deslauriers–Dubuc method fall into the framework of bi-orthogonal wavelets. Let us see how. For
this purpose the filter sequences defining our pair of dual scaling and wavelet functions are chosen such
that
h2n ¼ d0;n; ~hn ¼ d0;n; ~g2nþ1 ¼ d0;n; ~g2n ¼ �an; ð28Þ
where the coefficients an have to be prescribed. In Table 3, we give some examples of values of an for interpo-
lating polynomials P2N�1 of degree 2N � 1 for N = 1, 2, 3, and the pictures of the pairs of dual scaling and
wavelet functions represented by Figs. 1–3.

Using the bi-orthogonality relations (26), the refinement equations (23) and (25) and the filter sequences
(28) we get
3
ients of interpolating polynomial for different values of N

a0 ¼ a1 ¼ 1
2 ; an ¼ 0 else

a�1 ¼ a2 ¼ � 1
16 ; a0 ¼ a1 ¼ 9

16 ; an ¼ 0 else
a�2 ¼ a3 ¼ 3

256 ; a�1 ¼ a2 ¼ � 25
256 ; a0 ¼ a1 ¼ 75

128 ; an ¼ 0 else
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Fig. 1. Pairs of dual scaling and wavelets functions for N = 1.
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Fig. 2. Pairs of dual scaling and wavelets functions for N = 2.
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Fig. 3. Pairs of dual scaling and wavelets functions for N = 3.
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cj
k ¼ hfjþ1; ~uj

ki ¼
X
n;l2Z

cjþ1
n

~hl�2khujþ1
n ; ~ujþ1

l i ¼
X
n2Z

cjþ1
n

~hn�2k ¼ cjþ1
2k ;

dj
k ¼ hfjþ1; ~wj

ki ¼
X
n;l2Z

cjþ1
n ~gl�2khujþ1

n ; ~ujþ1
l i ¼

X
n2Z

cjþ1
2nþ2k~g2n þ cjþ1

2nþ2kþ1~g2nþ1

¼ cjþ1
2kþ1 �

XN

n¼1�N

ancjþ1
2nþ2k ¼ cjþ1

2kþ1 �
XN

n¼1�N

ancj
nþk ¼ cjþ1

2kþ1 � P 2N�1ðxjþ1
2kþ1Þ;
where P2N�1 stands for the Lagrange interpolation polynomial of odd degree 2N � 1 centered at the point
ðxjþ1

2kþ1Þ. Therefore dj
k represents exactly the difference between the value of the function in the space Vj+1

and the value predicted from Vj. This strategy for constructing Wj is particularly interesting for adaptive
refinement as dj

k will be small where the prediction from Vj is good and large elsewhere, thus it gives a natural
refinement criterion.

Furthermore we can map a function defined on a dyadic grid from one level to the next by a prediction
operator Pjþ1

j or map a function defined on a dyadic grid from one level to the previous by projection (or
restriction) operator Pj

jþ1. If we consider two dyadic grids Gj and Gj+1 then, the prediction and projection
operators which allow to go from the sequence fcj

kgk2Z to the sequence fcjþ1
k gk2Z and vice versa are defined as
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Pj
jþ1 : Gjþ1 ! Gj

fcjþ1
k gfk2Zg 7! fcj

kjc
j
k ¼ cjþ1

2k gfk2Zg
Pjþ1

j : Gj ! Gjþ1

fcj
kgfk2Zg 7! cjþ1

k

cjþ1
2k ¼ cj

k

cjþ1
2kþ1 ¼ P 2N�1ðxjþ1

2kþ1Þ
¼

P
n

ancj
nþk

��������
8>><>>:

9>>=>>;
fk2Zg
Let us note that ~uðxÞ ¼ dðxÞ is not in L2 but in the set of Radon measures. The wavelet function w can be easily
deduced from u. Indeed, as gn ¼ ð�1Þnþ1~h1�n, we have gn = d1,n and thus using the refinement equation (25) we
have wj

kðxÞ ¼ ujþ1
2kþ1ðxÞ. The scaling function u shares the following properties:

(i) Compact support: u is exactly zero outside the interval [�2N + 1,2N � 1].
(ii) Interpolation: u is interpolating by construction in the sense that u(k) = d0,k.
(ii) Polynomial reconstruction and high-order accuracy: polynomials up to degree 2N � 1 can be expressed as

a linear combination of scaling functions, more preciselyX

k2Z
ðk2�jÞquj

kðxÞ ¼ xq; for 0 6 q < 2N :
(iii) Smoothness: We have typically u 2 Ca, where a = a(N). We know that a(2) < 2 and that a(N) increases
linearly with N. For more details on smoothness analysis of wavelets we refer to [12,15].
4.3. Thresholding, adaptivity and optimality

The multiresolution analysis allows to decompose a function fjþ1 ¼ P jþ1f 2 Vjþ1 into its low-frequency part on
the coarser dyadic grid Vj and its high-frequency part on the supplementary spaces fWe

jge2R of Vj in Vjþ1. There-
fore the spaces fWe

jge2R contain the details de;j
k needed to improve the approximation given in the space Vj and

obtain a finer approximation in the space Vjþ1. If the detail de;j
k is large, then the improvement is locally important

around the point 2�(j + 1)(2k + 1) and conversely if it is small, then the local improvement is also small and thus it
can be neglected without losing too much approximation quality. Therefore the multiscale representation of a
function ofVjþ1 can be compressed with a controlled approximation loss by setting to zero the details with an abso-
lute value less than some given threshold �j depending on the level j. As we have seen in the previous section, the size
of the detail coefficients de;j

k is also associated to the local approximation error of the prediction operator (equiv-
alent to an interpolation scheme) and consequently it is related to the local regularity of the function which is
approximated. Hence large detail de;j

k means that the prediction operator gives a bad approximation of the func-
tion, locally around the point 2�(j + 1)(2k + 1) because the regularity of the function is locally weak (oscillations in
the case of Vlasov equation). In order to get a better approximation some supplementary points should be added
around the point 2�(j + 1)(2k + 1). The approximation Pj+1f of f, on the bases of Vj and fWe

jge2R readsX XX

fjþ1ðxÞ ¼ P jþ1f ðxÞ ¼

k2Zd

cj
kw

0;j
k ðxÞ þ

e2R k2Zd

de;j
k we;j

k ðxÞ:
Let �j be a given threshold. If we eliminate all the details smaller than the threshold then we get a new
approximation
f̂ jþ1 ¼
X
k2Zd

cj
kw

0;j
k þ

X
e2R

X
fkjde;j

k P�jg

de;j
k we;j

k :
Assuming that fj+1 has compact support, the number of removed terms is finite and thus the error induced by
this thresholding process can be bounded in Lp-norm (1 6 p <1)
X

fkjde;j
k <�jg

X
e2R

de;j
k we;j

k

������
������

Lp

K 2jdð1=2�1=pÞ fde;j
k gðk;eÞ2fði;gÞjdg;j

i <�jg

��� ���
‘p

K �j2
jdð1=2�1=pÞð#fðk; eÞjde;j

k < �jgÞ1=p
;

where #E denotes the cardinality of the finite set E.
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The thresholds �j should be chosen in order to remain within the accuracy which is achieved by the non-
adaptive scheme while reducing the CPU time and memory storage. To this end, we need to control the thres-
holding error and the prediction (or refinement) error with a prescribed precision �. Therefore, we will be able
to control the global error in time and space with respect to the reference scheme (its non-adaptive version) up
to the prescribed accuracy �. For the thresholding error, if we set �j = 2�jd(1/2�1/p)�0, we obtain the bound
XJ

j¼�|

X
fkjde;j

k <�jg

X
e2R

de;j
k we;j

k

������
������

Lp

K f2jdð1=2�1=pÞde;j
k gðk;e;jÞ2fði;g;lÞj2ldð1=2�1=pÞdg;l

i <�0g

��� ���
‘p
: ð29Þ
A first crude estimate of (29) is given by �0#GJ which suggests the choice �0 = �2�dJ. A sharper estimate is gi-
ven by �0#bGn

�0
(see Section 5 for the definition of bGn

�0
) which leads to the time dependent threshold
�0 ¼ �ð#bGn
�0
Þ�1
: ð30Þ
A better choice is to take the largest �0 such that
f2jdð1=2�1=pÞde;j
k gðk;e;jÞ2fði;g;lÞj2ldð1=2�1=pÞdg;l

i <�0g

��� ���
‘p
6 �: ð31Þ
For the refinement error, we would like to define bGn
�0

in such a way that
de;j
k ð�f n

GJ
Þ

��� ��� < �j if ðk; e; jÞ 62 bGn
�0
; ð32Þ
where �f n
GJ

stands for the distribution function computed on the mesh GJ, by using a Dt-computation step of the
non-adaptive semi-Lagrangian scheme (i.e. by dropping the Step 3, 4 and 6 in the algorithm described in Sec-
tion 5) with the compressed wavelet decomposition f n, known on the adaptive mesh Gn

�0
, as initial condition.

The detail de;j
k ð�f n

GJ
Þ is the wavelet coefficient of the function �f n

GJ
at the point (k, e, j). For non-linear evolution

operators, we need to rely on specifically adapted refinement or prediction rules. For example, in the context
of the numerical approximation of hyperbolic problems by Eulerian methods (finite volume schemes), with cell
average multiresolution decompositions, the following rules were proposed by Harten in [36]: (i) If jde;j;n

k j > �j,
with de;j;n

k the wavelet coefficient of the unknown at time tn and at the point (k, e, j), then we include in new
adaptive mesh the immediate neighbors of the point (k, e, j) at the same level. (ii) If jde;j;n

k j > 2r�1�j, with r

the order of accuracy of the prediction operator, then we also include the children at the finer level (i.e. refine
by one level the corresponding cell of the adaptive grid). These rules are derived heuristically. Although they
are satisfactory in practice, these rules do not seem to be sufficient to prove estimate like the inequality (32). In
[13], a more severe refinement rule is proposed: refine by q levels if 2qðs�1Þ

6 jde;j
k j < 2ðqþ1Þðs�1Þ, with s the Hölder

smoothness of the underlying continuous wavelet system fwe
kgðk2Z;e2RÞ obtained as the limit of fwe;J

k gðk2Z;e2RÞ by
letting J ?1. With such a rule the authors of [13] succeed to prove estimate like the inequality (32). In prac-
tice, it is nevertheless observed that Harten’s rule [36] is sufficient and that the thresholding error tend to dom-
inate the refinement error. If we suppose that the estimates (30) or (31) and (32) hold, and provided that the
discrete numerical transport operator-constructed in the non-adaptive semi-Lagrangian scheme – and the pro-
jection operator Pj have good stability properties in Lp spaces, with a stability constant bounded at worst by
1 + CDt (C being a constant independent of the discretization parameters), then the global error estimate – in
Lp-norm – between the exact solution and that given by the adaptive semi-Lagrangian numerical scheme be-
have like OðDtk þ ðhmþ1 þ �Þ=DtÞ, where k + 1 is the order of the local trunction error in time of the non-adap-
tive scheme, and m is the degree of the polynomial that can be reconstructed by linear combination of wavelet
functions, and with h � 2�J the minimum radius of the cells.

For our adaptive semi-Lagrangian scheme (see Section 5, Step 3) our refinement strategy, is inspired by
Harten’s rule. In fact we proceed as follows: (i) If jde;j;n

k j > �j, we advect the associated point ðk; e; jÞ 2 Gn
�0

by pushing forward the characteristics coming from this point (k, e, j) during a time Dt. To this end we inte-
grate the characteristic curves with a forward Euler scheme. Then we include the immediate neighbors of
the ending point at the same level j. (ii) If jde;j;n

k j > 2r�1�j, with r 2 N (here r = 2), we also include the children
of the target cell at the finer level j + 1 (i.e. refine by one level the corresponding cell – of level j – in which the
ending point of the characteristic curve falls). This rule leads to the construction of the mesh eGn

�0
(see Section 5,
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Step 3). Even if this rule is heuristic, as the Harten ones, it supplies good results in practice as it can be
observed on the numerical simulations of the Section 6. As a conclusion of this section, let us note that a com-
plete analysis of the exact trade-off between accuracy and complexity (represented by the number of param-
eters #Gn

�0
) and then a proof of the optimality of the adaptive strategy are still not available, even for very

simple equations such as one-dimensional scalar conservation laws, for which theoretical results such as The-
orem 1.1 in [16] indicate the adaptive methods should behave significantly better than non-adaptive methods.

4.4. Computation of the moments

In order to take benefit of the adaptivity, we have to compute the charge and the current density in an adap-
tive fashion. Thus, we intend to suppress any computation that takes place on the finest grid. For this purpose,
it is natural to replace in Eqs. (17), (19) and (22) the distribution function by its multiscale decomposition.
Nevertheless in the integrals (19) and (22) there are non-linear terms in px because of the presence of the Lor-
entz factor ci(t,x,px). To overcome this problem one answer is to project the non-linear term ci(t,x,px) onto a
set of local polynomials. More precisely we suppose first that we can compute with any precision the moments
of u and w:
mu
k ¼

Z
uðpÞpk dp; mw

k ¼
Z

wðpÞpk dp:
Let us consider the two-dimensional wavelet decomposition of the approximation fj+1 of f in the space Vj+1
fjþ1ðx;pxÞ¼
X

ðk1 ;k2Þ2Z2

c�|
k1 ;k2

u�|
k1
ðxÞu�|

k2
ðpxÞþ

Xj

q¼�|

dr;q
k1 ;k2

wq
k1
ðxÞuq

k2
ðpxÞþdc;q

k1 ;k2
uq

k1
ðxÞwq

k2
ðpxÞþdm;q

k1 ;k2
wq

k1
ðxÞwq

k2
ðpxÞ

� 	 !
:

ð33Þ
Using the decomposition formula (33), projecting c�1
1 ðx; pxÞ on local polynomials in px of degree Q, after inte-

gration the equations (17), (19) and (22) will lead to
njþ1ðxÞ ¼
Z

fjþ1ðx; pxÞdpx ¼ F nðx;mu
0 ;m

w
0 Þ;

J x;jþ1ðxÞ ¼
e
m

Z
fjþ1ðx; pxÞ

px dpx

c1ðx; pxÞ
¼ F Jxðx;m

u
0 ;m

w
0 ; . . . ;mu

Qþ1;m
w
Qþ1Þ;

J?;jþ1ðxÞ ¼ �
e2A?

m

Z
fjþ1ðx; pxÞ

dpx

c1ðx; pxÞ
¼ F J?ðx;m

u
0 ;m

w
0 ; . . . ;mu

Q;m
w
QÞ:
Now let us explicit the functions F n; F jx
and F J? in the case of Lagrange polynomials of degree two and three.

In the section of the interpolet description we have seen that we can deduce the wavelet function from the scal-

ing function by the relation wj
kð�Þ ¼ ujþ1

2kþ1ð�Þ. Hence we only consider the case of the scaling function uj
k. Let us

take the basis {p1,p2,p3} of one-dimension Lagrange polynomials of degree two centered at the point 2�jl with
support [(�2N + 1 + l)2�j, (2N � 1 + l)2�j]. Let {q1,q2,q3,q4} the basis of one-dimension Lagrange polynomi-
als of degree three centered at the same point with the same support. More precisely we have
p1ð�Þ ¼
22j�1

ð2N � 1Þ2
ð� � 2�jlÞð� � 2�jðlþ 2N � 1ÞÞ;

p2ð�Þ ¼ �
22j

ð2N � 1Þ2
ð� � 2�jð�2N þ 1þ lÞÞð� � 2�jðlþ 2N � 1ÞÞ;

p3ð�Þ ¼ �
22j�1

ð2N � 1Þ2
ð� � 2�jð�2N þ 1þ lÞÞð� � 2�jlÞ;



7902 N. Besse et al. / Journal of Computational Physics 227 (2008) 7889–7916
q1ð�Þ ¼ �
3223j�4

ð2N � 1Þ3
� � 2�j 1� 2N

3
þ l

� �� �
� � 2�j 2N � 1

3
þ l

� �� �
ð� � 2�jð2N � 1þ lÞÞ;

q2ð�Þ ¼
3323j�4

ð2N � 1Þ3
ð� � 2�jð1� 2N þ lÞÞ � � 2�j 1� 2N

3
þ l

� �� �
ð� � 2�jð2N � 1þ lÞÞ;

q3ð�Þ ¼ �
3323j�4

ð2N � 1Þ3
ð� � 2�jð1� 2N þ lÞÞ � � 2�j 1� 2N

3
þ l

� �� �
ð� � 2�jð2N � 1þ lÞÞ;

q4ð�Þ ¼
3223j�4

ð2N � 1Þ3
ð� � 2�jð1� 2N þ lÞÞ � � 2�j 1� 2N

3
þ l

� �� �
� � 2�j 2N � 1

3
þ l

� �� �
:

If we interpolate c�1
1 ðx; pxÞ in the local bases {p1,p2,p3} and {q1,q2,q3,q4}, after some algebra we find
njþ1ðxÞ ¼
X

k1;k22Z2

2��|c�|
k1;k2

u�|
k1
ðxÞ þ

Xj

q¼�|

2�jdr;q
k1;k2

wq
k1
ðxÞ þ 2�ðjþ1Þdc;q

k1;k2
uq

k1
ðxÞ þ 2�ðjþ1Þdm;q

k1;k2
wq

k1
ðxÞ

� 	 !
; ð34Þ

J x;jþ1ðxÞ ¼
e
m

X
k1;k22Z2

c�|
k1;k2

w�|
1;k2
ðxÞu�|

k1
ðxÞ þ

Xj

q¼�|

 
dr;q

k1;k2
wj

1;k2
ðxÞwq

k1
ðxÞ þ dc;q

k1;k2
wjþ1

1;2k2þ1ðxÞu
q
k1
ðxÞ

 

þdm;q
k1;k2

wjþ1
1;2k2þ1ðxÞw

q
k1
ðxÞ
!!

; ð35Þ

J?;jþ1ðxÞ ¼ �
e2A?

m

X
k1;k22Z2

c�|
k1;k2

w�|
2;k2
ðxÞu�|

k1
ðxÞ þ

Xj

q¼�|

�
dr;q

k1;k2
wj

2;k2
ðxÞwq

k1
ðxÞ þ dc;q

k1;k2
wjþ1

2;2k2þ1ðxÞu
q
k1
ðxÞ

 

þdm;q
k1;k2

wjþ1
2;2k2þ1ðxÞw

q
k1
ðxÞ
�!

: ð36Þ
For the case of quadratic Lagrange polynomials we have
wj
2;lðxÞ ¼

2�j

23
mu

2

aj
�3;lðxÞ þ aj

3;lðxÞ
2

 !
þ 2�j 1� mu

2

23

� �
aj

0;lðxÞ;

wj
1;lðxÞ ¼ 2�jlwj

2;lðxÞ þ
2�2j

3
mu

2

aj
3;lðxÞ � aj

�3;lðxÞ
2

 !

and for the case of cubic Lagrange polynomials we have
wj
2;lðxÞ ¼

2�j

24
mu

2 � 1ð Þ ðaj
�3;lðxÞ þ aj

3;lðxÞ
� 	

þ 322�j

24
1� mu

2

23

� �
aj
�1;lðxÞ þ aj

1;lðxÞ
� 	

;

wj
1;lðxÞ ¼ 2�jlwj

2;lðxÞ þ 2�2j mu
4 � mu

2ð Þ
243

aj
3;lðxÞ � aj

�3;lðxÞ
� 	

þ
mu

4 � 32mu
2


 �
24

aj
�1;lðxÞ � aj

1;lðxÞ
� 	( )

;

where aj
i;lðxÞ ¼ c�1

1 ðx; 2
�jðlþ iÞÞ. Therefore, the computation of nj+1, Jx,j+1, and J\,j+1 require a number of

operations linear in the number of non-zero details dj
k1;k2

and cj
k1;k2

coefficients.

5. The adaptive numerical approximation

This section is devoted to the description of the global adaptive algorithm.

Step 1. Initialisation. Let �| be the level of the coarsest dyadic grid and J the level of the finest one. In the ini-
tialisation phase, we first compute the wavelet decomposition of the initial condition f0 which is
known analytically. It is then compressed by eliminating the details which are smaller than the thresh-
old �0 (in L1-norm, i.e. p = 1 in (29)) that we set. We then construct an adaptive mesh, named G0

�0
.
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From all the possible points at the levels between our coarsest and finest, the mesh G0
�0

contains only
those of the coarsest and those corresponding to details which are above the given threshold �0. From
the compressed wavelet decomposition of f0 we compute all the moments q0; J 0

x and J0
? using the

method depicted in Section 4.4. Solving the Poisson equation (16) we obtain a value for E0
x . Therefore

we get E1=2
x by solving the Ampère equation (18) following the scheme E1=2

x ðxÞ ¼ E0
xðxÞ � DtJ 0

x=ð2e0Þ.
Furthermore we suppose that we know analytical expressions for E±,0, F±,0, E±,�1/2, F±,�1/2 and A0

?.
All these assumptions allow to start the code self-consistently. In fact the quantities Ex, E±, F± are
computed at time tn�1/2 and the quantities f, A\ are computed at time tn. We now suppose that
we know the quantities En�1=2

x ;E�;n�1=2; F �;n�1=2; f n;An
?, and eGn then the following numerical scheme

allows to get the same quantities one time step further.
Step 2. Electromagnetic field integration. From the compressed wavelet decomposition f n known on the adap-

tive mesh Gn
�0

we compute adaptively (cf. Section 4.4) the moments qn; J n
x and Jn

?. Therefore the fields
(E±,n+1/2,F±,n+1/2) and Enþ1=2

x are computed by integrating, respectively Eqs. (20) and (21) along their
vacuum characteristics x ± ct = constant and the Ampère equation (18) on the time interval [tn�1/2,
tn+1/2] using a second order quadrature rule in time (middle point rule), i.e.
Enþ1=2
x ðxÞ ¼ En�1=2

x ðxÞ � DtJn
xðxÞ=e0;

E�;nþ1=2ðx� cDtÞ ¼ E�;n�1=2ðxÞ � DtJn
yðx� cDt=2Þ=e0;

F �;nþ1=2ðx	 cDtÞ ¼ F �;n�1=2ðxÞ � DtJ n
z ðx	 cDt=2Þ=e0:
Hence we may integrate exactly along the vacuum characteristics using grid spacing Dx = cDt, and
consequently we have
J n
yðx� cDt=2Þ ¼ 1

2
ðJ n

yðx� DxÞ þ J n
yðxÞÞ; J n

z ðx	 cDt=2Þ ¼ 1

2
ðJ n

z ðx	 DxÞ þ J n
z ðxÞÞ:
For the prediction step we will need to know (E±,n,F±,n) and En
x . They are approximated by averaging,

i.e.
En
xðxÞ ¼

1

2
ðEn�1=2

x ðxÞ þ Enþ1=2
x ðxÞÞ
and
E�;nðxÞ ¼ 1

2
ðE�;n�1=2ðxÞ þ E�;nþ1=2ðxÞÞ; F �;nðxÞ ¼ 1

2
ðF �;n�1=2ðxÞ þ F �;nþ1=2ðxÞÞ:
Step 3. Prediction. We predict the positions of the phase-space (x,px) points where the details should be
important at the next time tn+1 by pushing forward the characteristics coming from the points of
the mesh Gn

�0
. This new mesh is denoted by eGn

�0
. To this purpose we use a simple Euler scheme for

time integration, i.e.
znþ1 ¼ zn þ DtF ðtn; znÞ;

where
zðtÞ ¼ ðxðtÞ; pxðtÞÞ; F ðt; zðtÞÞ ¼ pxðtÞ
mc1ðt; xðtÞ; pxðtÞÞ

; e Exðt; xðtÞÞ �
ðA? � B?Þðt; xðtÞÞ
c1ðt; xðtÞ; pxðtÞÞ

� �� �
;

with the notation zn = z(tn). In order to capture new fine scales and new physical phenomena, we re-
tain the mesh points, at one level finer than the starting point, whose support contains the end char-
acteristic point (see Section 4.3).

Step 4. Construction of the mesh bGn
�0

. From the predicted mesh eGn
�0

, we construct the mesh bGn
�0

where the val-
ues of the distribution function at the next time step shall be computed. Since the mesh eGn

�0
is not

suitable to perform a wavelet decomposition, we construct the well formed tree bGn
�0

which contains
exactly the points necessary for computing the wavelet transform of f n+1 at the points of eGn

�0
.
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Step 5. Transport-interpolation. First we need to compute A
nþ1=2
? . To this purpose we use a time centered

scheme to solve otA\ = �E\. Hence we get
Anþ1
? ðxÞ ¼ An

?ðxÞ � DtEnþ1=2
? ðxÞ;
and finally we obtain A
nþ1=2
? ðxÞ by the averaging
A
nþ1=2
? ðxÞ ¼ 1

2
ðAnþ1
? ðxÞ þ An

?ðxÞÞ:
Now we push backwards the characteristic curves which end at the points of bGn
�0

on a time step Dt, to
find the origin of these characteristic curves, namely zn. Integrating the non-linear ODE
dtz(t) = F(t,z(t)) on the time interval [tn, tn+1], using a middle point quadrature rule and the second
order in time approximation zn+1/2 = (zn+1 + zn)/2 we are leading to solve the fixed-point problem
in dz
dz ¼ DtF ðtnþ1=2; znþ1 � dz=2Þ;

where we set dz = zn+1 � zn. This fixed-point problem can be easily solved by a Newton algorithm.
Then we interpolate the distribution function at the origin of the characteristic curves by using the
wavelet decomposition f n on the mesh Gn

�0
, to update the distribution function f n+1 on the mesh bGn

�0
.

Step 6. Wavelet transform and compression. We compute the new coefficient sequences fc�|;nþ1
k gk2Z2 ;

fd‘;nþ1
k gk2Z2;‘2½�|;J�1� at the points of eGn

�0
from the values of f n+1 known at the points of bGn

�0
. Hence

we eliminate the points of eGn
�0

where the details d‘;nþ1
k are lower than the level dependent threshold

�‘ = 2�‘d(1/2�1/p)�0 (in L1-norm, i.e. p = 1 in (29)), and thus we obtain the new adaptive mesh Gnþ1
�0

.
Finally we close the loop of a Dt-computation step by going back to step 2.
6. Simulations of laser–plasma interaction

In order to show the efficiency of our algorithm and its high accuracy some simulations have been carried
out to analyse in detail the wave–particle dynamics met in the relativistic regime of the laser–plasma interac-
tion with moderately overdense plasma. When electromagnetic waves propagate through a plasma layer, they
become parametrically unstable. At low densities, they are identified as the stimulated Raman scattering
(SRS). At large intensities, strong relativistic effects give rise to the longitudinal relativistic modulational insta-
bility (RMI) and the transverse relativistic filamentation instability (RFI). For such instabilities the growth
rates are so high (c/xp J 0.3) that these instabilities start from the round-off errors of the numerical scheme
(when no initial perturbation is introduced).

The Vlasov equation, coupled to the Poisson or Maxwell equation, often leads to the filamentation process,
which is one of the reasons why Vlasov simulations have been poorly considered, compared to PIC simula-
tions which are not sensitive to this problem. The distribution function is constant along the characteristic
curves which tend to roll up, so that the phase-space regions where the distribution function has different val-
ues, come close together and steep gradients are thus generated. Vlasov simulations provide an excellent
description of the small scales of the phase-space dynamics, although the well-known filamentation mecha-
nism and phase-space mixing are saturated by the numerical dissipation of the numerical scheme. Indeed,
there exists a time when the phase-space grid becomes too coarse to follow these thin filaments which get finer
as time goes on. Furthermore this mechanism is electromagnetic strongly amplified by relativistic effects since
parametric instabilities (RMI, RFI) tend naturally to produce thin filaments via strong particle acceleration.

6.1. The relativistic parametric instability

In this section, we check the numerical method by computing the vortices induced by the relativistic modula-
tional instability generated by an ultra-intense pump wave in a periodic box. In this test case, the pump electro-
magnetic wave is assumed to be circularly polarized with a dispersion relation given by x2

0 ¼ x2
p=c0 þ k2

0c2,
(x0,k0) being respectively, the pump frequency and the wave number of the electromagnetic wave, and c0 being
given by c2

0 ¼ 1þ p2
osc=m2c2 ¼ 1þ a2

0. Let us note that Akhiezer and Polovin [2] find a solution to this problem for
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the propagation of a circularly polarized transverse electromagnetic wave in a homogeneous plasma, i.e. such
that f(t,x,px) = n0F0(px). A large amplitude right (m = +1) circularly polarized electromagnetic wave is initialized
in a simulation box with a quiver momentum a0 ¼ posc=mc ¼

ffiffiffi
3
p

and we have chosen
Eyðt ¼ 0; xÞ ¼ E0 cosðk0xÞ; Ezðt ¼ 0; xÞ ¼ mE0 sinðk0xÞ:

The initial condition for the magnetic components has been taken as
Byðt ¼ 0; xÞ ¼ �mE0

k0

x0

sinðk0xÞ; Bzðt ¼ 0; xÞ ¼ E0

k0

x0

cosðk0xÞ:
The corresponding initial condition for the transverse potential vector A\, are then given by
Ayðt ¼ 0; xÞ ¼ E0

x0

sinðk0xÞ; Azðt ¼ 0; xÞ ¼ �m
E0

x0

cosðk0xÞ:
The pump wave frequency is x0 = 1xp corresponding to a wave number k0c=xp ¼ 2Dk=xp ¼ 1=
ffiffiffi
2
p

, D l = 2p/
Lx being the fundamental mode of the plasma corresponding to a ratio of the plasma density to the critical
density of n0/nc = 1. The numerical integration was carried out with a time step xpDt = 0.017355. The
phase-space sampling is chosen as follows. We choose the coarsest level as �|x ¼ 6;�|px

¼ 7, and the finest level
of refinement as J x ¼ 9; J px

¼ 10, which means that we allow three levels of adaptive refinement. In other
words we choose a coarse grid NxN px

¼ 64� 128 with the possibility to refine the mesh adaptively on three
more levels. The threshold �0 is set to 10�6.

Large amplitude plane light (x0,k0) couples any existing plasma fluctuation (x,k) to a hierarchy of electro-
magnetic sidebands (x0 + ‘x,k0 + ‘k). At low intensities (a0� 1), Stimulated Raman Scattering, the decay
into a resonant electron plasma wave and Stokes (with ‘ = �1) and possibly anti-Stokes (‘ = +1) electromag-
netic sidebands, is the dominant mechanism. At large intensity (a0 J 1), the different ‘ becomes strongly cou-
pled with the growth of several plasma modes (x,k), known as relativistic parametric instabilities [29]. In the
cold plasma case we have F0(px) = d(px) and the Vlasov equation reduces to fluid equations. Assuming (x0,k0)
is the dominant mode and (x,k) a small perturbation, a little algebra yields the dispersion relation (see [29]):
DþD� ¼
x2

pa2
0

c3
0

k2c2

Dp
� 1

� �
ðDþ þ D�Þ; ð37Þ
where Dp, D± correspond respectively to the dispersion relation of the electron plasma wave and of the elec-
tromagnetic waves in the presence of the large amplitude electromagnetic wave. We have
Dp ¼ x2 �
x2

p

c0

ð38Þ
with c0 ¼ ð1þ a2
0Þ

1
2 and
D� ¼ ðx� x0Þ2 � ðk � k0Þ2c2 �
x2

p

c0

: ð39Þ
The temperature of initial distribution function of the plasma is chosen such that the cold plasma approxima-
tion is still valid. In fact this approximation consists in neglecting the longitudinal thermal velocity compared

to the quiver velocity of the electron, being close to light speed, i.e. vth=c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkBT k=meÞ

p
=c ¼

0:044
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T k ½keV�

p
� 1. In this numerical example we take a Maxwellian equilibrium with T k ¼ 3 keV, i.e,

vth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3=511

p
. The numerical resolution of the dispersion equation (37)–(39), gives a maximum growth rate

c/xp = 0.409 at kmaxc/xp = 1.469. The numerical growth rate is 0.403, thus less than 1.5% of error. In
Fig. 4 we can see the time evolution of the electric energy. As no initial perturbation has been introduced
in the distribution function, the method being noiseless, the longitudinal electric field starts up from the
round-off errors. Since the wave generation mechanism is resonant, the wave grows secularly until non-linear
effects cause plasma wave breaking and limit thus the plasma wave growth around t ¼ 90x�1

p . From Figs. 5–9

we can observe the distribution function (on the right) in the phase-space (x,px) and its relative adaptive
phase-space grid (on the left). When the plasma wave rises, the formation of phase-space vortices is clear
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Fig. 4. Growth rate of the parametric instability.

Fig. 5. Snapshots at t ¼ 0x�1
p of the distribution function in phase-space (x,px) and the associated adaptive grid for the parametric

instability.

Fig. 6. Snapshots at t ¼ 90:24x�1
p of the distribution function in phase-space (x,px) and the associated adaptive grid for the parametric

instability.

7906 N. Besse et al. / Journal of Computational Physics 227 (2008) 7889–7916
in Fig. 5, and, when the plasma wave fields saturates, plasma wave breaking becomes evident at time t = 93.71,
with occurring of a particle acceleration. In Figs. 5 (right) to 7 (right), we observe that the refined domain (in



Fig. 7. Snapshots at t ¼ 93:71x�1
p of the distribution function in phase-space (x,px) and the associated adaptive grid for the parametric

instability.

Fig. 8. Snapshots at t ¼ 100:65x�1
p of the distribution function in phase-space (x,px) and the associated adaptive grid for the parametric

instability.

Fig. 9. Snapshots at t ¼ 104:13x�1
p of the distribution function in phase-space (x,px) and the associated adaptive grid for the parametric

instability.
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red) is smaller than the unrefined domain (in white) which would have to be computed in the case of a non-
adaptive numerical method. Here we see clearly the advantage of the adaptive scheme in term of memory
space and CPU time saving. From Figs. 8 (right) to 9 (right) we see that the total domain of computation
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starts to be filled by refinement points, thus the adaptive method is no more competitive compared to a numer-
ical method where the phase-space is discretized with a fixed mesh.

6.2. Self-induced transparency and KEEN waves

In this test case we require a realistic bounded plasma layer (slab) with transparent walls. The electron
distribution function is fixed at the boundaries by f(t,x,px) = 0 for x = 0 or x = L. The electromagnetic
radiations are allowed to enter the system at the left boundary, when exiting at the other boundary, they
do not return and are no longer considered. For right circularly polarized electromagnetic fields, we assume
Fig. 10
Eþðt; x ¼ 0Þ ¼ 2E0profðtÞ cosðx0tÞ; E�ðt; x ¼ 0Þ ¼ 0;

F þðt; x ¼ 0Þ ¼ 0; F �ðt; x ¼ 0Þ ¼ �2mE0profðtÞ sinðx0tÞ;

and for the potential vector
Ayðt; x ¼ 0Þ ¼ � E0

x0

profðtÞ sinðx0tÞ; Ayðt; x ¼ 0Þ ¼ �m
E0

x0

profðtÞ cosðx0tÞ;
in which the rise time profile prof is given by prof(t) = sin2(pt)/2s for t 6 s and prof(t) = 1 for t P s (and
s ¼ 50x�1

p ). It is well-known that a high-frequency electromagnetic wave, with frequency less than the electron
plasma wave (x0 < xp) cannot propagate in a plasma. Nevertheless, if the intensity of the pump wave is suf-
ficiently intense to make the electrons relativistic, the cutoff frequency decreases due to relativistic mass var-
iation (increasing of the Lorentz factor). In the following, a laser pulse propagation in the x-direction is
normally incident on an inhomogeneous density profile in the case of an overdense plasma. In the present sim-
ulations, the ions form an immobile background with steep gradient in density and the electron density is
taken such that n0/nc = 1.20. The normalized quiver momentum is a0 = 1.25. The physical system consists
of a plasma layer of uniform density of length Lplasma = 60c/xp, surrounded by a vacuum region of
length Lvacuum = 60c/xp on both sides. The total length of the system is then L = Lplasma +
2Lvacuum + 2Ljump = 210c/xp where Ljump = 15c/xp is a small region over which the density jumps from zero
to n0. The initial condition for electron distribution is a Maxwellian equilibrium with T k ¼ 20 keV. For the
sampling of the phase-space we choose a coarse grid N xNpx

¼ 256� 64 with the possibility to refine the mesh
adaptively on three more level in each direction. The threshold �0 is set to 10�8. The time step is set to
Dt = 0.1025. In a first penetration phase of the laser pulse (on the time interval ½0; 550x�1

p �), a relativistic
Doppler shift takes place at the moving wave front (which acts as a moving mirror) and causes the beating
on incoming pump wave with its reflected Doppler-shifted wave (from Figs. 10–12 (left)). The beating of this
pump with its reflected wave from the front wave (area where there is a discontinuity of the plasma density)
leads to the formation of vortices (�11 vortices). As a result a resonant three-wave parametric instability
develops and gives rise to an electron acoustic-like(low-frequency) plasma wave which heats the plasma in
a coherent way and generates the formation of trapping-like structures. This phenomenon is called self-in-
duced transparency. Once the front wave (and the laser pulse) has crossed the plasma layer, the slab is under-
. Snapshots at t ¼ 0x�1
p (left) t ¼ 205x�1

p (right) of the distribution function in phase-space (x,px) for the self-induced transparency.



Fig. 11. Snapshots at t ¼ 307:6x�1
p (left) t ¼ 414:1x�1

p (right) of the distribution function in phase-space (x,px) for the self-induced
transparency.

Fig. 12. Snapshots at t ¼ 512:6x�1
p (left) t ¼ 922:8x�1

p (right) of the distribution function in phase-space (x,px) for the self-induced
transparency.

Fig. 13. Snapshots at t ¼ 1128x�1
p (left) t ¼ 1333x�1

p (right) of the distribution function in phase-space (x,px) for the self-induced
transparency.
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dense and transparent for light and thus another physical process takes place. When the relativistic Doppler
shift ceases, a new three-wave parametric instability occurs involving the decay of the pump wave into a scat-
tered radiating slab mode (called ‘‘weakly radiating pseudo-cavity electromagnetic mode”), close to plasma
frequency, and a low-frequency plasma wave called KEEN wave (kinetic electron electrostatic non-linear
waves) [1,26]. The trapping structures, seen in the phase-space (Figs. 12 (right) to 13), is associated to the exci-
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tation of this kinetic self-sustained non-linear electron mode (KEEN wave). They represent a non-steady var-
iant of the well-known Bernstein–Greene–Kruskal (BGK) modes [3] that describe invariant traveling electro-
static waves in plasmas. This KEEN mode can be excited in a sufficiently hot plasma and with sufficiently
intense fields. Therefore we see the importance of preliminary beatwave mechanism, induced by Doppler shift,
which has strongly heated the plasma during the self-induced transparency stage. In Fig. 13 we see the forma-
tion of a strong return current and the traveling of vortices which disappear in a return current when they
reach the right side of the slab and which reappear from the return current on left side of the plasma slab
(�7 vortices). The stimulated KEEN slab scattering (SKSS) process plays an important role in the mechanism
of plasma heating to relativistic temperatures. This results are similar to those obtained in [25,26].

In Fig. 10, we observe that the region, where the plasma density is non-zero, is smaller than the whole
domain of computation displayed in Figs. 10–14. We have to take a box with a great part of vacuum because
the propagation of electromagnetic waves through the plasma leads to the formation of thin and localized fil-
aments of accelerated particles (see Fig. 11) which can spread over all the box length. Therefore, we under-
stand why in this typical situation an adaptive algorithm should be more interesting than a uniform one.

6.3. Laser wake-field

In this test case we are interested in the laser wake-field process, which seems to be a good way to accelerate
particles to very relativistic velocities [23]. The laser pulse which has a Gaussian profile in time, is ultra-intense
and has a ultra-short wave length. It enters at the left boundary of the simulation box, propagates first into
Fig. 14. Snapshots at t ¼ 88x�1
p of the distribution function in phase-space (x,px) and the associated adaptive grid for the laser wake-field.

Fig. 15. Snapshots at t ¼ 110x�1
p of the distribution function in phase-space (x,px) and the associated adaptive grid for the laser wake-

field.
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vacuum before penetrating an underdense plasma slab. The acceleration will be maximum if the ponderomo-
tive force pushes the electron over a length equal to kp/2 (where kp is the plasma wave length) and if they are
slowing down over the same length. Therefore we need a pulse of width s = 2p/xp, and thus the electrons oscil-
late at the plasma frequency xp. Here we suppose that the ions form a fixed inhomogeneous neutralizing back-
ground. As in Section 6.2, the initial distribution of the electrons is a Maxwellian distribution in longitudinal
momentum with a temperature of 3 keV, modulated in space by an inhomogeneous density. The initial con-
dition for the electromagnetic fields E±, F± and A\ are the same as in Section 6.2 except that now the profile
prof is Gaussian, i.e. prof(t) = exp(�a(t � s/2)2) for t 6 s and prof(t) = 0 for t > s. The bandwidth of this
pulse is D ¼ 2

ffiffiffiffiffiffiffiffi
1=a

p
where a = (2x/p)2. In this case the pulse is chosen such that exp(�a(s/2)2)� 1, which

is satisfied for s = 2D = 2p/xp. The total length of the system is then L = Lplasma + Lvacuum,right +
Lvacuum,left + 2Ljump = 180c/xp with =Lplasma = 90, Lvacuum,right = 10, Lvacuum,left = 60 and 2Ljump = 20. In
the simulation the circularly polarized laser pulse has a quiver momentum a0 ¼

ffiffiffiffiffiffiffiffi
3=2

p
and the density of

the plasma is such that n0/nc = 0.1. The phase-space is sampled with a coarse grid NxNpx
¼ 1024� 256 and

with the possibility to refine the mesh adaptively on three more levels in each direction. The threshold �0 is
set to 10�8.

The ponderomotive force associated to the laser pulse pushes the electrons forward and the response of the
plasma is the generation of a longitudinal electric field which tends to cancel this movement. During its prop-
agation into the plasma, the laser pulse will leave in its wake a longitudinal electric wave of phase velocity
vu � c and wave length kp. From Figs. 14–18, we can observe the modulation of the distribution function
in the phase-space (x,px) at different times. In Fig. 14 the peak of the distribution function is typically asso-
Fig. 16. Snapshots at t ¼ 132x�1
p of the distribution function in phase-space (x,px) and the associated adaptive grid for the laser wake-

field.

Fig. 17. Snapshots at t ¼ 176x�1
p of the distribution function in phase-space (x,px) and the associated adaptive grid for the laser wake-

field.



Fig. 18. Zoom of Figs. 15 and 16.
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ciated to the wavebreaking process, which is followed by the acceleration of the electrons. In Figs. 15–17, we
see clearly a strong acceleration of the plasma electrons in the laser pulse wake-field, up to moment value px/
mc = 30. In Fig. 17 and 18 (right) we observe particle trapping processes which occur from position xxp/
c = 110 to position xxp/c = 160 at the time t ¼ 176x�1

p . In Fig. 18 (left) we see that the electrons are well accel-
erated along a straight line as can be also reproduced by a PIC code [39,42]. Therefore our adaptive scheme
can depict the same thin filaments as PIC codes do, whereas it could be almost impossible with a fixed mesh of
phase-space because of the huge needs of CPU time and memory capacity. Then the advantage of the
adaptivity compared to classical Eulerian numerical method constructed on a fixed mesh is that you can
observe and follow in time the fine structures like these narrow localized filaments of accelerated particles with
a reduced computation cost and with weak memory storage. Let us note that in Figs. 14 (right) to 17 (right)
the whole region (white and red areas) corresponds to the finest grid we would have to compute with a non-
adaptive Eulerian numerical method.

6.4. Performance analysis

The performance analysis presented in this section has been carried out on the zahir machine (IBM eServer
p690, p690+, & p655) at IDRIS (Institut du Développement et des Ressources en Informatique Scientifique,
CNRS, France). The zahir computer is a scalable distributed and shared memory multi-processor system of
1024 processors Power4 and Power4+. With a frequency equal to 1.3 GHz, the theoretical peak performance
is 5.2 Gflop/s per processor. The level 1 instruction have a size of 64 KB and data cache have a size of 32 KB,
whereas the secondary unified instruction/data cache size is 1.5 MB. Even if our adaptive semi-Lagrangian
scheme is implemented in a parallel version, all runs have been performed with one processor, in order to mea-
sure the efficiency of each numerical algorithm itself and not the parallelization method. For a representative
test case, we present computation time in seconds at one particular time step within a simulation of 1600 time
steps. We compare the computation time given by two numerical schemes. The first one, named adaptive-S.-
L., is the adaptive semi-Lagrangian scheme depicted in this paper and the second one, called uniform-S.-L., is
the semi-Lagrangian scheme described in Reference [38]. In the article [38], a semi-Lagrangian scheme is devel-
oped on a uniform grid of phase-space while the interpolation at the origin of the characteristics – computed
as the solution of a fixed-point problem solved by a Newton algorithm – is performed with cubic splines inter-
Table 4
Computation time in seconds for the adaptive-S.-L. scheme and the uniform-S.-L. scheme for the three test cases ILPP%RPI, ILPO%SIT
and ILPO%LWF, after 1600 time steps

Test case Scheme

Adaptive-S.-L. Uniform-S.-L.

ILPP%RPI 3000s (50m) 5280s (1h28m)
ILPO%SIT 6060s (1h41m) 8220s (2h17m)
ILPO%LWF 23760s (6h36m) 32992s (9h10m)
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polation. The labels ILPP%RPI, ILPO%SIT and ILPO%LWF refer respectively to the test case 6.1, 6.2 and
6.3. For the test case ILPP%RPI, the adaptive algorithm starts with a distribution function of 26 � 210 points
at level�|x ¼ 6;�|px

¼ 10, with three levels of refinement and a threshold �0 = 10�6. We denote this adaptive grid
as 26+3 � 210+3. In the test case ILPO%SIT we take the adaptive grid 28+3 � 28+3 and a threshold �0 set to
10�8. Let us note that the corresponding grid size for the uniform-S.-L. scheme is of 211 � 211 points. For
the last test case ILPO%LWF the threshold �0 is set to 10�8 and the adaptive grid is 210+3 � 28+3. The com-
putation times are summarized in Table 4.

7. Conclusion and discussion

To conclude several remarks must be pointed out:
As a matter of fact the purely collective approach – as the Vlasov model – is an approximation of the N

body problem: a plasma of length L allows (L/kD)3 collective modes while the importance of the individual
effects is given by the parameter n0k

3
D (n0 being the density of particles). In fusion and space plasma n0k

3
D is

of order of 106 � 109 while L/kD = 103 � 104. Obviously we cannot treat 1018 particles (since
N ¼ n0k

3
DðL=kDÞ3 this number corresponds to L/kD = 103 and n0k

3
D ¼ 109). Indeed the Vlasov approach (cor-

responding to n0k
3
D ! þ1) if it deals with the correct treatment of the purely collective plasma does it by

introducing a phase-space, i.e. a product of the configuration space by the velocity space. This guarantees
the noiseless character of the model.

The next important aspect is then the loss of efficiency of the Vlasov model when filamentation in velocity
space arises. The first different attempts on the numerical solution of the Vlasov equation (especially with spec-
tral methods like Fourier–Hermite see [28]) were not able to solve the problem of filamentation unless using a
huge number of Hermite polynomials. For some problems encountered in high intensity laser–plasma inter-
action such as the laser wake-field accelerator or the parametric instabilities in the relativistic regime, we have
to simulate large beams located in very thin regions of the phase-space while large regions are empty of par-
ticles. Very fine grids are then needed. For such problems, the use of an adaptive mesh method (with a natural
criterion to perform local grid refinements) allows to compensate the efficiency lost by the filamentation pro-
cess. It should also be noted that in first non-adaptive 2D causal Vlasov simulations [27] the case of laser–
plasma interaction have shown that the particle acceleration arises in the longitudinal direction (which corre-
sponds to the direction of laser propagation, say x � px) while only modulation of f is just observed in the
transverse y � py phase-space plane. A very fine resolution of the plane x � px is then required to obtain a
good description of the accelerated particle dynamics. The adaptive mesh scheme used here allows such a
description.

Another important aspect was the number of dimensions which can be handled. The border between both
methods (PIC and Vlasov) consequently is given by the phase-space dimension and more precisely the velocity
space dimension.

Indeed in PIC modes, particles are considered as volume elements of the phase-space gathered at the same
point (ri,pi). In that respect an individuality parameter will show up. An efficient smoothing is then introduced
either by considering overlapping particles which are extended in space, or by filtering the short wavelengths of
the fields or by redistributing the charge of a superparticle among the neighboring points of the configuration
mesh. Although these treatments decrease efficiently the unwanted – because exaggerated – individual effects,
they do not change the scaling of these effects and dividing these effects by two still imposes a doubling of the
number of particles. The reason is that, to kill these effects we must smooth the fields not only on the inter
particle distance but also on the Debye length, but then we begin to modify the possible collective behavior:
finally n0k

d
D of order 103or even 104 must be used, which correspond to small values of the graininess param-

eter. Actually Vlasov codes can be preferred for 2d + 1v (2D in configuration space plus one-dimension in
velocity or 3D phase-space) or 3d + 1v, or even 2d + 2v (4D phase-space) problems. It is the velocity space
sampling which plays here the major role since usually the resolution of the Maxwell’s equations requires
the same sampling in the configuration space in both Lagrangian and Eulerian Vlasov models. An adaptive
mesh method in the semi-Lagrangian approach allows to take into account two-dimensions in velocity since
the computational effort is put only on these non-zero regions of the velocity space. PIC codes are however
very efficient in particle acceleration provided that the (physical) graininess parameter is not too small, since
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particles were found – during their evolution – located exactly along the fine filaments which characterize the
physical particle acceleration process. However the bad sampling of the velocity is worst in the region of low
density and high velocity where there are very few particles which play an important role in the evolution of
the plasma (stopping of the Landau damping by non-linear effects, heating process, . . .). The adaptive mesh
methods may in these cases considerably increase the efficiency of the Vlasov model without modifying its
advantages (noiseless character and good resolution in phase-space as observed in the numerical tests).

An interesting point is the existence of dynamical invariants as shown in Section 3. If we take these invar-
iants as new independent variables, then we can discretize them coarsely, since there is no exchange of particles
between the different populations (they simply interact through the electromagnetic fields). Providing a special
choice of initial conditions, they remain exact for all time t and space x. From both an analytical and numer-
ical point of view the use of exact invariants allows obviously a reduction of the complexity of dealing with a
full Vlasov equation with a 3D velocity space. This makes the use of an adaptive mesh scheme a very powerful
method when it is coupled with such invariants (transverse canonical invariants met in laser–plasma interac-
tion or adiabatic invariants in gyrokinetic models). The performance and accuracy obtained in the examples
presented here are very satisfying and these examples show that our adaptive Vlasov scheme is able to describe
accurately non-linear effects such as the filamentation process – which is a very difficult problem to solve from
the numerical point of view – or the saturation mechanism of the parametric instabilities in the relativistic
regime.

Even though the use of an adaptive mesh in a semi-Lagrangian Vlasov solver will eventually be of benefit as
well in terms of memory as in computational cost for many problems in plasma physics and in beam physics,
the development and implementation of an efficient adaptive solver is a complex problem that will still need
much collaborative effort between physicists, applied mathematicians and computer scientists. Indeed, in the
problems that were addressed in this paper, as in many other problems involving the Vlasov equation, the
number of grid points that remain with our wavelet adaption technique after some time becomes too high
for the method to be competitive with a uniform mesh solver due to the important overhead associated to
the wavelet method which gives us the adaptive grid. This difficulty becomes even more important for a par-
allel version of the code. There are now efficient uniform grid Vlasov solvers that scale very well on thousands
of processors whereas the efficient parallelization of adaptive mesh solvers is a real challenge.

Here the Vlasov simulations are performed in a two-dimensional phase-space where the development of
thin filaments, strongly amplified by relativistic effects, is the signature of strong particle acceleration in
laser–plasma interaction. The phase-space filamentation requires an important increase of the total number
of points of the phase-space grid as the filaments get finer as time goes on. The structure of these filaments
is essentially one-dimensional even in higher dimensions. Therefore, the adaptive method could be more useful
and efficient in cases where these thin filaments that need to be resolved are a very small fraction of the hyper-
volume, which arises in higher dimensions because of the surface-to-volume scaling and the essentially one-
dimensional structure of the filaments.

The main drawback of our scheme is the poor local character – in phase-space – of the semi-Lagrangian
method and the wavelet multiscale reconstruction that we have used. Indeed the lack of space locality of
the semi-Lagrangian method comes from the characteristic curves tracking which prevents us to know a priori
the size of the dependance domain of each mesh point and thus the number of cells that the characteristics will
cross. The poor locality of interpolets comes from the size of its support. This poor locality of the scheme has
two negative consequences on the efficiency of the adaptive method. The first one is that the scheme involves
more points than it is needed. The second one is that it is difficult to construct an efficient parallel algorithm
such as domain decomposition algorithm. Therefore, the main way to improve the efficiency of the adaptive
method is to increase the local character in phase-space of the numerical scheme, by considering multiscale
reconstruction with more compact support and by replacing the semi-Lagrangian method with more local –
in space – numerical schemes as compact finite difference schemes, discontinuous-Galerkin method or finite
element residual schemes which are well suited for parallel domain decomposition techniques.
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[6] N. Besse, F. Filbet, M. Gutnic, I. Paun, E. Sonnendrücker, An adaptive numerical method for the Vlasov equation based on a

multiresolution analysis, in: F. Brezzi, A. Buffa, S. Escorsaro, A. Murli (Eds.), Numerical Mathematics and Advanced Applications,
Springer, 2003, pp. 437–446, ENUMATH 2001.
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[43] E. Sonnendrücker, J. Roche, P. Bertrand, A. Ghizzo, The semi-Lagrangian method for the numerical resolution of Vlasov equation, J.
Comput. Phys. 149 (1996) 841–872.

[44] W. Sweldens, The lifting scheme: a construction of second generation wavelets, SIAM J. Math. Anal. 29 (2) (1998) 511–546.
[45] T. Tajima, J.M. Dawson, Laser electron accelerator, Phys. Rev. Lett. 43 (1979) 267–270.
[46] S. Weber, C. Riconda, V.T. Tikhonchuck, Strong kinetic effects in cavity-induced low-level saturation of stimulated Brillouin

backscattering for high-intensity laser–plasma interaction, Phys. Plasmas 12 (2005) 43101.


	A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system
	Introduction
	PIC versus Vlasov codes
	The relativistic Vlasov-Maxwell model
	The wavelet multiresolution analysis
	The bi-orthogonal wavelet framework
	Interpolating wavelets: interpolets
	Thresholding, adaptivity and optimality
	Computation of the moments

	The adaptive numerical approximation
	Simulations of laser-plasma interaction
	The relativistic parametric instability
	Self-induced transparency and KEEN waves
	Laser wake-field
	Performance analysis

	Conclusion and discussion
	References


