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In this paper, we present two codes for the linear stability analysis of the ion
temperature gradient instability in toroidal geometry using a gyrokinetic multi-
waterbag model for ion dynamics. The first one solves the linearized ion dynamics
as an initial value problem, while the second relies on an asymptotic expansion in
the so-called ballooning representation allowing us to build a tractable eigenvalue
problem. Results from the two codes are presented and compared for equilibria based
on modified Cyclone parameters. A good agreement between both codes is found for
a class of equilibria with a narrow extent in perpendicular velocity and for which
trapped particle orbits are ignored. The local spectrum computed by the eigenvalue is
shown to agree remarkably well with previous Cyclone results when trapped particle
orbits are included. Lastly we discuss how the equilibrium building procedure for this
type of waterbag model requires particular care when dealing with closed equilibrium
contours related to the presence of trapped particle orbits.
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1. Background and motivation
In the context of the worldwide research effort on magnetically confined fusion

reactors, the description and understanding of a wide class of plasma instabilities is
of great importance; the subsequent low-level turbulent flows have a strong impact
on the efficiency of the energy confinement properties of the device. This work is
devoted to the ion temperature gradient instability (ITG) in an axisymmetric magnetic
field configuration of the type found in tokamaks.

The low collisionality of the plasma in the core of the device calls for a kinetic
model of particle dynamics. Taking advantage of the spatial anisotropy and time
scale separation brought forth by the strong confining magnetic field, the original
six-dimensional kinetic description is reduced to the so-called five-dimensional
gyrokinetic model (see Littlejohn 1979, 1982; Frieman & Chen 1982; Dubin et al.
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2 D. Coulette and N. Besse

1983; Sugama 2000; Brizard & Hahm 2007; Hahm, Wang & Madsen 2009; Wang
& Hahm 2010; Abel et al. 2013). Even so reduced, accurate numerical simulation
of the gyrokinetic model remains a challenging task, which has led to substantial
research effort in the past decades, and to the development of numerous codes such
as GYSELA (Grandgirard et al. 2006a, 2007, 2008), ORB5 (Jolliet et al. 2007),
GENE (Jenko et al. 2000; Görler et al. 2011), GYRO (Candy & Waltz 2003), GS2
(Dorland et al. 2000; Jenko et al. 2000) and GT5D (Idomura & Jolliet 2011).

We present here two codes devoted to linear stability analysis, which rely on a
multi-waterbag model of the ion distribution function. This kind of approach, which
allows for a notable reduction of the problem complexity, has been used with some
success for plasma instabilities analysis in cylindrical geometry (Morel et al. 2007,
2008, 2014; Gravier et al. 2008; Besse & Bertrand 2009; Klein et al. 2009; Coulette
& Besse 2013a,b). We propose here the first extension of the model to the global
analysis of ITG modes in toroidal geometry.

Section 2 is devoted to the description of the physical model, the multi-waterbag
reduction as well as the building of the stationary state used as a basis for subsequent
perturbation analysis. In § 3, through perturbation analysis, we obtain the linear initial
value problem describing the short time evolution of the perturbation. The problem
is then recast as an eigenvalue problem in the so-called ballooning representation.
The resolution algorithm, based on a second-order asymptotic expansion, is presented.
In § 4 we detail the numerical schemes used in the implementation of both the initial
and the asymptotic eigenvalue problem. Numerical results are presented in § 5, for
a particular set of initial conditions compatible with both methods. We eventually
briefly discuss the issues remaining to be addressed in order to extend the range of
applicability of the model.

2. Physical model
In the gyrokinetic framework, particle dynamics is described by the evolution of the

gyrocentres distribution function f (t, r, v‖, µ), where t is time and r spatial position,
v‖ is the velocity along magnetic field lines and µ the magnetic moment. We consider
here a ‘full-f ’ model, i.e. f encompasses both the background and perturbed part of
the gyrocentre distribution function. As µ is by construction (Brizard & Hahm 2007)
an adiabatic invariant of the model, it may be treated as a parameter. For a given
value of µ, the distribution function fµ(t, r, v‖), is solution of the gyrokinetic Vlasov
equation

∂tfµ +VGC · ∇fµ +
(

dv‖
dt

)
∂v‖ fµ = 0, (2.1)

where the nonlinear drift velocity is defined by

VGC = B
B?‖

[
v‖b+

v2
‖

ΩCI
∇× b+ 1

B
b×∇Jµφ + µ

qiB
b×∇B

]
, (2.2)

and the parallel acceleration as
(

dv‖
dt

)
=− 1

mi

B?

B?‖
· (µ∇B+ qi∇Jµφ), (2.3)

where B=Bb. The corrected magnetic field B? is defined by B?=B+ (miv‖/qi)∇× b,
φ= φ(t, r) is the electrostatic potential, Jµ stands for the gyroaverage operator,whose
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The gyrokinetic-waterbag model in toroidal geometry 3

FIGURE 1. Generic waterbag decomposition of the initial condition; three levels are
considered here leading to four waterbags.

application on any function F depending on position r is defined by

JµF(r, . . .)= 1
2π

∫ 2π

0
F(r+ ρ(ξ), . . .) dξ, (2.4)

where ρ = ρ(cos ξe1 + sin ξe2), (e1, e2, b) form an orthonormal basis and ρ(r, µ) =
(2µ/qiΩCI)

1/2 with ΩCI = qiB(r)/mi.
The multi-waterbag approach that we adopt here relies on the conservative nature

of the particle flow in phase space (Liouville invariant). We will first consider
for simplicity a one-dimensional problem, where the dynamics is described by a
Lagrangian L(x, v‖), where x stands for a generic spatial coordinate. Let us assume
an initial condition for f defined the characteristic function of some bounded volume
Ω in phase space, i.e. f = 1 is constant inside and zero everywhere else. As the value
of f is preserved along the characteristics (particle trajectories), the evolution of f can
be retraced by following only the Lagrangian evolution of the boundary ∂Ω(t). The
conservation of the volume of Ω with time, while its boundary is deformed, led to
the ‘waterbag’ denomination. Considering now for f an arbitrary initial condition, it
is always possible to decompose it as a (possibly infinite) weighted sum of individual
waterbags (cf. figure 1) with completely decoupled dynamics. From a numerical point
of view, the approach has two main potential advantages: first the evolution of all
waterbags can be treated in parallel. Second, the most salient features of the dynamics
can often be captured using a rather low (typically 5–15) number of waterbags. The
price for those benefits is the requirement of Liouville invariance. This means first
that a full-f treatment is mandatory, and second that the model does not lend itself
naturally to the treatment of collisional processes. Applying a collision operator
strictly requires a full resampling of the multi-waterbag distribution. If one used a
splitting scheme alternating a sufficiently large number of collisionless steps with the
application of the collision operator, the additional numerical cost of the collision
step should be bearable. In the following analysis we will consider a vanishingly
small perturbation of the ion distribution function around a fixed local Maxwellian
equilibrium so that a collisionless model for the fast evolution of the perturbation is
a reasonable approximation.

It is important to note that trying to solve the problem by describing the Lagrangian
evolution of the waterbag boundaries may actually prove harder than solving the
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4 D. Coulette and N. Besse

(a) (b)

FIGURE 2. Three bags multi-waterbag decomposition; non-crossing contours in phase
space (a) and corresponding local velocity distribution at position x0 (b).

Vlasov equation directly. Excluding one-dimensional cases (Colombi & Touma 2008,
2014), dealing with the complex evolution of boundary geometry due to filamentation
(small-scale generation) in phase space is no small undertaking for higher-dimension
problems. Such an approach has been successfully applied on a closely related model
in the context of astrophysics (see Sousbie & Colombi 2016) for which the structures
of interest are thin filaments occupying only a small fraction the six-dimensional phase
space. In the context of gyrokinetic turbulence, where small scales are generated in
the whole space volume, this approach appears less obviously attractive compared
to an Eulerian (grid-based) one, but might still prove interesting as an intermediate
model between fluid codes and full kinetic ones if the number of waterbags can
be kept low enough. Before attempting such an adaptation of the methods used in
Sousbie & Colombi (2016), we use here a more restrictive but simpler version of the
waterbag model, which has the notable advantage of lending itself to linear analysis.

Indeed, under additional assumptions, the description of the waterbag contours
evolution in time can be dramatically simplified. We assume now that each waterbag
boundary can be split into pairs of non-crossing branches (figure 2a) for which the
parallel velocity can be expressed as a single-valued function of space v‖ = vj(x).
Under this assumption, the characteristic function of Ω defining the waterbag
volume reduces to a gate function in velocity, whose bounds are space dependent
scalar fields vj(t, x) and the full multi-waterbag distribution a weighted sum of
such gate functions (figure 2b). Provided the so-called contours vj (i) do not
cross, (ii) remain single-valued during the system evolution and (iii) obey a set of
decoupled hydrodynamic equations in real space (see (2.7) for the explicit form), the
multi-waterbag structure is preserved and the multi-waterbag distribution is an exact
solution (in the weak sense) of the Vlasov equation. The initial four-dimensional
dynamics in phase space is thus reduced to a finite set of three-dimensional
hydrodynamic equations, which can be treated using standard Eulerian methods.
The linear dynamics of the scalar fields describing the waterbag contours can be
approached using perturbation around the equilibrium fields. Moreover, Fourier
analysis can be applied to solve toroidal Fourier modes independently, reducing
the problem to two dimensions in space.
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The gyrokinetic-waterbag model in toroidal geometry 5

2.1. Ion dynamics
The ion gyrocentre distribution function is modelled as a multi-beam distribution in
the perpendicular velocity space and a multi-waterbag distribution function in parallel
velocity, reading

f (t, r, v‖, µ)=
N∑

j=−N
j6=0

Nµ∑

l=1

AjlH(vjl(t, r)− v‖)δ(µ−µl), (2.5)

where H is the Heaviside function. An algebraic convention is used for the waterbag
index j implying for the weights

∀(l, j),
{

j> 0⇒ Ajl > 0
A−j,l =−Aj,l.

(2.6)

In the following, summations shortened as
∑

j,l shall be considered by default as taken
on the whole index ranges Ib = [−N, −1] ∪ [1, N] and Iµ = [1, Nµ]. The waterbag
contours time evolution is governed by the transport equations

∂tvjl +VGC
jl · ∇vjl =

(
dv‖
dt

)

jl

, ∀( j, l) ∈ Ib × Iµ, (2.7)

where the drift velocity advection field reads

VGC
jl =

1
Ftjµ

[
vjlb+

v2
jl

ΩCI
∇× b+ b×

(
µl
∇B
B
+ qi∇Jµlφ

B

)]
, (2.8)

and the parallel acceleration field
(

dv‖
dt

)

jl

= −1
Ftjl

(
b+ vjl

ΩCI
∇× b

)
·

(
µ

mi
∇B+ qi

mi
∇Jµlφ

)
, (2.9)

with
Ftjl = 1+ vjl

ΩCI
b · ∇× b≈ 1. (2.10)

In the magnetic configuration considered here, the latter term is close to unity.
Though necessary to ensure proper conservation properties of the model in nonlinear
simulations, its departure from unity entails only minor frequency alterations for
linear analysis, and its effects are negligible.

2.2. Electron dynamics and quasi-neutrality
The electron response follows a Boltzmann law. The strongly magnetized electrons are
assumed to stay confined to magnetic surfaces, and their low inertia allows for a fast
response to electrostatic potential variations, considered in this regard as ‘adiabatic’.
The electron density thus reads

ne(t, r)= ne0(r) exp
[

e(φ − 〈φ〉FS)

kBTe(r)

]
≈ ne0(r)

(
1−

[
e(φ − 〈φ〉FS)

kBTe(r)

])
, (2.11)
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6 D. Coulette and N. Besse

(a) (b)

FIGURE 3. Toroidal geometry; toroidal coordinates (a); winding of a magnetic field line
(yellow) on a rational (q ∈Q) flux surface (purple) (b).

where ne0(r), Te0(r) are prescribed profiles, 〈φ〉FS is the flux surface-averaged potential,
whose presence marks the fact that no screening can occur across distinct magnetic
surfaces. The so-called ‘adiabatic’ electron response relies on the assumption of a
strong time scale separation between the electron and potential dynamics. In the
magnetic configuration considered, this assumption can be broken for the fraction of
the electron population that is trapped by magnetic field intensity variations. This
coupling of trapped electrons with ions leads to a substantial modification of the
ITG spectral properties (see e.g. Rewoldt, Lin & Idomura 2007; Howard et al. 2013;
Happel et al. 2015; Qi et al. 2016; Nakata et al. 2016). Most notably the growth
rate of ITG modes is significantly increased. In all the following the effect of trapped
electrons will be neglected in order to keep the model simple.

The closure of the system is provided by the quasi-neutrality condition ne≈ ni with
the linearized polarization drift correction for the ion density, leading to

−∇⊥ ·
(

n0

BΩCI
∇⊥φ

)
+ n0e

kBTe
(φ − 〈φ〉FS)= Zi

∫
d3vJµf − n0, (2.12)

where the electron adiabatic response has been linearized.

2.3. Magnetic configuration and normalization convention
The confining magnetic field axisymmetric configuration considered here is the so-
called ‘circular’ one: flux surfaces are nested tori (figure 3b) with centred circular
cross-sections. In toroidal coordinates (r, ϑ, ϕ) (figure 3a), in the domain defined by
(ϑ, ϕ) ∈ [0; 2π]2, rmin < r< a, the magnetic field reads

B= B(bϑeϑ + bϕeϕ)= B0R0

R

(
r

qR
eϑ + eϕ

)
, (2.13)

where R = R0 + r cos ϑ and (R0, a) are respectively the major and minor radius of
the torus. Parameter q(r) is the security factor and s(r)= rdr ln q the magnetic shear.
Radial dependency of the security factor is a parabolic one q = q0 + q2(r/a)2, with
q2>0 so that q is strictly monotonic. Throughout the text, radial dependencies shall be
expressed using either r, x= r/a or q. With this particular field configuration we have
notably ∇B/B= (1/R)(cos ϑer − sin ϑeϑ), b× (∇B/B)= (−bϕ/R)(sin ϑer + cos ϑeϑ)
and ∇ × b = (bϕ/R)(− sin ϑer − cos ϑeϑ + ((3− 2s)/q)eϕ), up to second order in
εr = r/R0.

As shown in Lapillonne et al. (2009), the slight differences in magnetic geometry
between this circular concentric model (dubbed as ‘ad hoc’ in Lapillonne et al.
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The gyrokinetic-waterbag model in toroidal geometry 7

Physical quantity Normalization factor

m m=mi

T T = Te(r0)

t t= 1
ΩCI
= mi

ZieB0

v‖, v⊥ v = cs =
√

kBTe(r0)

mi

r, R0, a L= ρs = vt= cs

ΩCI

φ φ = kBT
Zie

µ µ= c2
s

2miB0

B B= B0

TABLE 1. Normalization conventions.

(2009)) and the s–α model used in some flux-tube-based codes can lead to significant
differences in both linear and nonlinear simulation results, due to inconsistencies in
the s–α geometry. The effects of those inconsistencies vanish in the large aspect ratio
limit, and codes using consistent geometry but a different scheme yield comparable
results (McMillan et al. 2010).

From now on, all physical quantities will be normalized using the reference values
given in table 1. In this normalized system the waterbag equilibrium contours scale as
vjl ∼O(1) (a few units) and their perpendicular gradients as |∂r ln vjl|, |r−1∂θ ln vjl| ∼
ρs/a=ρ?∼ 10−2. The characteristic length of the equilibrium magnetic field variations
scales as 1/R= ρ?εa/(1+ xεa cos ϑ)∼ ρ?εa ∼ 10−3.

2.4. Equilibrium distribution function
The equilibrium distribution function used as a reference is a local Maxwellian

f loc(r, ϑ, v‖, µ)= n(r)
(2πT(r))3/2

exp

(
−v

2
‖/2+µB(r, ϑ)

T(r)

)
, (2.14)

where n(r), T(r) are prescribed density and temperature radial profiles, and no
equilibrium electrostatic field is present. This distribution is not a true stationary
solution of the gyrokinetic Vlasov equation: a local thermodynamic equilibrium is
assumed to be reached on each flux surface, which implies neglecting the radial
excursion of equilibrium trajectories from said surfaces stemming from the curvature
and intensity gradient of the magnetic field. In quasi-linear and nonlinear simulations
this kind of initial condition entails the rapid growth of large radial electric field and
consequently large scale E × B flows which prevent the onset of the instability.
The so-called canonical Maxwellian, function of the true motion invariants of
equilibrium characteristics, energy E and toroidal momentum Pϕ , is preferred in
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8 D. Coulette and N. Besse

those cases (Idomura, Tokuda & Kishimoto 2003; Dif-Praladier et al. 2008). For
linear analysis however, as the (ϑ, ϕ)-averaged potential is constant and set to zero,
the non-stationarity of the local Maxwellian results only in corrections on the spectral
characteristics of the unstable modes (Idomura et al. 2003).

Building a multi-waterbag distribution of the form (2.5) in order to match as closely
as possible the physical equilibrium corresponding to the local Maxwellian is not a
trivial problem. Two methods have been used to perform this task, each having its
pros and cons.

2.4.1. Maxwellian iso-surfaces methods
This method relies on the fact that in the ‘continuum’ limit in velocity space, i.e.

when the number of bags and values of µ goes to infinity, waterbag equilibrium
contours should tend to idenepsy with iso-value surfaces of the local Maxwellian.
(Here we obviously assume a bounded support for both reference and multi-waterbag
distributions in velocity space.) Starting from a reference point (r0, ϑ0, v0, µ), the
parallel velocity can be expressed as a function of (r, ϑ) on the corresponding iso-
surface as

v‖ =±
√
V0(r)2 + 2µ(B(r, ϑ0)− B(r, ϑ)), (2.15)

where

V2
0 (r)= v2

0 + 2T ln

[
n(r)
n(r0)

(
T(r0)

T(r)

)3/2
]
+ 2µ

[
B(r0, ϑ0)

T(r)
T(r0)

− B(r, ϑ0)

]
, (2.16)

provided the domain in (r, ϑ) is restricted so as to ensure all quantities are real and
finite. The two solution branches of (2.15) lead, for a given (r0, ϑ0, v

2
j0, µl), to a

pair of symmetric contours v±jl. If the argument of the square root of (2.15) stays
positive on the whole (r, ϑ) domain, both branches stay distinct everywhere, and the
contour pair is considered as ‘open’ from a topological point of view. For some values
of the parameters (r0, ϑ0, v

2
j0, µl) however, cancellation of the parallel velocity can

occur, leading to a merging of the two branches at v‖ = 0 and ‘closed’ topology for
the contour pair. This closing phenomenon is slightly different whether one considers
poloidal or radial variations of the parallel velocity:

(i) at constant r, i.e. on a flux surface, parallel velocity variations stem directly from
energy E = v2

‖/2 + µB conservation on said surface. The poloidal variations of
magnetic field intensity entail the presence of a magnetic well, leading to possible
poloidal trapping effects. The closing of the contour pair is then formally related
to the existence of a zero-width ‘banana’ orbit on the flux surface;

(ii) at constant θ the situation is more intricate: parallel velocity variations arise both
from B variations and (n, T) equilibrium profiles, i.e. on the underlying radial
force balance. It must be noted in particular that parallel velocity cancellation can
occur even in the case of a constant magnetic field. In that case, radial variations
of the Maxwellian prefactor nT−3/2 are sufficient to allow for contour closing.

In all cases, the presence of closed or ‘critical’ equilibrium contours has a major
impact on the dynamics of the model: when two contours v±jl merge at some point
in space, both poloidal and radial gradients diverge. This entails a divergence in
the transport equation (2.7) and a coupling of the contour transport equations at
the singularity points. For a linear stability analysis such as we propose here, the
localization of these singularities is fixed by the setting of the equilibrium contours,
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The gyrokinetic-waterbag model in toroidal geometry 9

so that the difficult problem of topology evolution (i.e. dynamical merging or splitting)
does not have to be tackled.

Having devised a procedure to obtain equilibrium contours from the local
Maxwellian iso-surface, we must now set the distribution weights Ajl. They can
be approximated using a mixed product quadrature rule in v‖ (trapezoidal) and µ
(rectangle) reading

Ajl =wlf loc(r0, ϑ0, vjl +1v/2, µl)− f loc(r0, ϑ0, vjl −1v/2, µl), (2.17)

where ∆v = |vj+1l(r0, ϑ0) − vjl(r0, ϑ0)| in the case of a uniform sampling of the
reference parallel velocity contours at (r0, ϑ0), and wl= 1/2 for l∈ {1,Nµ} and wl= 1
in other cases.

2.4.2. Moment method
Let us first consider the stationarity condition for the waterbag contours. Setting

∂tvjl = 0 in (2.7) and expressing the various fields we obtain for each axisymmetric
contour vjl(r, ϑ) the condition

1
q
∂ϑ

(
v2

jl

2
+µlB

)

︸ ︷︷ ︸
O(1)

−
(
µl +

v2
jl

B

)(
sin ϑ∂rvjl + cos ϑ

r
∂ϑvjl

)

︸ ︷︷ ︸
O(ρ?≈10−2)

= 0, (2.18)

where we have neglected the term µ(∇ × b) · ∇B/B� 1, which is negligible in the
considered low β configuration. Taking into account the ordering of the two terms of
(2.18) (coming from the 1/a scaling of equilibrium radial gradient lengths), we can
first consider an approximate stationarity condition

∂ϑ

(
v2

jl

2
+µlB

)
= 0, (2.19)

which is related to the conservation of energy at equilibrium on each flux surface,
as the radial excursion of equilibrium trajectories from such surfaces is neglected.
Assuming that, at a reference angle ϑ0 the radial profile vjl(r, ϑ0) is known, (2.19)
can be integrated to obtain

vjl(r, ϑ)=±
√
vjl(r, ϑ0)2 + 2µl(B(r, ϑ0)− B(r, ϑ)), (2.20)

provided the square root argument is positive. As was the case for the iso-value
surfaces of the local Maxwellian, (2.20) may lead to contour cancellation depending
on the reference contour value vjl(r, ϑ0) and magnetic field variation range through
the choice of ϑ0. It must be noted that ϑ0 can be set independently for each contour
pair v±jl. In order to make use of (2.20) we must build appropriate radial profiles for
the reference contours at ϑ0.

In Coulette & Besse (2013a,b), an accurate method was developed in cylindrical
geometry to obtain radial profiles of equilibrium contours by equating the parallel
velocity moments of the multi-waterbag distribution function and the local Maxwellian.
Extension of the method to full moment equivalence for both parallel and perpendicular
velocity moments gives rise to a severely ill-conditioned problem. A more tractable
problem can be obtained by restricting moment equivalence to the zeroth order in
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10 D. Coulette and N. Besse

µ (or equivalently v⊥) and putting the weights Ajl in separable form Alj = AjAl with∑
l Al = 1. The µ weights Al are obtained as before from a rectangle quadrature rule

at some reference position (r0, ϑ0)

Al = exp(−µlB(r0, ϑ0)/T(r0))∑

l′
exp(−µl′B(r0, ϑ0)/T(r0))

. (2.21)

Choosing now both a common reference angle ϑ0 for all contours and common initial
contours vj(r0, ϑ0) for all l values, the 2pth-order parallel velocity and zeroth-order µ
moment of the multi-waterbag distribution function reads

MMWB
2p =

∑

l

Al

︸ ︷︷ ︸
=1

∑

j

Aj
vj(r0, ϑ0)

2p+1

2p+ 1
. (2.22)

Equating those moments with the local Maxwellian ones of same order in v‖ and
µ we obtain a moment equivalence problem on the sole parallel velocity moments,
which can be solved for both weights and contours using the procedure described
in Coulette & Besse (2013b). Although the procedure is straightforward, it must be
noted that by restricting moment equivalence to the lowest moment order in v⊥, we
limit by construction the accuracy of the higher-order perpendicular velocity moments.
Particularly the effective perpendicular ‘temperature’

TMWB
⊥ (r, ϑ)=

∑

l

AlµlB(r, ϑ)
N∑

j=1

Ajvjµl(r, ϑ)

∑

l

Al

N∑

j=1

Ajvjµl(r,ϑ)

(2.23)

cannot be prescribed to equate T0(r) or even depend solely on r with finite N and Nµ

(in the continuum limit one recovers T⊥ = T‖ = T0(r)). Most of the numerical results
shown hereafter will be restricted to null or small values of µ and consequently of
TMWB
⊥ .

3. Linear analysis
We will now develop a perturbation analysis of the model. This analysis will be

conducted in a first stage in a global geometric set-up. In a second stage we consider
an asymptotic approach in the so-called ‘ballooning’ representation. The rationale
for developing both approaches is the possibility of cross-validation of the numerical
schemes within the waterbag framework. This is a necessary step before comparing
with results of standard kinetic codes (whether global or ‘flux-tube’ ones) which
might differ from our model in both the geometrical set-up and distribution function
representation.

3.1. Two-dimensional linear problem
Decomposing the waterbag contours in their equilibrium part vjl(r, ϑ) and an
asymptotically vanishing perturbation wjl(t, r, ϑ, ϕ), (2.7) becomes at first order

[F t
jl∂t +Fjl · ∇+F 0

jl ]wjl + Gjl · ∇Jµlφ = 0, (3.1)
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The gyrokinetic-waterbag model in toroidal geometry 11

with

F t
jl = 1+ vjl

B
b · ∇× b, (3.2)

Fjl = vjlb+
v2

jl

B
∇× b+µlb× ∇B

B
, (3.3)

F 0
jl =

[
b+ 2vjl

B
∇× b

]
· ∇vjl, (3.4)

Gjl = vjl

B
∇× b− b×∇vjl

B
. (3.5)

Explicating the various scalar components of the vector fields we obtain

[F t
jl∂t +F x

jl∂x +Fϑ
jl ∂ϑ +Fϕ

jl ∂ϕ +F 0
jl ]wjl + [Gx

jl∂x + Gϑjl ∂ϑ + Gϕjl ∂ϕ]Jµlφ = 0. (3.6)

In the magnetic configuration considered here the so-called ‘Baños’ term F t
jl is close

to unity (due to that fact that b · ∇ × b∼ 1/R we have in normalized form (vj/B)b ·
∇× b∼ (vj/cs)(ρs/R0)∼ εaρ

?� 1). As for linear analysis it entails only a negligible
correction on the frequency, its departure from unity will be neglected further on.

Taking advantage of domain periodicity in (ϑ, ϕ) the perturbed fields X = (wjl, φ)
are decomposed in Fourier series

X(t, r, ϑ, ϕ)=
∑

n

∑

m

X n
m(t, r) exp(i(mϑ + nϕ)). (3.7)

Using the axisymmetry of the equilibrium field, and approximating ∇⊥ by ∇r,ϑ in the
quasi-neutrality equation, the problem becomes separated in ϕ, allowing us to treat
the toroidal wavenumber n as a parameter (i.e. Fourier modes einϕ are eigenmodes
in the ϕ-direction). We will further on consider n as fixed and will omit explicit
indexing by n of the various unknowns to simplify notations. Noting simply wjl the
vector whose component are the various poloidal modes of the perturbed field, i.e.
wjl = (wjl

n
m(t, r)),m ∈ [−mmax,mmax], we can express the initial value problem as

∂twjl + Fjlwjl +GjlJµlφ = 0, ∀( j, l), (3.8)

Qφ =
∑

jl

AjlJµlwjl. (3.9)

Through Laplace transform in time, one obtains a generalized eigenvalue problem,
linear in the spectral parameter ω, which reads

−iωwjl + Fjlwjl +GjlJµl

∑

k′l′
Ak′l′Q−1Jµl′wk′l′ = 0, ∀( j, l), (3.10)

where the notation Q−1 should be understood as formal, and does not preclude
any explicit inversion of Q. In a first stage, the solutions of (3.10) of interest are
the most unstable ones, i.e. those for which the imaginary part γ of the complex
frequency ωr + iγ is positive and maximal. Two approaches were considered for
the numerical resolution of the problem, the first one operating directly on the
two-dimensional problem and the second one using the expected geometry structure
of the solutions to split the problem in a collection of more tractable ones through a
Wentzel–Kramers–Brillouin (WKB)-like analysis which is presented hereafter.
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12 D. Coulette and N. Besse

3.2. WKB-like analysis or ‘ballooning’ representation method
A detailed and rigorous development of the following method can be found in
Besse & Coulette (2016): we will therefore only sketch here the main features of
the asymptotic analysis and the description of the resulting problem relevant to its
numerical resolution. The analysis is based on the idenepsication and separation
of various space scales entering the problem and the expected solutions. An
eigenmode φ̃ω for the electrostatic potential is decomposed in the so-called ballooning
representation (Hastie & Taylor 1981; Hazeltine, Hitchcock & Mahajan 1981; Connor
& Taylor 1987; Hazeltine & Newcomb 1990; Newcomb 1990; Taylor, Wilson &
Connor 1996; Hazeltine & Meiss 2003; Abdoul et al. 2015) as such

φ̃ω(x, η, ϕ)=
∑

n∈Z

∑

p∈Z
φ̂nω(x, η+ 2pπ, θk(x)) exp

(
in
(
ϕ − 2πpq+

∫
dqθk

))
, (3.11)

where η is the poloidal angle, acting as a curvilinear abscissa along a magnetic
field line, and θk is the so-called ballooning angle. Solving the linear problem for
a toroidal eigenmode φ̃nω will thus entail finding both the slow varying envelope
φ̂nω and the radial variation of the ballooning parameter θk. Taking advantage of the
scale separation between the slow varying envelope and ballooning angle and the fast
phase oscillations in the eikonal, an asymptotic expansion in the smallness parameter
ε = (1/n)1/3, provides as the lowest orders a scheme to solve the eigenproblem. The
three stages of the scheme can be summarized as such:

(i) at the zeroth order, (x, θk) are considered as parameters. For each (x, θk) pair,
the slow envelope φ̂nω(η) is solution of a one-dimensional integral eigenvalue
problem. As the problem is by construction 2π periodic in θk, one has to solve
in the parameter space [xmin, xmax]× [0, 2π]. Considering for clarity only the most
unstable solution sheet, one can then obtain a ‘local’ frequency map ω0(x, θk) and
the corresponding local eigenvector map;

(ii) at the first order, the lowest-order contribution of the ballooning parameter θk0 is
assumed as a radially constant. Its value θk0T is selected to ensure maximal radial
extension for the mode and maximal range in the eigenfrequency ω0(x, θk0T). This
choice entails that the first-order correction ω1 to the frequency is zero;

(iii) at the second order, knowing ω0(x, θk0T) one obtains an one-dimensional
eigenvalue problem for the global radial envelope A1 ∝ ein

∫
dqθk1 and the global

frequency ω.

3.2.1. Integral eigenvalue problem, local in radius
For given values of (x, θk0), considered as parameters, the slow poloidal envelope

φ̂0(θ)= φ̂nω(x, θ, θk0) is the solution of the integral eigenvalue problem

φ̂0(θ)=
∫ +∞

−∞
K(θ, η, ω0)φ̂0(η) dη, ∀θ ∈R, ω0 ∈C, Imω0 > 0, (3.12)

whose integral kernel results from the individual contours contributions

K(θ, η, ω)=
∑

l

N∑

j=1

Kjl(θ, η, ω0). (3.13)
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The gyrokinetic-waterbag model in toroidal geometry 13

FIGURE 4. Support (blue) of a closed contour contribution in the plane (θ, η); open
contour contributions are defined on the whole grid.

The explicit form of the contour contribution Kjl depends on the topological nature of
the corresponding equilibrium contour vjl at radial position x. We will note respectively
KO

jl and KC
jl contributions to the kernel from an open or closed contour. The first

distinction to be made between those two kinds of contributions is their support on R2,
which arises from the integration along equilibrium characteristics which is performed
in establishing (3.12), taking boundary conditions into account. In the case of open
contours, the perturbation vanishes at η=±∞, and the integration support is R2. In
the case of closed contours, the perturbation is assumed to vanish at the limit angles of
the equilibrium contours. The integration procedure is then performed piecewise, for
p ∈ Z, between limit angles θ−Lpjl and θ+Lpjl defined by θ±Lpjl = 2pπ± θLjl (see figure 4).
A closed contour contribution is thus formally decomposed as

KC
jl (θ, η)=

pmax∑

p=pmin

1]θ−Lpjl,θ
+
Lpjl[(θ)1]θ−Lpjl,θ

+
Lpjl[(η)K

C
pjl(θ, η). (3.14)

In all the following explicit expressions, suitable domain restrictions will be implicitly
assumed.

KO
jl (θ, η)=−iPjl(θ)Fjl(ω0, η) exp[iIjl(min(θ, η),max(θ, η), ω0)], (3.15)

and

KC
pjl(θ, η)=Pjl(θ)Fjl(ω0, η)

2 cos Ijl(θ
−
Lpjl,min(θ, η), ω0) cos Ijl(θ

+
Lpjl,max(θ, η), ω0)

sin Ijl(θ
−
Lpjl, θ

+
Lpjl, ω0)

,

(3.16)
with the definitions

Pjl(θ)= 2πB(θ)
Q(θ)

Ajl
Jµl0(θ)

vjl(θ)
, (3.17)
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14 D. Coulette and N. Besse

Q(θ)= n0

[
1

ZiTe
+ 1

B2

(nqρ?
x

)2
(1+ s2(θ − θk0)

2)

]
+ 4πB

∑

jl

Ajl
J 2

0µl

vjl
, (3.18)

Jµl0 = J0

( |n|qρ?
x

ρi(µl)
√

1+ s2(θ − θk0)2

)
(3.19)

Fjl(ω0, η)= Jµl0(η)

vjl(η)

qR
bϕ
(ω0 +ω?jl −ωdjl + iω�jl) (3.20)

ω?jl(η)=
nbϕρ?

B

{
ρ?

x
[qvjl∂xvjl − q′(η− ϑk0)vjl∂ηvjl] +

[
q′(η− θk0) sin η+ q

cos η
x

] v2
jl

R

}
,

(3.21)

ωdjl(η)= nbϕρ?
R

[
µl +

v2
jl

B

] [
q′(η− θk0) sin η+ q

cos η
x

]
, (3.22)

ω�jl(η)=−2
bϕρ?vjl

RB

[
sin η∂xvjl − cos η

x
∂ηvjl

]
, (3.23)

Ijl(θ, η, ω0)=
∫ η

θ

dη̃
qR

bϕvjl
[ω0 −ωdjl + iω�jl], (3.24)

with

ρ? = a−1, ρi =
√

2µl

B
,

q(x, η)= q

[
1+

(
r

qR

)2
]
= q

[
1+ q−2

(
xεa

1+ xεa cos η

)2
]
.





(3.25)

3.2.2. First-order problem: selection of θk0T

The explicit structure of the integral kernel K is quite intricate. Its relevant
properties will be evoked as necessary when describing the scheme and the numerical
methods. For now, let us first note that the local problem is 2π periodic in θk, a
property inherited from the poloidal periodicity of the equilibrium contours. We can
thus restrict θk0 values to [0, 2π[ without loss of generality.

For a given value of (x, θk0), the local eigenvalue problem may have a large number
of unstable (γ0 > 0) solutions. We will consider here only the most unstable one for
clarity and assume that no branch crossing arises in the parametric domain and thus
that continuous solution sheets (ω0(x, θk0), φ̂(η, x, θk0)) can be obtained by selecting
the most unstable mode for each point in the parametric plane.

Depending on the actual magnetic field geometry and equilibrium density and
temperature profiles, the local growth rate γ0 radial variation may not be unimodal,
i.e. distinct radial unstable zones may appear. We restrict the analysis to a single
such unstable zone.

With those restrictions, the parametric variations of the frequency components have
a topology similar to the ‘cat-eye’ phase space representation of an oscillator, with
a single O-point (see figure 5). Instead of considering the frequency ω0 fixed and a
radially varying θk (in red in figure 5), the radial dependency is reported on ω0 for
a fixed value θk0T . To ensure a maximal radial extent of the mode and avoid cutting
part of the spectrum, θk0T is chosen as coinciding with the O-point coordinate (dotted
blue line in figure 5). This choice of the parametrization θk0= θk0T , ω0(x)=ω0(x, θk0T)
entails that the first-order correction ω1 is null.
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The gyrokinetic-waterbag model in toroidal geometry 15

FIGURE 5. Formal representation of solutions γ0, ωR0 = f (x, θk0); level lines ω0 = cst in
the vicinity of an (O) point.

3.2.3. Second-order problem: global envelope and frequency
At the second order of the asymptotic expansion, with the choice of parametrization

done at the first order, the global radial envelope A1 ∝ ein
∫

dqθk1 is solution of the
Schrödinger-type one-dimensional eigenvalue problem

(
∂2

∂q2
− n2Q(ω, q)

)
A1 = 0, (3.26)

with the boundary conditions A1(qmin)= A1(qmax)= 0 and where the pseudo-potential
Q is defined

Q(ω, q)=−ω−ω0(q, θk0T)
1
2∂

2
θk0
ω0(q, θk0T)

, (3.27)

and is built from the data obtained at the previous orders. The resolution of this
problem yields the global mode frequency ω and global radial envelope A1(q) (or
equivalently θk1(x)).

4. Numerical methods
4.1. Two-dimensional initial value problem

The unknown discrete fields of the two-dimensional problems (3.8), (3.9) or (3.10),
are discretized in the radial variable on a uniform grid [xmin, xmax]. Radial differential
operators are discretized using second-order centred finite difference schemes. In the
poloidal variable, we use a Fourier series approach, with poloidal mode number in the
spectral range [mmin,mmax].

Let us first note that, even for the lowest ranges of reasonable discretization
parameters, for instance (Nr = 100,Nϑ = 100,N = 6,Nµ= 6), the size of the resulting
operator prevents the use of a dense factorization method such as QZ.
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16 D. Coulette and N. Besse

As we are mostly interested in the most unstable modes, a direct time integration of
the initial value problem (3.8) and (3.9), from random initial conditions allows us to
quickly obtain the most unstable mode for a given value of the toroidal number n. The
integration in time is performed using an explicit fourth-order explicit Runge–Kutta
scheme. To ensure A-stability of the scheme, the extremal real frequencies of the
spectrum are computed using the Arnoldi restarted method (Sorensen 1992; Lehoucq
1996, 1999; Saad 2001) implemented in PARPACK (Lehoucq et al. 1996).

The multi-waterbag model lends itself to straightforward parallelization over N and
Nµ of the Vlasov part of the linear system, using the MPI library. A finer grained
parallelization (using OpenMP) is used for the matrix–vector products involved in
computing the evolution of each contour. The overall parallel efficiency is limited by
the quasi-neutrality solver, which remains sequential.

One could wonder why we do not use simply the Arnoldi method to compute the
wanted unstable mode. Unfortunately, though the method converges easily when
searching for extremal stable modes, we could not find any reasonable set of
parameters allowing it to converge for the unstable ones. One must bear in mind
that the spectrum of the operator is highly anisotropic in the complex plane, with an
extent on the real axis two or three orders of magnitude larger than on the imaginary
one. This may explain why the Arnoldi method, in the limited range of parameters
used for tests (size of the Krylov subspace and maximal number of allowed iterations),
could not converge to the desired eigenmode, as a large Krylov base and number of
iterations can be necessary to filter out the unwanted high modulus eigenvalues. This
lack of convergence was not extensively investigated, as the main function of the
two-dimensional global code was to provide an easy to implement method to obtain
most unstable modes in order to perform cross-check validation with the asymptotic
eigenvalue code.

4.2. Asymptotic eigenvalue problem
4.2.1. Local integral eigenvalue problem

Problem (3.12) is a Fredholm type integral eigenvalue problem of the second kind
(Kaneko & Xu 1994; Rahbar & Hashemizadeh 2008) and may be discretized using
several methods. Before selecting one, we first restrict the solution support in η by
choosing an integer pmax and restricting solutions to the set

S = {φ̂ ∈ L2([−2πpmax, 2πpmax]), φ̂(−2πpmax)= φ̂(2πpmax)= 0}. (4.1)

In order for such a restriction not to perturb the results, the actual solution must decay
sufficiently fast in η when |η| → +∞ so that the application of the ±∞ boundary
conditions to finite ±2πpmax has negligible impact. This property can be checked a
posteriori by varying integration support. On [−2πpmax, 2πpmax], we assume a discrete
grid (ηi, i ∈ [1,Nη]).

A first method for discretizing the integral problem is direct quadrature. Setting φi=
φ̂(ηi) we have for all i ∈ [1,Nη]

φi =
∑

j

wjφjK(ηi, ηj, ω0)=
∑

j

wjK
quad
ij (ω0)φj, (4.2)

where the weights wj define a quadrature formula on nodes ηi. Two quadrature rules
where implemented: uniform grid trapezoidal and Gauss–Hermite. In both cases one
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The gyrokinetic-waterbag model in toroidal geometry 17

obtains an eigenvalue problem of size Nη. The direct quadrature method has the
advantage of simplicity. The drawback is the coupling of quadrature accuracy and
eigenvalue problem size through Nη. In cases where Nη is too large to allow for
an efficient resolution of the eigenvalue problem, one can limit the problem size by
projection of φ̂ on a function basis of size Nf with Nf < Nη. This projection (aka
‘Galerkin’) method was implemented with Hermite functions. The solution is thus
decomposed following

φ̂ =
Nf∑

k=1

φkψk, ψk(η)= e−η2/2

√
2kk!Hk(η), (4.3a,b)

with Hn being the nth Hermite polynomial. The projected problem then reads, for all
l ∈ 1, . . . ,Nf ,

∑

k

φk




∫ +∞

−∞
dθψl(θ)ψk(θ)

︸ ︷︷ ︸
Dlk≈1

−
∫ +∞

−∞

∫ +∞

−∞
dη dθψl(θ)ψk(η)K(θ, η, ω0)

︸ ︷︷ ︸
Kproj

lk (ω0)



= 0. (4.4)

Assuming the use of a common quadrature method, the relation between the direct
and Galerkin formulations of the problem can be expressed as

Dlk =
∑

i

wiψliψki ≈ 1 (orthogonality), (4.5)

where 1 is the identity matrix, and

Kproj
lk (ω0)=

∑

i

∑

j

wiwjψliψkjK
quad
ij (ω0). (4.6)

The choice of a fixed quadrature was made for performance reasons. For a given
value of ω0, the computation of the integral kernel at a given point (η, θ) has no
negligible cost, and requires in particular one-dimensional quadrature computations
for the Ijl integrals. With a fixed quadrature rule, one can pre-compute and store
on a two-dimensional grid all the ω0-independent elements entering the kernel. For
each value of ω0, one can then build the operator from these precomputed elements.
This strategy is made mandatory by the method used for eigenvalue computation (see
below), which requires building the operator for a large number of ω0 values.

Whichever of the aforementioned discretization methods is used, we obtain an
eigenvalue problem of the form M(ω0)X = 0, where M is a square matrix whose
elements depend nonlinearly on ω0. The singularity of M(ω0) is detected using the
cancellation of det(M), obtained by LU factorization of M . The problem is solved
in two stages: the eigenvalues are sought first by solving det(M)= 0 in a region of
the upper complex plane. The corresponding eigenvector is then obtained for each
eigenvalue by singular value decomposition of M(ω0).

The localization of the eigenvalues in the upper complex plane is performed using
a recursive quadrisection/exclusion scheme based on contour integration: starting
from a rectangle region where it is assumed no poles of det(M) exist, the winding
number Nw of det(M) is evaluated using Henrici’s method (see Delves & Lyness
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18 D. Coulette and N. Besse

FIGURE 6. Default parametric scan scheme; parallel resolution in θk0 = 0, parallel
resolution in xs, mixed resolution on a band around θk0T .

1967; Davies 1986; Kravanja & van Barel 2000; Ko, Sakkalis & Patrikalakis 2008;
Zapata & Martin 2011 for related methods). If Nw > 1 the region is subdivided
into four slightly overlapping subregions. If Nw = 1, a refining procedure using the
tangent method with a few starting points around the centre of the region is tested.
The recursion is stopped whenever Nw = 0, all located roots have been found, or
the maximal recursion depth is reached. Results from subregions are transmitted
to their parents and siblings in order to automatically prune the search tree and
avoid unnecessary computations. As is usual for root seeking schemes, the efficiency
of the method has to be balanced with accuracy: though det(M) is known to be
analytical, the convergence of Henrici’s method cannot be a priori insured for a finite
number of integration points on a given contour. Calibration tests must be performed
to set the maximum number of integration points so as to obtain a reasonable
balance between computation cost and the risk of early termination leading to missed
eigenvalues. Those tests are performed for one or a few (x, θk0) sample values, fixing
the parameters for the rest of the parametric plane, and even other n values.

4.2.2. θk0T computation and global eigenvalue problem
The second-order (global) problem requires obtaining a good discrete representation

of the mapping ω0(x, θk0) in the parametric plane (x, θk0) in the vicinity of the
line θk0 = θk0T , whose value is a priori unknown. The parametric plane is first
discretized on a coarse regular rectangular grid. Two acceleration strategies have
been considered and implemented: on the one hand, the independence of the local
eigenvalue problems corresponding to various parametric pairs (x, θk0) lends itself
to straightforward parallelization by domain decomposition in the parametric plane.
With a fixed parallelization scheme, this strategy will necessarily be suboptimal as the
termination times for the local searches can vary significantly in the parametric plane.
On the other hand, one can exploit the continuous dependency of the kernel on (x, θk0).
Assuming the solution ω0(x, θk0) is known, it can be used as a guess for the solution
at (x + δx, θk0 + δθk0). Using this guess value, the expensive recursive root locating
procedure can be entirely skipped: using a few test pairs in the neighbourhood of
the guess value, the solution of the problem for (x+ δx, θk0 + δθk0) can be recovered
using the secant method in the complex plane.

The default parametric scanning scheme in the implementation is a mix of both
strategies (see figure 6). Moreover, two different grids are used in θk0 in order to
avoid useless oversampling: a coarse one for the localization of θk0T and a finer one
to provide data for the global problem. We first solve the local eigenvalue problem
with domain decomposition in x with θk0 = 0. We then select the radial position xs

for which the growth rate is maximal; this choice allows for a fast convergence of
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(a) (b)

FIGURE 7. Cyclone case; prescribed (continuous lines) and multi-waterbag (dashed lines)
equilibrium radial profiles; density and temperature (a); ηi = Ln/LT (b).

the root localization procedure. The problem is then solved on the line x = xs with
domain decomposition in θk0 on a coarse grid (typically 102 points). Using a cubic
spline approximation of ω0(xs, θk0), we then solve ∂θk0ω0(xs, θk0)= 0 for θk0T at x= xs.
The local eigenvalue problem is then solved at x= xs, with domain decomposition in
θk0 on a thin band [θk0−1θk0, θk0+1θk0] around θk0T using a finer grid. Solutions on
the whole band are then obtained by continuity in x. The latter procedure is stopped
whenever the obtained growth rate reaches negative values; the radial domain is thus
restricted to [xm, xM] to ensure γ > 0.

Once a discrete map ω0(x, θk0) (and corresponding eigenvectors) have been obtained
on [xm, xM] × [θk0−1θk0, θk0+1θk0], we can build the pseudo-potential (3.27) for the
global problem (3.26). The radial Laplacian is discretized using second-order centred
finite differences, leading to a tridiagonal operator. The resulting eigenvalue problem
is then solved using the same algorithm as the local one.

5. Sample numerical results for a Cyclone-like cases
Numerical tests have been performed with the widely used Cyclone case parameters.

Based on a discharge from the Doublet-III-D tokamak, the Cyclone case is defined by
the local dimensionless parameters

εr0 =
r0

R0
= 0.18,

R0

LT
= 6.92, ηi = Ln

LT
= 3.12, q= 1.4, s= rdr ln q= 0.78,

(5.1a−e)
with LX = (dr ln X)−1, X ∈ {n, T}, all defined at r0 = a/2. For global codes such as
those depicted here, this set of local parameters is not sufficient to determine the
equilibrium. As a compatible set of parameters we used for geometry R0 = 220ρs,
a = 82ρs, [xmin, xmax] = [0.25, 0.75], leading to ρ? = 1.22 × 10−2 and εa = 0.36.
The security factor profile is a parabolic one of the form q(x) = 0, 854 + 2.184x2.
Equilibrium density and temperature are defined by radial profiles of the form
X(r) = exp(κX∆rX tanh((r− r0)/∆rX )) with X ∈ {n, T}. In all results presented here,
we used Ln = 100, ∆rn = 0.4a, LT = 32.1, ∆rT = 0.15a, yielding profiles (see figure 7)
similar to those used in Idomura et al. (2003). In this section, we will first discuss
shortly the choices made for multi-waterbag equilibrium building and their impact
on solver behaviour. We will then present results for equilibria where both codes
can operate fully, allowing for cross-comparison of the results. We will eventually
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(a) (b)

(c) (d)

FIGURE 8. Cyclone case with N=6; Nµ=1 µ=1; (r, ϑ, v‖) view of equilibrium contours
built with the moments method (a) and local Maxwellian iso-surfaces topology (b); (r, ϑ)
view of the ‘closed’ v1 (c) and v2 (d) contours.

discuss the case of equilibria containing closed contours, which as of now can only
be treated locally in the radial variable with the asymptotic method.

5.1. Multi-waterbag equilibrium distribution building
As stated in § 2.4, whatever method is used to build the equilibrium multi-waterbag
contours, some contours may ‘close’ on the spatial domain whenever the magnetic
moment µ is non-zero (see figure 8). For the latter, the divergence of the contour
spatial gradients at limit angles strongly perturb the linearized advection operators.
The initial value code cannot in its present state be used to tackle these cases, as
the effect of those divergences cannot be filtered out. In order to be able to compare
results from both codes, we have first considered equilibria where no such closed
contour appear by strongly limiting the range in magnetic moment. The equilibrium
contours are built using the moment equivalence method at ϑ = 0.

5.2. Results from the QUALITORO code
Table 2 displays the parameters used for the QUALITORO test runs on the Cyclone
case. For all results presented here, the eigenmode characteristics are examined using
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N Nµ Nr Nϑ ΩCI1t Nt Nϕ n Nproc Nthread

6 1 128 128 1.0 28 000 20 [6–44] 13 4

TABLE 2. QUALITORO initial value code parameters; time step 1t; number of time steps
Nt; number of n toroidal wavenumber values Nϕ; number of MPI processes Nproc= 2×N×
Nµ + 1; number of threads per MPI process Nthread.

(a) (b)

FIGURE 9. Cyclone-like case; N = 6, Nµ = 1, µ= 0; QUALITORO code results; growth
rate (a) and frequencies (b) obtained from electrostatic potential in (x0 = 0.5, ϑ0 = 0).

the electrostatic potential. Growth rates and frequencies are both computed locally on
the radial domain, at x0 = 0.5. Growth rates are obtained by logarithmic regression
on
∫ |φ(t, x0, ϑ)|2 dϑ . Frequencies are extracted from the time Fourier spectrum of

cos[arg φ(t, x0, ϑ0 = 0)], computed in the linear growth phase to exclude transient
frequencies.

The spectral n-dependency of the growth rates and frequencies for the Cyclone case
is shown on figure 9. As a comparison basis, we will consider results for the same
case presented in Dimits et al. (2000), Grandgirard et al. (2006b), Rewoldt et al.
(2007), Idomura et al. (2008), Lapillonne et al. (2009), Qi et al. (2016).

5.2.1. Case of an equilibrium distribution function with no trapped particles (µ= 0)
There is only a qualitative similarity between the results in figure 9 for the µ= 0

no-trapping limit, and the reference results for the Cyclone case which are shown in
figure 25(a). The real part of the frequency exhibits the same linear trend as in the
reference results, and the overall range in growth rate is quite similar. There is clearly
no quantitative agreement though, even for the lowest part of the spectrum where finite
Larmor radius effect disappear. The discrepancy comes from the very peculiar nature
of the equilibrium distribution (T⊥ = 0) which differs significantly from the standard
(Maxwellian) Cyclone distribution function. A second possible source of discrepancy
is the value of ρ?= 1/82: it is too large to exclude possible finite domain size effects
on the spectrum, which should become negligible around ρ? = 1/200 according to
McMillan et al. (2010).

A discontinuity in the variations of γ and ω is visible in the lower part of the
spectrum, indicating a possible branch jump.
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FIGURE 10. QUALITORO code; Cyclone-like case; N = 6, Nµ = 1, µ= 0; radial profiles
of potential modulus in ϑ = 0 for a few n values.

An important, but unsurprising difference with reference results is the support of
the spectrum in n, and consequently in k⊥, with higher peak wavenumber and range.
As the equilibrium distribution in magnetic moment is limited to the µ= 0 value, the
gyroaverage operator reduces to identity and the only retained finite Larmor radius
effect is the polarization drift. The k⊥ spectrum is thus similar to the drift-kinetic one
in cylindrical geometry, with a peak around k⊥ρs ∼ 1 and a slow decreasing tail at
high frequencies.

The geometric features of the mode envelopes (figure 11) exhibit a variation
with n. For small wavenumbers, the mode structure is similar to the one observed
for cylindrical ITG modes: a radial localization in the high gradient zone, with a
narrow-banded poloidal spectrum, and a weak poloidal localization. When n grows,
the ballooning features of the mode is accentuated. The slowly varying radial envelope
corresponding to the gradient zone is then modulated by the fast oscillations caused by
resonant flux surfaces. A slight drift of the radial envelope peak from the maximum
gradient position x0 to the exterior of the torus can be also observed (figure 10). The
poloidal spectrum widens, and the mode develops a slow varying poloidal envelope
localized in the low field side.

The resonant character of the mode is clearly marked in the radial dependency of
the poloidal Fourier spectrum of the mode (figure 12). The latter is strongly localized
around the resonance curve m=−nq.

All features observed are consistent with the ones observed in Idomura et al. (2003).

5.2.2. Non-zero magnetic moment effect
As stated before, avoiding the existence of closed equilibrium contours imposes a

strong limit on the accessible magnetic moment range (µmax= 0.17). The introduction
of non-zero magnetic moment distributions has nonetheless a noticeable effect on the
spectral n-dependencies of the instability. Toroidal number scans have been performed
using three distinct distributions in magnetic moment. The first two each have one
unique value of the magnetic moment, respectively µ = 0 and µ = 0.15. The last
one combines the two values. The resulting growth rates and frequencies are given
on figure 13. The increase in magnetic moment modifies the spectral dependency of
the growth rate in multiple ways; the higher end (n> 15) of the spectrum is stabilized,
while the lower end is slightly destabilized and the maximum is shifted towards lower
frequencies. The effect on frequencies is a shift of the spectrum towards low values
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(a) (b)

(c)

FIGURE 11. QUALITORO code; Cyclone case; N = 6, Nµ = 1, µ = 0; real part of
electrostatic potential; poloidal cut with local Cartesian basis (X= r/a cosϑ,Y= r/a sinϑ).

of n. Though limited, all the aforementioned effects show a trend which is consistent
with reference results obtained with more complete equilibrium distributions. For the
limited range of µ values used here, the global evolution of the modes geometry is
not noticeably affected.

5.3. Results from the ASYMPTORO code
The asymptotic method has been implemented in the ASYMPTORO code. Though
both direct quadrature and Galerkin schemes were implemented and tested, we will
present here only the direct quadrature results. In the case tested, the former scheme
proved more costly without any significant accuracy or stability advantage. Before
presenting global results suitable for comparison with the initial value code, we will
first retrace the different computation steps of the asymptotic method on a few sample
cases.

5.3.1. Resolution of the local eigenvalue problem in (x, ϑk0)

Solving the integral eigenvalue problem described in § 4.2.1 first requires setting
both integration bounds and resolution for the η variable. The integration range,
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(a) (b)

(c)

FIGURE 12. QUALITORO code; Cyclone-like case; N = 6, Nµ = 1, µ = 0; radial
dependency of poloidal Fourier power spectrum (in dB); dashed line indicates resonance
m=−nq(r).

(a) (b)

FIGURE 13. QUALITORO code; Cyclone-like case; magnetic moment dependency of
growth rates (a) and frequencies (b).
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(a) (b)

FIGURE 14. ASYMPTORO code; Cyclone-like case; n = 25 mode; convergence test in
(x= 0.5, ϑk0= 0); pmax (shortened as p in legends) defines the solution support ([−(2pmax+
1)π; (2pmax + 1)π]);Nη scan over values 65, 129, 257, 513.

(a) (b)

FIGURE 15. ASYMPTORO code; Cyclone-like case; local problem in (x= 0.5, ϑk0 = 0);
most unstable solution envelopes; n= 25 on [−5π; 5π] (a); n= 10 on [−7π; 7π] (b).

and consequently the solution support on R of the discrete solution, is defined as
[−(2pmax + 1)π, (2pmax + 1)π], where pmax is a chosen integer. The accuracy is then
fixed by the choice of Nη. On figure 14, convergence results for the local growth rate
and frequency, obtained from a scan in both pmax and η are shown for the n = 25
mode in (x = 0.5, ϑk0 = 0). Below 5 % convergence in relative value is obtained for
hη ∼ 0.2.

For an accurate description of mode geometry, the convergence in hη of the
eigenvalue is not sufficient, and the decrease of the solution when reaching domain
boundaries must be taken into account to set pmax properly. As can be seen in
figure 15, the typical width of the local solution decreases with the toroidal mode
number n. For the higher part of the spectrum (typically n > 15), setting pmax = 1
is sufficient, while for the lower parts, extension of the solution envelope requires
higher settings.

We have so far considered only the most unstable solution to the local eigenvalue
problem. For most of the spectral range in n, the growth rate of less unstable ones is
orders of magnitude lower than the most unstable, and they are typically discarded by
setting the solver lower threshold in γ . For the lower part of the spectrum, secondary
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(a) (b)

FIGURE 16. ASYMPTORO code; Cyclone-like case; local problem in (x= 0.5, ϑk0 = 0);
n=10 mode; map of argument of operator determinant in the complex plane (a); recursive
solver search boxes in red with winding number in black; white crosses indicate converged
solution; envelope of the second most unstable solution (b).

solutions with significant growth rate may appear. This is for instance the case of the
n= 10 mode. This observation confirms existence of the branch jump around n= 10
that was suggested when examining the initial value code results (figure 16).

5.3.2. Global problem
Before attempting to compute the θk0T angle, one must insure that continuous

solutions sheets in the parametric plane can be assembled from local results obtained
independently (i.e. without using the fast continuation method). Ambiguities may
arise in zones where the growth rate reaches small values, as multiple solutions with
comparable growth rates coexist. In that zone marking the boundary of the unstable
island in the parametric plane, the local problem becomes harder and more costly to
solve as the growth rate diminishes. As these zones correspond to radial positions
where the global envelope will be vanishingly small, imposing a lower cutoff threshold
on the growth rate when selecting solutions does not entail significant modification
of the mode structure. The chosen threshold must simply be low enough to obtain
a strongly confining pseudo-potential Q (3.27) when solving the global Schrödinger
problem. Frequency maps obtained by applying such a threshold are shown on
figure 17.

The localization of the (O)-point and of the whole unstable zone depends on
the toroidal mode number. For all cases tested so far, the value of the ballooning
angle θk0T remains close to zero. The radial position of the (O) point grows with
n, consistent with the observed behaviour of the mode radial envelope observed in
the results of the initial value code (figure 10). With growing n, variations of the
eigenfrequencies with θk0 become slightly more complex and the θk0 component of the
gradient of ω0 may vanish in more than one point for some values of x (figure 18).
To avoid these zones when using the fast continuation method, a first sweep in x
with θk0 = 0 is done in order to obtain a good approximation of the x-position of
the (O) point. The scan in θk0 is then done at this position, where variations of the
growth rate are unimodal in θk0. Once the value of θk0T has been obtained from
such a scan, the local problem may be solved on a thin band of the domain centred
on θk0T , in order to build the operator for the global problem. As can be seen on
figure 19(a), the pseudo-potential for the Schrödinger operator is strongly confining.
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(a) (b)

FIGURE 17. ASYMPTORO code; Cyclone-like case; contour plot of local frequencies
(γ , ωR) in the parametric plane (x, θk0); n = 24, pmax = 2, Nη = 257; growth rate lower
threshold γmin × Ln/cs = 0.016.

FIGURE 18. ASYMPTORO code; Cyclone-like case; n= 40, pmax = 1, Nη = 185; contour
plots of the local growth rate in the (x, ϑk0) plane.

Though oscillations stemming from the second derivatives in the expression of Q are
visible, their impact on the actual solution is low as the envelope of the solution
decays rapidly (figure 19b).

Once the slow radial envelope A(x) has been obtained, the global mode is
reconstructed from both A(x) and local solutions envelopes φ̂(x, η, θk0T). As the
latter were obtained independently, each of them is defined up to an arbitrary unitary
phase factor. A phase shift is applied in order to restore phase continuity in x of the
envelopes (figure 20). The reconstruction is obtained by

φ(x, ϑ)∼
pmax∑

p=−pmax

φ̂(x, ϑ + 2pπ, θk0T)A(x)e−inq(x)(ϑ+2pπ−θk0T ), (5.2)

leading to the global mode (figure 21). The dependencies in the toroidal mode number
n of the spectral and geometric features of the mode obtainedby the asymptotic
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(a) (b)

FIGURE 19. ASYMPTORO code; Cyclone-like case; n= 24, pmax = 2, Nη = 257; global
radial envelope computation; radial profile of the pseudo potential Q (a); radial profile of
the solution A(x) (b).

(a) (b)

FIGURE 20. ASYMPTORO code; Cyclone case; n= 24, pmax = 2, Nη = 257; local
envelopes φ̂(x, η, θk0T); modulus (a) real part (b).

method are similar to those observed for the initial value code (figure 22). The
discontinuity in the low end of the spectrum is confirmed. The evolution of mode
geometry with n is similar to the one observed with the initial value code; apart from
the ballooning structure, which appears by construction, the radial out-shift of the
radial envelope with growing n is also observed.

5.4. Cross-comparisons
As the overall spectral and geometric features of the solutions obtained from both
method appear to be consistent, a more direct comparison of the instability spectra
is possible. Scans in toroidal number have been performed, for both methods, using
a fixed set of parameters (resolution, domain, time step, . . .) adapted to the central
part of the toroidal range (n = 15–35). Comparing growth rates and frequencies
(figure 23a,b) in that range reveals a good agreement between the two methods, with
relative variation of about 5 %. Larger discrepancies appear for the less unstable
modes at both extremities of the spectrum.

The geometry of the envelopes obtained by both methods also show good
agreement, as can be seen (figure 24) for the n = 20 mode. The poloidal and
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(a) (b)

FIGURE 21. ASYMPTORO code; Cyclone-like case; n= 24, pmax = 2, Nη = 257; global
solution φ(x, ϑ); real part (a) and modulus (b).

(a) (b)

FIGURE 22. ASYMPTORO code; Cyclone-like case; Nµ = 1, µ= 0; variation with n of
global growth rate (a) and frequency (b).

radial localization of the mode are consistent, with a slightly higher attenuation on
the high field side for the asymptotic mode (figure 24c,d).

5.5. Extension of the method to distributions containing closed contours
The previous results were obtained from equilibrium multi-waterbag distributions
containing only ‘open’ contours, i.e. for which the non-crossing condition is
everywhere valid on the domain. Such a restriction entailed a drastic limitation
of the extension of the distribution in magnetic moment. Overcoming this limitation
requires a proper treatment of ‘closed’ equilibrium contours. Strictly speaking the
latter violate the non-crossing assumption, and the dynamics of symmetric contour
pairs are coupled. The resulting singularities cannot be properly treated using the
initial value solver. For the asymptotic solver, the situation is somewhat less critical.
Solutions of the local eigenvalue problem can be obtained for equilibrium distributions
containing closed contours as their contributions to the integral kernel K are only
weakly singular in ϑ at the limit angles, and thus integrable. For equilibrium contours
built using the moments method, extending the range of the distribution in magnetic
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(a) (b)

FIGURE 23. Cyclone-like case; growth rate (a) and frequency (b) comparison between
initial value (continuous lines) and asymptotic method (dashed); growth rate data are
interpolated by cubic splines; frequencies are interpolated by affine fit.

moment results in an overly strong stabilization. The constraints of the moment
method in its present form, and most notably the restriction of moment equivalence
to the lowest order in magnetic moment, prevent a satisfactory sampling of the
equilibrium. For equilibrium distributions built from Maxwellian iso-surfaces, we
observe a better agreement with reference results: on figure 25(a), local growth rates
and frequencies of the eigenvalue code are plotted along data extracted from Dimits
et al. (2000), GTC/GT3D/FULL data from Rewoldt et al. (2007), GYSELA data
from Grandgirard et al. (2006b), GS2 documentation reference Cyclone data and
data computed using the eigenvalue solver of the GENE code (Jenko et al. 2000;
Lapillonne et al. 2009; Görler et al. 2011) with s–α geometry. One should keep in
mind when considering those results that the obtained frequencies and growth rates
are the lowest-order radially local approximation of the global ones in the asymptotic
expansion. The weak singularities stemming from the presence of closed contours
entail nonetheless a loss of regularity of the poloidal envelope φ̂ at the limit angles
(figure 25b).

6. Conclusions and prospects

We presented here the first attempt at applying the multi-waterbag reduction to
global linear analysis of ITG modes in toroidal geometry. We developed both an
eigenvalue solver based on asymptotic expansion in the ballooning representation
and an initial value solver relying on no assumptions on the geometric structure of
solutions. The first tests were performed using equilibria for which both methods can
operate. Results indicate (i) a qualitative agreement of the obtained solutions with
known spectral and geometric properties of the instability, (ii) consistency between
the two methods in a large part of the toroidal number spectral range.

The case of equilibria built with a larger support in magnetic moment can only
as of now be treated locally in radius with the eigenvalue solver. The obtained
local frequencies and growth rate appear to be in reasonably good agreement with
reference results. This is a very encouraging result considering the low resolution in
velocity space (N = 10, Nµ = 10) of the model and the consequent low numerical
cost (the computation of the local solutions of figure 25(a) takes only approximately
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(a) (b)

(c) (d)

FIGURE 24. Cyclone-like case; Nµ = 1, µ = 0; n = 20 mode; real part (a,b) and
modulus (c,d) of mode envelopes obtained by both methods.

twenty minutes on a laptop). The impact of the inclusion of closed contours entail
a divergence of the equilibrium contours spatial gradients. The resulting singularities
do not prevent the resolution of the radially local eigenvalue problem, but break the
continuity in radius of the operator required for a full global resolution.

Two approaches may be considered to treat those issues. The first relies on
improving the equilibrium building methods in order to limit or avoid closed contours
without restricting the range in magnetic moment. This requires excluding trapped
particle trajectories from the equilibrium distribution, which is not straightforward in
the multi-waterbag context: the spatial variation of an equilibrium contour can indeed
in many cases lead to a crossing of the trapping boundary in velocity space. The
second relies on developing a regularization procedure to improve the treatment of
poloidal and radial singularities in the asymptotic method.

In any case, though the Eulerian formulation of the waterbag model allowed
us to obtain ITG modes characteristics in reasonable agreement with other codes,
it is clearly unsuited for global nonlinear simulations. The next major steps in
continuation of this work will be (i) to develop a nonlinear initial value code based
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(a) (b)

FIGURE 25. Solutions of the local eigenvalue problem in x = 0.5, θk0 = 0; equilibrium
build from local Maxwellian iso-surfaces with N = 10, Nµ = 10, µmax = 8 with Cyclone
parameters; (a) local growth rate and frequencies (red circles) with data from Dimits et al.
(2000) (blue crosses), Rewoldt et al. (2007) (black stars), GYSELA data from Grandgirard
et al. (2006b) (cyan x’s), GS2 data (green squares), GENE (version 11 release 1.7) data
(yellow diamonds); (b) poloidal envelope φ̂ for the mode n= 10.

on the Lagrangian formulation of the waterbag model by taking advantage of the
technical groundwork done in Sousbie & Colombi (2016) and (ii) to perform a more
systematic comparison of waterbag results with other global or local gyrokinetics
codes.
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