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Abstract. This contribution concerns a one-dimensional version of the Vlasov
equation dubbed the Vlasov−Dirac−Benney equation (in short V−D−B) where

the self interacting potential is replaced by a Dirac mass. Emphasis is put on

the relations between the linearized version, the full nonlinear problem and
equations of fluids. In particular the connection with the so-called Benney

equation leads to new stability results. Eventually the V−D−B appears to be

at the “cross road” of several problems of mathematical physics which have as
far as stability is concerned very similar properties.

1. Introduction. This article is devoted to a one-dimensional variant of the classi-
cal Vlasov-Poisson equation where the Coulomb interacting potential V is replaced
by the Dirac mass δ:

∂tf(t, x, v) + v∂xf(t, x, v)− ∂xρf (t, x)∂vf(t, x, v) = 0,

ρf (t, x) =

∫
R
f(t, x, v)dv.

(1)

Since, in one of the most important configuration it is equivalent to the Benney
equation (cf. section 6 and [3]) we call it the Vlasov−Dirac−Benney equation or in
short V−D−B.

This equation exhibits both some similarities (at the level of the formal struc-
tures) and some basic differences with generalizations of the following Vlasov–
Poisson equation:

∂tf + v · ∇xf + E · ∇vf = 0,

E = −∇x
∫
Rd
V (x− y)

(∫
Rd
f(t, y, v)dv − 1

)
dy,

(2)

where the self-interacting electric field E is deduced from the density f of particles
through the action of a potential V which may differ from the original Coulomb
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potential and may be more or less regular than this potential. Especially in this
paper we focus on the case where the potential V is the Dirac distribution δ.

On one hand all the equations of the type (2) share in common some essential
properties recalled below.

They are “Liouville equations” associated to a dynamical flow defined by the
equations

ẋ(t) = v(t) , v̇(t) = −
∫
Rd
∇xV (x(t)− y)

(∫
Rd
f(t, y, w)dw − 1

)
dy.

They (at least formally) conserve the energy

E(f) =

∫
Rd×Rd

|v|2

2
f(t, x, v)dxdv

+
1

2

∫
Rd×Rd×Rd×Rd

V (x− y)f(t, x, v)f(t, y, w)dwdydxdv.

(3)

On the other hand the uniform background which is represented by the constant 1 in
the definition of the global density ρ =

∫
Rd f(t, y, v)dv−1, to ensure global neutrality

of the plasma, can be removed (since the potential V only appears through its
gradient in (2)) and thus when the potential V is a Dirac mass the equation becomes

∂tf + v · ∇xf −∇xρf · ∇vf = 0, ρf (x, t) =

∫
Rv
f(t, x, v)dv. (4)

Moreover in (4) the mapping f 7→ ρf 7→ E = −∇xρf is an operator of degree
1 while for the original Vlasov–Poisson equation it is an operator of degree −1.
Therefore the effect of the instabilities will be much more drastic and while for the
original Vlasov–Poisson equation the issue is the large time asymptotic behavior,
here the issue is that the Cauchy problem may be badly posed even for regular
initial data and for arbitrarily small time.

Below we focus on the equation (1) which is the one-dimensional (d = 1) version
of the problem and where instead of the symbol ∇ the symbol ∂ is used.

The interest of a one-dimensional space model may be fully justified by physical
reasons, particularly in the quasineutral-limit when the Debye length vanishes (cf
[16]). Moreover it is in one dimension that the spectral analysis of the linearized
problem is, by an adaptation of the method of Penrose (cf [36]), the most explicit.
Then, as we try to show, there is a natural connection between the properties of
the linearized and the fully nonlinear model. This connection emphasizes the role
of “bumps” in the initial profile. In particular in the case of the one-bump profile
the connection with the Benney equation gives a new stability theorem for the full
nonlinear problem. Eventually the stability results are in full agreement with what
is known concerning the WKB limit of the Non-Linear Schrödinger equation.

This article is a follow up of two contributions of the authors [2] where the first
systematic analysis of instabilities for the V−D−B was established and [4] where
(with the introduction of integral Riemann invariants with value in an infinite di-
mensional space) first results for the Cauchy problem were proven. As such it is
a small contribution to research activities in Kinetic theory and Vlasov equation.
In this field Seiji Ukai, starting around 67 and up to the very last moment of life
produced essential breakthroughs containing fundamental tools for our community.
Therefore we hope that the subject of our small contribution will be well adapted in
this volume devoted to his Memory. The first author had the chance to meet Seiji
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already in 1974 and since this period was always fascinated, not only by is creativity
in Mathematical Science but also by his sense of humour, friendship and generosity.

2. The modal analysis of the linearized equation. In this section one con-
siders in Rx × Rv the dynamics of the V−D−B equation for fluctuations near the
neighborhood of space independent probability distribution function G(v),

G(v) ≥ 0 ,

∫
R
G(v)dv = 1,

which is an obvious stationary solution of the equation

∂tf + v∂xf − ∂xρf∂vf = 0, ρf (t, x) =

∫
Rv
f(t, x, v)dv.

Therefore f is changed into G(v) + f (f denoting now the fluctuations) and the
linearized equation becomes

∂tf + v∂xf − ∂xρG′(v) = 0,

by dropping quadratic terms in the fluctuations.

2.1. Modal analysis of the linearized equation. A standard tool in the analysis
of the general (for any potential V ) Vlasov equation is the introduction of modal
analysis, i.e. solutions (whenever they exist) of the form

ek(t, x, v) = A(k, v)ei(kx−ω(k)t),

leading to the equation

(−iω(k) + ikv)A(k, v)− ikV̂ (k)ρ̂A(k)G′(v) = 0,

which upon integration with respect to v is equivalent to

A(k, v)− V̂ (k)
G′(v)

v − ω(k)/k
ρ̂A(k) = 0, (5)

and (
1− V̂ (k)

∫
R

G′(v)

v − ω(k)/k
dv

)
ρ̂A(k) = 0. (6)

Therefore instabilities appear whenever there exists a solution ω(k) of the above
system with

Imω(k) > 0 ,

where Im denotes the imaginary part. This approach has been developed by Penrose

[36] for the one-dimensional Vlasov-Poisson equation where one has V̂ (k) = 1/k2.
In this case the system (5) and (6) has no solution for Imω 6= 0 and |k| large
enough. This is in agreement with the fact that the problem is always well posed
and that the only issues are its asymptotic behavior for |t| going to ∞.

Below we adapt the Penrose construction to the linearized V−D−B equation

∂tf + v∂xf − ∂xρfG′(v) = 0, ρf (t, x) =

∫
R
f(t, x, v)dv.

The main difference is that now the operator

f 7→ ∂xρfG
′(v),

is “of order 1” while for the Vlasov-Poisson equation it was “of order −1” and
therefore it supports more violent perturbations. With ω(k) = ω∗k (observe that
ω∗ has the dimension of a complex velocity and note the link with the typical
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dispersion relation for the frequency of acoustic waves Reω = ck, with c a real
constant velocity) the system (5) and (6) becomes

A(k, v)− G′(v)

v − ω∗
ρ̂A(k) = 0, (7)

and (
1−

∫
Rv

G′(v)

v − ω∗
dv

)
ρ̂A(k) = 0. (8)

We now introduce the open sets =± = {ω ∈ C, ± Imω > 0}, the mapping

Z : ω 7→ Z(ω) =

∫
Rv

G′(v)

v − ω
dv ,

and call solutions ω of the equation

Z(ω) = 1 with Imω 6= 0,

unstable modes. Observe that ω ∈ =+ is a solution of (8) if and only ω ∈ =− is
also a solution. Therefore it is enough to consider only the set Z(=+) . As in [36]
one has the

Proposition 1. Assume for the probability profile v 7→ G(v) the following regularity
hypothesis:

v 7→ G′(v) ∈ C 0,α(R) ∩ L1(R) . (9)

Then the mapping ω 7→ Z(ω) is well defined and analytic on =+. Moreover Z(=+)
is a bounded set with boundary given by

∂(Z(=+)) =

{
w ∈ R 7→ p.v.

∫
R

G′(v)

v − w
dv + iπG′(w)

}
;

∂(Z(=+)) is a bounded curve which go to 0 for w → ±∞.

Therefore the existence or non-existence of unstable modes is equivalent to the
fact that 1 belongs or not to the set Z(=+). Proceeding as in [36] one follows the
curve

∂Z+ : ω ∈ R 7→ p.v.

∫
R

G′(v)

v − w
dv + iπG′(w).

This curve starts and ends at the origin for ω = ±∞ and winds round Z(=+)
anticlockwise.

To have 1 /∈ Z(=+) it is sufficient that any Z(v∗) point of intersection of ∂Z+

(whenever it exists) belongs to the interval ]−∞, 1[ . However to have 1 ∈ Z(=+) it
is necessary (but not sufficient, at variance with the standard Penrose Criteria) that
∂Z+ crosses the real axis at a point Z+(v∗) ∈ [1,∞). This leads to the following

Theorem 2.1. Assume for the profile G the regularity hypothesis (9) then
1. If for any solution of v∗ ∈ R of the equation G′(v∗) = 0 one has

p.v.

∫
R

G′(v)

v − v∗
dv < 1, (10)

there are no unstable modes.
2. If G(v) has a minimum v∗ with the relation

p.v.

∫
R

G′(v)

v − v∗
dv > 1,
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and no maximum with v∗∗ with

p.v.

∫
R

G′(v)

v − v∗∗
dv > 1,

there exist unstable modes.

Proof. For the proof it is enough to follow the curve ∂Z+ from ω∗ = −∞ to ω∗ =
+∞.

Remark 1. 1. The above theorem concerns points v∗ ∈ R where G′(v∗) = 0, there-
fore (with the regularity hypothesis (9)), the Cauchy principal values of integrals,
denoted by “p.v.”, are in fact classical integrals.

2. For any ω∗ with Imω∗ 6= 0 the validity of the integration by part∫
R

G′(v)

v − ω∗
dv =

∫
R

G(v)

(v − ω∗)2
dv, (11)

implies that the relation (8) is well defined not only for profiles in the class C 1,α

but also in Mb, the set of finite or bounded Radon measures. As a consequence
the statements of the Theorem 2.1 can be extended to more general profiles. For
instance if the profile G is the limit in the weak-∗ topology σ(Mb,Cb) (the topology
of narrow convergence) of a family of probabilities Gε(v) ∈ C 1,α satisfying the
property

∀ω∗ ∈ =+,

∣∣∣∣1− ∫
R

G′ε(v)

v − ω∗
dv

∣∣∣∣ > η, (12)

with η independent of ε there are no unstable modes.
3. Let us note that the Hilbert transform f 7→H f = p.v.(1/v) ∗ f , appearing in

the Penrose like criterion (cf. Theorem 2.1 Eq. (10)) defines a continuous endomor-
phism on several spaces more or less regular, typically: space of entire functions,
Hölder spaces Cm,α, (m > 0) [33], Hardy spaces Hp, (p > 0) [38] and Lebesgue
spaces Lp, (1 < p <∞) [37, 42]. It can be extended to a continuous map from L∞

(resp. L1) to BMO, the space of functions having bounded mean oscillations, (resp.
weak L1 or Marcinkiewicz-Lorentz L1,∞ spaces) [38]. Moreover since p.v.(1/v) ∈ S ′
(tempered distributions) H maps E ′ (compactly supported distributions) to S ′ [17].
It is also possible to extend H to other spaces of distribution [35]. Nevertheless
since the Penrose like criterion involves a pointwise value condition (G′(v∗) = 0)
the modified Penrose criterion (12) is required.

As explained in classical books of plasma physics (cf. [28] Chapter 9) longitudinal
electrostatic kinetic instabilities are related to the effect of “bump-on-tail” in the
profile G(v) . This is in agreement with the following examples where the existence
of unstable modes, is discussed either as illustration of the Theorem 2.1 or with
direct computations.
Example 1. A profile G(v) ∈ C 1,α with only one local maxima (say v∗) generates
no unstable mode. In fact for the only point where ∂Z+ crosses the real axis is v∗

and since G(v) is increasing for v < v∗ and decreasing for v > v∗ one has∫
R

G′(v)

v − v∗
dv < 0 < 1.

Example 2. In particular when G(v) = δv is a Dirac mass (the extreme case of
one simple bump) there is no unstable mode. With the point 2 of the Remark 1
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this follows from the point 1 of the Theorem 2.1. Moreover this can also be proven
by the following explicit computation

G(v) = δv =⇒
∫
R

G′(v)

v − ω
dv =

∫
R

δv
(v − ω)2

dv =
1

ω2
,

and therefore the solutions of the dispersion equation ω2 = 1 (cf. Eq. (8)) are given
by ω∗ = ±1, numbers with no imaginary part.
Example 3. However for G(v) = 1

2 (δv−a + δv+a) the existence of unstable modes
depends on the size of a. Dirac masses generate unstable modes, if and only if they
are close enough, according to the formula

1−
∫
R

G′(v)

v − ω
dv = 1− 1

(a− ω)2
+

1

(a+ ω)2
,

which has non real solutions if and only if a2 < 2 .
Example 4. Assume that G(v) is even with G(0) = G′(0) = 0, then for ε small
enough,

Gε(v) =
1

ε
G
(v
ε

)
,

generates unstable modes. In fact for ω∗ = iσ with σ ∈ R the solution of the
equation

1−
∫
R

G′ε(v)

v − ω∗
dv = 0,

becomes

0 = 1−
∫
R

G′ε(v)

v − ω∗
dv =1−

∫
R

G′ε(v)v

v2 + σ2
dv − i

∫
R

G′ε(v)σ

v2 + σ2
dv

= 1−
∫
R

G′ε(v)v

v2 + σ2
dv .

(13)

Eventually the function

σ 7→ I(σ) =

∫
R

G′ε(v)v

v2 + σ2
dv,

is continuous decreasing from I(0) =
∫
R
G′ε(v)v
v2 dv to I(∞) = 0 and by continuity

the existence of a solution of (13) is ensured when

p.v.

∫
R

G′ε(v)

v
dv = 2

∫ ∞
0

G′ε(v)

v
dv = 2

∫ ∞
0

Gε(v)

v2
dv =

2

ε2

∫ ∞
0

G(v)

v2
dv > 1 .

3. Consequence of the modal analysis for the linearized problem: Sta-
bility of the single bump profile. In the presence of unstable modes (which
are frequency homogenous ω(k) = ω∗k) the solution of the V−D−B equation with
initial data ∫

R
eikx

G′(v)

v − ω∗
ρ̂(k)dk,

has to be given by

f(t, x, v) =

∫
R
eikxe−iω

∗kt G
′(v)

v − ω∗
ρ̂(k)dk,

and even for initial data in S(R) for t > 0 it is not defined (even in S ′(R)) unless
|ρ(k)| ≤ Ce−a|k|. In this case (which corresponds to analytic initial data [34, 42])
it exists up to a finite time T ∗ = a/| Imω∗| and may not exist for later time.
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On the other hand a profile v 7→ G(v) with only one maximum leads to a stability
result, robust with respect to the potentials and profiles G(v). To precise the
stability result we start with a the derivation of a formal energy identity for smooth
functions and then return to the theory of strongly continuous groups of operators.

Proposition 2. Assume that the profile G(v) has only one bump or more precisely
that:

G′(v) := −H(v)(v − a) with H(v) > 0, a ∈ R, (14)

then any smooth solution f(t, x, v) of the linearized Vlasov equation with potential
V :

∂tf(t, x, v) + v∂xf(t, x, v)−G′(v) ∂x

∫
R
V (x− y)

(∫
R
f(t, y, w)dw

)
dy = 0 , (15)

satisfies the energy identity,

1

2

d

dt

(∫
R×R

H−1(v)(f(t, x, v))2dxdv+

∫
R×R

V (x−y)ρf (x, t)ρf (x, t)dxdy
)

= 0 . (16)

Proof. Let us introduce the notation f(t, x, v) = H(v)f̃(t, x, v), multiply the equa-

tion (15) by f̃ and integrate over the phase-space (x, v) to obtain

1

2

d

dt

(∫
R×R

H−1(v)(f(t, x, v))2dxdv
)

+

∫
R×R

∂xV (x− y)ρf (t, y)

∫
R
H(v)(v − a)f̃(t, x, v)dvdydx = 0 .

(17)

Then observe that one has

a

∫
R×R

∂xV (x− y)ρf (t, y)

∫
R
f(t, x, v)dvdydx

= a

∫
R×R

∂xV (x− y)ρf (t, y)ρf (t, x)dydx = 0 .

Therefore (17) turns out to be

1

2

d

dt

(∫
R×R

H−1(v)(f(t, x, v))2dxdv
)

−
∫
R×R

V (x− y)ρf (t, y)∂x

∫
R
vH(v)f̃(t, x, v)dvdydx = 0 .

(18)

This last term can be treated by integration of (15) with respect to the velocity v
as

∂tρf (t, x) + ∂x

∫
R
vH(v)f̃(t, x, v)dv = 0 . (19)

Eventually, pluging (19) into (18) one obtains (16).

With the above computation in mind, we consider linearized Vlasov equations
with a positive semi-definite profile V near a profile G(v) which satisfies the relation
(14) and introduce the Hilbert space HV of functions f : R2 7→ R such that

‖f‖HV :=

∫
R×R

H−1(v)(f(x, v))2dvdx+

∫
R×R

V (x− y)ρf (x)ρf (y)dxdy <∞,

with the scalar product 〈·, ·〉H defined by

〈f, g〉HV =

∫
R×R

H−1(v)f(x, v)g(x, v)dxdv +

∫
R×R

V (x− y)ρf (x)ρg(y)dxdy.
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Remark 2. 1. Since G(v) is a positive density the weight

H−1(v) = − (v − a)

G′(v)
,

is unbounded for |v| → ∞. Therefore HV is a subspace of functions of L2(Rx×Rv)
with convenient decay for v →∞.

2. Positive semi-definite potentials are potentials V such that∫
R×R

V (x− y)g(x)g(y)dxdy ≥ 0, (20)

for all continuous functions g with compact support. By Bochner Theorem (cf. §13
of Chapter XI in [43]) such potential are the Fourier transform of positive measures

V (x) =

∫
R
eixkdν(k),

with k 7→ ν(k) a non decreasing right-continuous bounded function This class ob-
viously contain the Dirac mass and in this case the scalar product on HV becomes

〈f, g〉HV =

∫
R×R

H−1(v)f(x, v)g(x, v)dxdv +

∫
R
ρf (x)ρg(x)dx.

Next we introduce the unbounded operator A, defined as the restriction to HV
of the integro-differential operator

f 7→ v∂xf −G′ ∂x(V ∗ ρf ) ,

which is defined by its domain, i.e.

D(A) = {f ∈ HV s.t. Af = v∂xf −G′ ∂x(V ∗ ρf ) ∈ HV }

and one has the following

Theorem 3.1. For positive semi-definite potential V and a profile G which satisfies
the relation (14) the unbounded operator A is anti-adjoint in HV and therefore is
the generator of a strongly continuous group of unitary operators in this space.

Proof. First the operator A is defined in HV as the closure of its restriction to the
space of smooth functions f ∈ D(Rx × Rv). Moreover since D ⊂ D(A) ⊂ HV ⊂ L2

with dense embedding, then A is a closed operator on HV with domain D(A) dense
in HV . Secondly by explicit computations, inspired by the formulas (17) and (18),
one shows that for any f ∈ S(Rx × Rv)

〈Af, f〉HV = 0. (21)

Hence A is the closure of an anti-symmetric operator and for any λ with Reλ 6= 0
and in particular for λ ∈ R, using (21) one has

‖(λI +A)f‖HV ‖f‖HV ≥ |〈(λI +A)f, f〉HV | = |λ|‖f‖2HV .

Hence operator (λI+A) is an isomorphism from it domain to its image which turns
out to be a closed subspace of HV . To prove that A is anti-adjoint, following Kato
(cf. Theorem V-3.16 or Problem V-3.31 in [27]), it is enough to prove that for any
λ ∈ R, λ 6= 0 (λI +A)(D(A)) is a dense subspace of HV or that the map (λI +A)
is surjective onto HV . To do so, for g ∈ D(Rv × Rx), one prove the existence of a
solution f ∈ HV of the equation

λf +Af = g, (22)
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by direct computation in Fourier space where the equation (22) is equivalent to the
system (

1− V̂ (k)

∫
R

G′(v)

ω + v
dv

)
ρ̂f (k) =

∫
ĝ(k, v)

λ+ ikv
dv , with ω = −iλ

k
, (23)

and

f̂(k, v) =
ĝ(k, v)

λ+ ikv
+ ikV̂ (k)

ρ̂f (k)G′(v)

λ+ ikv
. (24)

Using the fact that V̂ (k) ≥ 0 and that G(v) has a unique maxima (a such that
G′(a) = 0) and proceeding as in the example 1 of the subsection 2.1 one observes
that

Re

(
V̂ (k)

∫
R

G′(v)

ω + v
dv

)
< 0,

and therefore from (23), one has

|ρ̂f (k)| ≤
∣∣∣∣∫

R

ĝ(k, v)

λ+ ikv
dv

∣∣∣∣ . (25)

Eventually, with g ∈ D(Rx × Rv), the inequality (25) and the relation (24) where

the formula G′(v) = −H(v)(v − a), the boundness of V̂ (cf. point 2 of Remark 2)
and Cauchy-Schwarz inequality are used one obtains that there exists a constant

C = C(|Reλ|−1, | Imλ|, G′, V̂ ) < ∞, such that ‖f‖HV ≤ C‖g‖HV and thus using
equation (22) we finally deduce that f belongs to D(A) ⊂ HV . Now since D(Rx ×
Rv) is dense in HV on one side and (A,D(A)) is closed and densely defined on
HV on the other side, we get that for every λ ∈ C\iR, λ ∈ P (A) (where P (A) is
the resolvent set of A) the map (λI + A) is bijective from D(A) onto HV , and the
resolvent (λI +A)−1 is a bounded operator with

‖(λI +A)−1‖L(HV ) ≤
1

|Reλ|
.

The proof ends by using Hille-Yosida Theorems for generation of semigroups and
groups (cf. e.g. Corollary 3.7 of Chapter II in [15]).

Corollary 1. With the hypothesis of the Theorem 3.1, A is the generator of a
strongly continuous unitary group and the Cauchy problem

df

dt
+Af = 0, f(0, x, v) = f0(x, v), (26)

has for any initial data f0 ∈ HV a unique “weak” solution f = e−itAf0 ∈ C (Rt;HV ).
Moreover whenever f0 ∈ D(A) this solution is strong (i.e. f ∈ C 1(Rt;HV ) ∩
C 0(Rt;D(A))).

This statement is a direct consequence of the Theorem 3.1 in the frame of strongly
continuous semigroups and groups or in otherwords Hille-Yosida Theorems (cf. sec-
tion 2 and 3 of §1 of Chapter IX in [27] or Proposition 6.2 and 6.4 in [15] or else
Theorem 7.4 in [9]).

Remark 3. 1. Since G(v) is a positive density the weight

H−1(v) = − (v − a)

G′(v)
,

is unbounded for |v| → ∞. Therefore the Corollary 1 concerns the evolution of
solutions with convenient decay at infinity.
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2. The Theorem 3.1 has been stated for any Vlasov equation with a positive
semi-definite potential. In particular it applies to the case where V is the Dirac
distribution.

Moreover let V1 and V2 two positive semi-definite potentials with V1 − V2 also
positive semi-definite, denote by A1 and A2 the corresponding anti-adjoint operators
(with the same one bump profile G(v)). Then HV1

⊂ HV2
and for any initial data

f0 ∈ HV1 , e−tA2f0 belongs to C (Rt;HV2). Moreover if V2 converges (in a weak
sense to V1) the solution e−tA2f0 will converge in a convenient weak sense (details
are omitted) to e−tA1f0 .

4. Consequence of the modal analysis for the nonlinear Vlasov-Dirac-
Benney equation. The above analysis of the linearized-V−D−B equation leads
by perturbation methods to well adapted instability or stability results for the
nonlinear-problem.

For a theorem concerning the instability we denote by Ḣm the space of func-
tions f ∈ L∞(Rx, L1(Rv)) with, for 1 ≤ l ≤ m, derivatives ∂lxf ∈ L2(Rx;L1(Rv))
equipped with the corresponding norm.

Definition 4.1. We say that a Cauchy problem f0 7→ S(t)f0, defined by a nonlinear

dynamics on the phase space (x, v) ∈ R×R, is locally (Ḣm-Ḣ1) well-posed if there

is a constant cm such that for any initial datum f0 ∈ Ḣm, there exist a time T > 0
and a unique solution

S(t)f0 ∈ L∞(0, T ; Ḣ1)

such that
ess sup

t∈(0,T )

‖ S(t)f0 ‖Ḣ1≤ cm ‖ f0 ‖Ḣm .

Theorem 4.2. For every m ∈ N∗, the Cauchy problem for the dynamics S(t)

defined by the V−D−B equation is not locally (Ḣm-Ḣ1) well-posed.

Proof. The proof follows perturbation techniques as developed by [23] and cowork-

ers. It proceeds par contradiction. Assume that the problem is locally (Ḣm-Ḣ1)
well-posed. Introduce a profile G(v) which generates unstable modes ω∗k and con-
sider, for the dynamics S(t), initial data of the form

fs0 = G(v) + sφ0(x, v) with φ0(x, v) =

∫
R
eikx

G′(v)

v − ω∗
ρ̂(k)dk . (27)

If the nonlinear problem is (Ḣm-Ḣ1) well-posed for 0 < t < T , on this interval the
function

∂s(S(t)fs0 )|s=0

belongs to L∞(0, T ; Ḣ1) and is a solution of the linearized problem. Hence by
explicit computation in Fourier space, it has to be given by the formula

∂s(S(t)fs0 )|s=0
(t, x, v) =

∫
R
eikxe−iω

∗kt G
′(v)

v − ω∗
ρ̂(k)dk.

If the problem would be well posed, for initial data given by (27) with

∀m > 0, lim
|k|→∞

|k|m|ρ̂(k)| = 0 and ∀a > 0, lim
|k|→∞

|ρ̂(k)|ea|k| =∞, (28)

(i.e. which belong to ∩mḢm) the solution of the linearized problem would exist
for some time T . But the formula (28) shows that this is not possible. Hence the
contradiction
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The formula (28) also indicates that, for initial data satisfying the condition

|ρ̂(k)| ≤ Ce−a|k|, (29)

the linearized problem remains well posed for |t| < a/|ω∗| and therefore the nonlin-
ear problem may be also locally in time well posed. With the Paley-Wiener Theorem
(cf. §4 of Chapter 6 in [43], or Theorem 1 of Chapter 1 in [34] or else Theorem
97 of Chapter V in [42]) which relates decay properties at infinity of a function (or
a distribution) with analyticity of its Fourier transform, the condition (29) implies
that the function ρ(x) can be extended as an analytic function ρ(x+ iy) in the strip
|y| < a . Therefore it is only in the analytic setting that a general Cauchy theorem
for the V−D−B equation can be valid and this is the object of the following

Theorem 4.3. Jabin-Nouri (2011) [25]: For any (x, v) analytic function f0(x, v)
with

∀α, m , n sup
x
|∂xm∂vnf0(x, v)|(1 + |v|)α = C(m,n)o(|v|)

there exists, for a finite time T , an analytic solution of the Cauchy problem.

5. Relations with fluid mechanics. However as observed above the lineariza-
tion near a simple bump profile leads to a very stable evolution equation and this
motivates several stability theorems. Some of them can be obtained by connections
with different equations of fluid mechanics.

5.0.1. The mono-kinetic solution. Direct computations show that a phase space
density

f(t, x, v) = ρ(t, x)δ(v − u(t, x))

is a distributional solution of the V−D−B equation (1) if and only if its moments

ρ(t, x) =

∫
R
f(t, x, v)dv and ρ(t, x)u(t, x) =

∫
R
vf(t, x, v)dv

are solutions of the system

∂tρ+ ∂x(ρu) = 0 , ∂t(ρu) + ∂x

(
ρu2 +

ρ2

2

)
= 0. (30)

For (ρ, u) ∈ R+ × R the system is strictly hyperbolic therefore the existence of a
local in time (near (ρ̃0+α, u0) with α > 0 and (ρ̃0, u0) ∈ H2(R)) of smooth solutions
is ensured (cf. [14]) . Observe that this result is in full agreement with the stability
of example 2 of the section 2.1.

5.0.2. Multi-kinetic solutions. These observations can be generalized to multi-kine-
tic solutions of the form

f(t, x, v) =
∑

1≤n≤N

ρn(t, x)δ(v − un(t, x))

with (ρn, un) solutions of the system

∂tρn + ∂x(ρnun) = 0,

∂t(ρnun) + ∂x
(
ρnu

2
n

)
+ ρn∂x

( ∑
1≤`≤N

ρ`

)
= 0.

However this system is not always hyperbolic and the Cauchy problem is not always
locally in time well posed. In particular for N = 2 and (ρ1, ρ2, u1, u2) = (1, 1, a,−a)
direct computations show that the system is hyperbolic (hence the Cauchy problem
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is well posed) if and only if a2 > 2 . Once again this is in full agreement with the
Example 3 of section 2.1.

6. The one-bump continuous profile and the genuine Benney equation.
The very robust stability of linearized Cauchy problem, near a one-bump profile
G(v), indicates that similar local in time results should hold for the full nonlinear
equation with initial data near a one-bump profile G(v).

As long as v 7→ f(t, x, v) remains (for (t, x) given a.e.) a one-bump continuous
profile, with maximum equal to 1 for simplicity, i.e.

sup
v∈R

f(t, x, v) = 1, (t, x) a.e.,

one defines a.e. in (x, a) ∈ R× [0, 1] the functions v±(t, x, a) by the formula

v−(t, x, a) ≤ v+(t, x, a), f(t, x, v±(t, x, a)) = a,

and recover the one-bump profile f(t, x, v) according to the reconstruction formula

f(t, x, v) =

∫ 1

0

Y(v+(t, x, a)− v)−Y(v−(t, x, a)− v))da, (30)

where Y denotes the Heaviside function.
Direct computation shows that in this situation f is a distributional solution of

the V−D−B equation if and only if contours v±(t, x, a) are solutions of the system

∂tv± + v±∂xv± + ∂xρ = 0, ρ(t, x) =

∫ 1

0

(v+(t, x, a)− v−(t, x, a))da. (31)

If we introduce the mean density and velocity of the fluid labelled by the tag “a”,
defined respectively by

%(t, x, a) = v+(t, x, a)− v−(t, x, a), u(t, x, a) =
1

2
(v+(t, x, a) + v−(t, x, a)), (32)

this system (31) is equivalent to the fluid type system

∂t%(t, x, a) + ∂x(%(t, x, a)u(t, x, a)) = 0,

∂tu(t, x, a) + ∂x

(
1

2
u2(t, x, a) +

1

8
%2(t, x, a)

)
+ ∂x

∫ 1

0

%(t, x, b)db = 0,
(33)

which was derived by Benney [3] as a model for water-waves (This is our reason

for the name Vlasov-Dirac-Benney). Without the integral term ∂x
∫ 1

0
%(t, x, a)da

the infinite dimensional system (33) would be an infinite system of isentropic Euler
equations since all the fluids “a” are decoupled. For such systems two types of
results are available.

1. In any space dimension with smooth initial data the local in time existence
uniqueness and stability of a solution (see [14]).

2. In one-dimensional space variable the existence of a global in time weak
entropic solution ([11, 12]).

The proof of 1 relies on the fact that the energy

E(%, u) =
1

2

∫
R

∫ 1

0

(
%(t, x, a)u2(t, x, a) +

1

12
%3(t, x, a)

)
dadx, (34)

is for the isentropic equation (in the sense of Peter Lax) a convex entropy (therefore
we use below the name energy-entropy!).
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The existence of such entropy implies that the system is hyperbolic. Therefore
in one-dimensional space variable it has “Riemann invariants” which are used for
the proofs of 2.

In present case the energy-entropy:

E(%, u) =
1

2

∫
R

∫ 1

0

(
%(t, x, a)u2(t, x, a) +

1

12
%3(t, x, a)

)
dadx

+
1

2

∫
R

(∫ 1

0

%(t, x, a)da

)2

dx,

(35)

has an extra integral term which makes the analysis more complicated but does not
prevent the generalization of the proofs of 1 or 2.

The second author ([4]) already gave a local time result for the Cauchy problem
inspired by 2. Using previous works of Teshukov [39, 40, 41] he extended the notion
of Riemann invariants as singular integral operators acting on contours v± which
in fact form the continuous spectrum of the first-order transport operator (cf. [4]
for details).

Below we describe a new proof for the system (31) inspired by the proofs of
results of the type 1. This proof is slightly simpler and requires much less regularity
(in particular no regularity with respect to the a variable).

The first observation is that, for a one-bump profile, as above, the conserved
energy can be expressed in term of the variables v±. With the relation f(t, x,
v±(t, x, a)) = a, one has∫

R

|v|2

2
f(v)dv =

1

6

∫
R

d|v|3

dv
f(v)dv

= −1

6

∫
R
|v|3 df

dv
dv =

1

6

∫ 1

0

(v3+(a)− v3−(a))da .

Hence for any one-bump profile, using the notation V = (v−, v+)t,

η(V) =

∫
R

(
1

6

∫ 1

0

(v3+(t, x, a)− v3−(t, x, a))da

+
1

2

(∫ 1

0

(v+(t, x, a)− v−(t, x, a))da

)2
)
dx,

(36)

is an energy-entropy. If v± ∈ L2∩L∞(R×(0, 1)) we can show that the map η : Ω 7→ Γ
is Frechet-differentiable, where Ω (resp. Γ) is an open subset of the Banach space(
L2 ∩ L∞(R× (0, 1))

)2
(resp. R). Since Frechet-differentiability implies Gâteaux-

differentiability with the same derivatives, and to avoid to manipulate norms in the
Frechet-differentiation, let us compute the Gâteaux derivative (i.e. a directional
derivative) of the map η which corresponds to the functional derivative of physicists.
Therefore we obtain for the first-order derivative

(DVη)δV1 = lim
ε1→0

η(V + ε1δV1)− η(V)

ε1
=

[
d

dε1
η(V + ε1δV1)

]
|ε1=0
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=

∫
R

dx

∫
1

0

da

 −
v2−
2 − (v+ − v−)

∫ 1

0

da

v2+
2 − (v+ − v−)

∫ 1

0

da

 · ( δv1−
δv1+

)

=

∫
R
dx

∫ 1

0

da
δη

δV
· δV1. (37)

and for the second-order derivative

(D2
Vη)(δV1, δV2)

= lim
ε1,ε2→0

η(V + ε1δV1 + ε2δV2)− η(V + ε1δV1)− η(V + ε2δV2)− η(V)

ε1ε2

=

[
∂2

∂ε1∂ε2
η(V + ε1δV1 + ε2δV2)

]
|ε1=ε2=0

=

[
d

dε2
DVη(V + ε2δV2)δV1

]
|ε2=0

=

∫
R

dx

∫
1

0

da

(
δv2−
δv2+

)t −v− +

∫ 1

0

da −
∫ 1

0

da

−
∫ 1

0

da v+ +

∫ 1

0

da

( δv1−
δv1+

)

=

∫
R
dx

∫ 1

0

da (δV2)
t δ

2η(V)

δVδV
δV1.

(38)

Therefore, from (38), the matrix-integral operator

Σ(t, x, a) =
δ2η(V)

δVδV
(t, x, a) =

−v−(t, x, a) +

∫ 1

0

da −
∫ 1

0

da

−
∫ 1

0

da v+(t, x, a) +

∫ 1

0

da

 , (39)

should be a symmetrizer for the system (31) in the space L2(R;L2(0, 1)). Indeed
this leads to the

Proposition 3. A priori estimate. Any smooth solution V = (v−, v+)t of the
equation (31), satisfies the a priori nonlinear Gronwall estimate

d

dt

(
‖V‖2L∞(R×(0,1)) + ‖∂xV‖2L∞(R×(0,1)) +

∫
R×(0,1)

(Σ(V)∂3xV, ∂
3
xV)dadx

)

≤ C
(

1 + ‖V‖2L∞(R×(0,1)) + ‖∂xV‖2L∞(R×(0,1)) + ‖∂3xV‖2L2(R×(0,1))

)2
. (40)

Proof. The fact that

∀ k ≥ 1, |∂kxρ(t, x)|2 ≤ 2

∫ 1

0

|∂kxV(t, a, x)|2da,

is systematically used. C denotes different constants, all of them being independent
of the solution and changing from line to line. In some of the formulas the variables
(t, x, a) may be omitted. First observe that one has

‖∂2xρ‖2L∞(R) ≤ C
(
‖∂3xρ‖2L2(R) + ‖ρ‖2L∞(R)

)
≤ C

(
‖∂3xV‖2L2(R×(0,1)) + ‖V‖2L∞(R×(0,1))

)
.

(41)
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Then from the equation (31), using the maximum principle (with integration along
characteristic curves), Young inequality and (41), one deduces the estimate

∂t‖V‖2L∞(R×(0,1)) ≤ C
(
‖∂xρ‖2L∞(R) + ‖V‖2L∞(R×(0,1))

)
≤ C

(
‖∂3xV‖2L2(R×(0,1)) + ‖V‖2L∞(R×(0,1))

)
≤ C

(
1 + ‖V‖2L∞(R×(0,1)) + ‖∂xV‖2L∞(R×(0,1)) + ‖∂3xV‖2L2(R×(0,1))

)2
.

(42)

By differentiating with respect to the x variable the equation (31) we get

∂t∂xv± + v±∂x(∂xv±) = −(∂xv±)2 − ∂2xρ,

which, using the maximum principle, Young inequality and (41), gives the estimate

∂t‖∂xV‖2L∞(R×(0,1))

≤ C
(
‖∂2xρ‖2L∞(R) + ‖∂xV‖2L∞(R×(0,1)) + ‖∂xV‖3L∞(R×(0,1))

)
≤ C

(
‖∂3xV‖2L∞(R×(0,1)) + ‖V‖2L∞(R×(0,1))

+ ‖∂xV‖2L∞(R×(0,1)) + ‖∂xV‖3L∞(R×(0,1))

)
≤ C

(
1 + ‖V‖2L∞(R×(0,1)) + ‖∂xV‖2L∞(R×(0,1)) + ‖∂3xV‖2L2(R×(0,1))

)2
.

(43)

The next step involves the symmetrization of the equation (31) written in the form

∂tV +M∂xV = 0, (44)

with the matrix-integral operator M given by the formula

M(t, x, a) =

v−(t, x, a)−
∫ 1

0

da

∫ 1

0

da

−
∫ 1

0

da v+(t, x, a) +

∫ 1

0

da

 . (45)

For later use observe that the derivatives of M have the following simple form

∀ k ≥ 1, ∂kxM(t, x, a) =

(
∂kxv−(t, x, a) 0

0 ∂kxv+(t, x, a)

)
.

Then for the third-order x-derivative of V one has

∂t∂
3
xV +M∂x(∂3xV) = R, (46)

with

R = −∂3xM∂xV − 3∂2xM∂2xV − 3∂xM∂3xV,

and notice that, with the Gagliardo-Nirenberg interpolation inequality

∀f ∈ H2(R), ‖∂xf‖L4 ≤ C‖∂2xf‖
1/2
L2 ‖f‖1/2L∞ ,

to bound the term ‖∂2xM∂2xV‖L2(R×(0,1)) one has

‖R‖L2(R×(0,1)) ≤ C‖∂xV‖L∞(R×(0,1))‖∂3xV‖L2(R×(0,1)) . (47)

Next apply to the equation (46) the operator (39) and observe that for almost t ≥ 0,
K = ΣM ∈ L

(
(L2(R× (0, 1)))2

)
is a matrix-integral symmetric operator given by
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the formula

K =

−v
2
− +

∫ 1

0

da · v− + v− ·
∫ 1

0

da −v− ·
∫ 1

0

da −
∫ 1

0

da · v+

−v+ ·
∫ 1

0

da −
∫ 1

0

da · v− v2+ +

∫ 1

0

da · v+ + v+ ·
∫ 1

0

da

 .

For later use observe that the t-derivative of Σ is given by

∂tΣ =

(
−∂tv−+ 0

0 ∂tv+

)
=

(
v−∂xv+ + ∂xρ 0

0 −v+∂xv+ − ∂xρ

)
, (48)

while the entries of the matrix ∂xK are given by

(∂xK)11 = −2v−∂xv− +

∫ 1

0

da · ∂xv− + ∂xv− ·
∫ 1

0

da ,

(∂xK)12 = (∂xK)?21 = −∂xv− ·
∫ 1

0

da−
∫ 1

0

da · ∂xv+ ,

(∂xK)22 = 2v+∂xv+ +

∫ 1

0

da · ∂xv+ + ∂xv+ ·
∫ 1

0

da .

(49)

where T ? designates the adjoint operator of T , with respect to the L2(R × (0, 1))-
scalar-product. Therefore applying Σ to the equation (46), and taking the L2(R×
(0, 1))-scalar-product against ∂3xV, leads to

d

dt
(Σ∂3xV, ∂

3
xV) = 2(ΣR, ∂3xV) + (∂tΣ∂

3
xV, ∂

3
xV) + (∂xK∂

3
xV, ∂

3
xV) . (50)

The three terms of the right hand side of (50) are estimated as follows. For the first
term, using (39) and (47) one has

‖(ΣR, ∂3xV)‖ ≤ ‖Σ‖L∞‖R‖L2(R×(0,1))‖∂3xV‖L2(R×(0,1))

≤ C(1 + ‖∂xV‖L∞(R×(0,1)))‖R‖L2(R×(0,1))‖∂3xV‖L2(R×(0,1))

≤ C
(

1 + ‖V‖2L∞(R×(0,1)) + ‖∂xV‖2L∞(R×(0,1)) + ‖∂3xV‖2L2(R×(0,1))

)2
.

For the second term, using (48) and (41), one gets

|(∂tΣ∂3xV, ∂3xV)|
≤ C

(
‖V‖L∞(R×(0,1))‖∂xV‖L∞(R×(0,1)) + ‖∂xρ‖L∞(R)

)
‖∂3xV‖2L2(R×(0,1))

≤ C
(

1 + ‖V‖2L∞(R×(0,1)) + ‖∂xV‖2L∞(R×(0,1)) + ‖∂3xV‖2L2(R×(0,1))

)2
.

Finally for the third term, using (49) and the same token, one obtains

|(∂xK∂3xV,∂3xV)| ≤ ‖∂xK‖L∞(R×(0,1))‖∂3xV‖2L2(R×(0,1))

≤ C
(

1 + ‖V‖2L∞(R×(0,1)) + ‖∂xV‖2L∞(R×(0,1)) + ‖∂3xV‖2L2(R×(0,1))

)2
.

With the insertion of these three estimates in (50), and estimates (42)-(43) the proof
of the proposition (3) is completed.

This leads to the following theorem

Theorem 6.1. Let us introduce the functionnal space

B(T ∗) =
{
V ∈ C (0, T ∗;L∞(Rx × (0, 1))) ∩ L∞

(
0, T ∗;L2((0, 1);H3(Rx))

)}
(51)
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and the open subset O(m,M, T ∗) of B(T ∗), defined by

O(m,M,T ∗)

= {V ∈ B(T ∗) with 0 < m < −v−(t, x, a), v+(t, x, a) < M <∞} .
(52)

with V(t, x, a) = (v−(t, x, a), v+(t, x, a))t.
1. Assume that the initial data V(0, x, a) = (v−(0, x, a), v+(0, x, a))t satisfy for

some given m > 0, and M > 0 the estimate

m < −v−(0, x, a) < M and m < v+(0, x, a) < M, (53)

and the regularity property

‖∂3xV(0)‖L2(R×(0,1)) ≤ κ <∞, (54)

then there exists a time T ∗ = T ∗(m,M,R) such that the corresponding Cauchy
problem, for the system

∂tv± + ∂x

(
v2±
2

+

∫ 1

0

(v+(t, x, a)− v−(t, x, a))da

)
= 0, (55)

has a unique solution (V = (v−(t, x, a), v+(t, x, a))t) ∈ O(m,M, T ∗).
2. Moreover if V(0, x, a) is the weak limit (for instance in L∞(R× (0, 1)) weak-

∗) of a sequence of functions VN (t, x, a) which satisfy uniformly with respect to N
the estimates (53) and (54) the corresponding solutions (defined in O(m,M, T ∗)
with T ∗ independent of N) converge (for instance in B(T ∗) weak-∗) to a function
V(t, x, a) which is the solution of the problem (55) with the corresponding initial
data.

Proof. The a priori estimate (40) is an adaptation to the present case (where M
includes in its expression integral operators) of the classical estimates for hyperbolic
systems with entropy. Then the remaining part of the proof follows the lines of this
classical case (see [14] for example). The main detail in the difference appears in
the Gronwall estimate deduced from the relation (40). It would be of the type

dY

dt
≤ CY 2,

with

Y (t) =‖V(t)‖2L∞(R×(0,1)) + ‖∂xV(t)‖2L∞(R×(0,1))

+

∫
R×(0,1)

(Σ(t)∂3xV(t), ∂3xV(t))dadx,

if the right hand side of (40) could be bounded by CY 2. In Y (t) appears the
expression

(Σ(t)∂3xV(t), ∂3xV(t))

=

∫
R
dx

∫ 1

0

da
(
−v−(t, x, a)(∂3xv−(t, x, a))2 + v+(t, x, a)(∂3xv+(t, x, a))2

)
+

∫
R
dx

(∫ 1

0

(∂3xv+(t, x, a)− ∂3xv−(t, x, a))da

)2

,

(56)

which is non negative provided −v−(t, x, a) > 0 and v+(t, x, a) > 0. Moreover for
Y (t) to be finite at t = 0, the hypothesis −v−(x, a, 0), v+(x, a, 0) < M are required.
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However the relations

m < m1 < −v−(t, x, a), v+(t, x, a) < M1 < M,

are “open properties” and with ∂tV bounded in L∞, they remain valid for a finite
time. With these observations one can construct say by iteration and for T ∗ small
enough (as in [14] and [32]) the solution V ∈ O(m,M, T ∗). Indeed we prove the exis-
tence of a unique solution V ∈ O(m,M, T ∗) by determining it as a fixed point of the
map that carries U = (u−, u+)t ∈ O(m,M, T ∗) to the solution V ∈ O(m,M, T ∗)
of the linearized system

∂tV +M(U)∂xV = 0, (57)

with M(U) given by (45), where we substitute u± to v±. The system (57) is still
symmetrizable by Σ(U) (cf. (39)). Now using the fact that U ∈ O(m,M, T ∗), the
same kind of energy estimates that (40) derived in Proposition 3 and the maximum
principle (by using integration along characteristic curves or using a priori estimates
of some characteristic functions of the solution such as for example max{v− +

m −
∫ t
0
‖∂xρ(τ)‖L∞(R)dτ, 0}) we can show that equation (57) admits a solution

V ∈ O(m,M, T ∗) for T ∗ small enough. Moreover, considering the equation satisfied
by the difference of two solutions V1, V2 ∈ O(m,M, T ∗) of (57), induced by two
states U1, U2 ∈ O(m,M, T ∗), and using the same token (symmetrizer Σ(U), energy
estimates of type (40) and maximum principle) we can show that the map which
carries U to V is a contraction in a suitable metric for B(T ∗) or O(m,M, T ∗);
and thus that the unique fixed point of that map will be the desired solution V ∈
O(m,M, T ∗) of (44) with initial condition V(0).

The point 2 is a direct consequence of the fact that the x-regularity estimate is
uniform with respect to N . This is enough to pass to the limit in the equations.

Remark 4. 1. As noticed above the system, (31) is equivalent with the change of
unknowns (32) to the Benney equation (33), hence the theorem 6.1 provides with
this change of variables a similar treatment of the Cauchy problem for this system.
In fact a direct proof (with slightly more complicated estimates) could be done for
this system using the symmetrizer

δ2E(ρ, u)

δmδm
(t, x, a) =

 1
4%(t, x, a) +

∫ 1

0

da u(t, x, a)

u(t, x, a) %(t, x, a)

 , (58)

with m = (%, u)t .
2. The essential “geometric hypothesis” are

−M < v−(x, a, 0) < −m < 0 < m < v+(x, a, 0) < M .

Besides this requirement the present proof uses no regularity or monotonicity of the
map a 7→ v±(t, x, a). However with the equation

∂t∂a(v±) + ∂x(v±(∂av±)) = 0, (59)

obtained by differentiating (55) with respect to the a variable, one observes that
the solution v±(x, a, t) given by the Theorem 6.1 would preserve the monotonicity
of the functions a 7→ v±(x, t, a) up to the time T ∗ whenever such property holds for
t = 0 [13].

Keeping in mind the point 2 of the above remark one can consider for V(t, x, a)
piecewise constant functions with respect to the a variable as described in the
following,
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Proposition 4. Assume that the functions v±(0, x, a) are piecewise constant and
defined by the formula

for 1 ≤ j ≤ N and
N − j
N

< a ≤ N − j + 1

N
, v±(0, x, a) = v±(0, x, j),

with for 1 ≤ j ≤ N ,

v±(0, x, j) ∈ H3(R) and m < −v−(0, x, j), v+(0, x, j) < M,

then the Cauchy problem associated to the waterbag equation (55) with the corre-
sponding initial data v±(0, x, a) has a unique solution V ∈ O(m,M, T ∗).

This proposition is a direct consequence of the Theorem 6.1 because the initial
data satisfy the hypothesis of this theorem.

To conclude this section the above results are applied to the original Vlasov-
Dirac-Benney equation with the following

Theorem 6.2. Assume that the functions v±(0, x, a) satisfy the hypothesis of the
Theorem 6.1, that a 7→ v−(0, x, a) is increasing and a 7→ v+(0, x, a) is decreasing
then the Vlasov-Dirac-Benney equation (1) with initial data given by

f0(x, v) =

∫ 1

0

(Y(v+(0, x, a)− v)−Y(v−(0, x, a)− v))da, (60)

(with Y denoting the Heaviside function) has for 0 < t < T∗ a unique solution

f(t, x, v) ∈ L∞ (0, T ∗;Lp(Rx × Rv)) for all 1 ≤ p ≤ ∞,
with

ρ(t, x) =

∫
R
f(t, x, v)dv ∈ L∞(0, T ∗;H3(R)),

which is given by the formula

f(t, x, v) =

∫ 1

0

(Y(v+(t, x, a)− v)−Y(v−(t, x, a)− v))da . (61)

Moreover when f0 is defined as the limit for N →∞ of a sequence of functions

fN0 (x, v) =

∫ 1

0

(Y(vN+ (0, x, a)− v)−Y(vN− (0, x, a)− v))da,

where the a 7→ vN± (0, x, a) are monotonic functions (a 7→ v−(0, x, a) non-decreasing
and a 7→ v+(0, x, a) non-increasing) satisfying, uniformly with respect to N , the
hypothesis

−M < vN− (0, x, a) < −m, 0 < m < vN+ (0, x, a) < M,

‖v±(0)‖L2((0,1);H3(Rx)) <∞,
the corresponding solutions exist on a time interval T ∗ independent of N and one
has

fN (t, x, v) ⇀ f(t, x, v) in L∞(0, T ∗;Lp(Rx × Rv)) weak− ∗,

ρN (t, x) =

∫
R
fN (t, x, v) ⇀ ρ(t, x) =

∫
R

f(t, x, v)dv in L∞(0, T ∗;H3(R)) weak− ∗ .

Proof. We first prove that the monotonicity of the functions a 7→ v±(t, x, a) is
preserved by the dynamics. Let us set w± = v±(b) − v±(a), ṽ = v±(b) + v±(a),
and form the equation for the difference w± of two solutions of (55), which is
equivalent to integrate the equation (59) with respect to the a variable between a
and b. Therefore multiplying the resulting equation by the derivative of a convex
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regularization of the modulus of w±, integrating with respect to the x variable and
using the fact that v±(t) ∈ L1((0, 1);W 1,1(Rx)) (since v±(t) ∈ L2((0, 1);H3(Rx))
and using Sobolev embeddings) we can show the property

d

dt
‖w±‖L1(Rx) ≤ 0. (62)

Now using Crandall-Tartar result [13] about the relation between nonexpansive
(i.e. (62)) and order preserving (i.e. monotonicity of the functions a 7→ v±(t, x, a))
mappings, we get, after time integration of (62), the desired result. Since now
the monotonicity of the functions a 7→ v±(t, x, a) is preserved by the dynamics, it
implies that one can use the formula (61) to reconstruct the solution f or fN . In
particular observe that the fN are solution of a Liouville equation

∂tf
N + v∂xf

N + ∂xρ
N∂vf

N = 0, ρN (t, x) =

∫
R
fN (t, x, v)dv,

with ρN uniformly bounded in L∞(0, T ;H3(R)) which can be used to consider the
limit N →∞.

Remark 5. The biggest constraint in the above construction is the fact that the
functions a 7→ v±(0, x, a) have to be defined on a fixed interval (say a ∈ [0, 1]) and
bounded above and below. This implies for the initial profiles v 7→ f0(x, v) the
following x independent properties.
(H1) There exist an x independent constant 0 < M <∞ such that

|v| ≥M ⇒ f0(x, v) = 0. (63)

(H2) There exist an x independent constant 0 < m <∞ constant such that

|v| ≤ m⇒ f0(x, v) = 1. (64)

(H3) The map v 7→ f0(x, v) is non-decreasing on the interval ]−∞,−m] and non-
increasing on the interval [m,+∞[. In short it is a “plateau” profile near v = 0.

The instability Theorem 4.2 implies that the one bum shape of the profile has
to be preserved by the dynamics and therefore the hypothesis (H2) and (H3) seem
almost optimal. On the other hand in the right hand side of (56) appears the ∂3xV
quadratic term∫

R
dx

∫ 1

0

da
(
−v−(t, x, a)(∂3xv−(t, x, a))2 + v+(t, x, a)(∂3xv+(t, x, a))2

)
where (∂3xv±(t, x, a))2 are multiplied by the factor |v±(t, x, a)| . Therefore with
estimates adapted to this factors (treated as weights) it may be possible to relax
the hypothesis (H1) and consider one bump initial profiles with unbounded support?

On the other hand it is important to observe no other regularity with respect to v
is needed and the introduction of the vN± satisfying the hypothesis of the proposition
shows the validity of the waterbag model (cf. [4] and [5] for details) as a convenient
approximation for the continuous model.

Remark 6. Some different physical scalings lead, instead of V−D−B equation, to
other variants and in particular to the constant density Vlasov equation, i.e.

∂tf + v · ∇xf + E · ∇vf = 0,

∫
Rd
f(t, x, v)dv = 1,

(cf. [6, 7, 8, 22, 24]) where the electric field plays the role of the Lagrange multiplier
of the constraint “constant density”. For instance, in more than one dimension (d >



VLASOV-DIRAC-BENNEY EQUATION 913

1) this equation has non trivial mono-kinetic solutions f(t, x, v) = ρ0δ(v − u(t, x)),
where ρ0 is constant and u(t, x) is the solution of the incompressible Euler equation.
For d = 1, Grenier [22] proves an instability theorem (Theorem 1.1) which is the
counterpart of Example 4 of section 2 and of Theorem 4.2 of section 4. Moreover
by energy methods he has proven, for one-bump profile a stablility result (Theorem
2.1) which share much in common with the present Theorem 6.1.

7. The Vlasov-Dirac-Benney equation at the cross road of semi-classical
limits, fluid mechanics and integrability. We have shown that with the sin-
gularity of the potential (the Coulomb potential being replaced by a Dirac mass)
dynamics may be very unstable and that this issue is closely related to the behavior
of the linearized solution as a perturbation of different initial profiles. For instance
perturbations of the “one-bump profile” are locally stable (both for the linearized
and the nonlinear problem) while “bump in tail” profiles may lead to ill posed
problems (also both for the linearized and the nonlinear V−D−B equation).

It has been also observed that stability results can be consequences of the re-
lation of the Vlasov equation with equations in fluid mechanics. For the classical
Vlasov equation this is not a new idea. Since the paper of Brenier [6] this point of
view appeared to be very fruitful for the analysis of singular limits cf. for instance
Han-Kwan [24], Loeper [31] and the contributions [4] and [5] of the second author.
However for what we dubbed V−D−B the connection was already formally made by
Zakharov in 1980 [44]. Moreover he observed formal relations between the Vlasov
equation, and the WKB or semi-classical limits of the Non-Linear Schrödinger equa-
tion.

Therefore we would like to emphasize that such formal semi-classical limits turn
out to be “rigorously proven limits” only in cases which also correspond to the
stability near one-bump profile.

We start from the Schrödinger equation in Rd with a time-dependent potential
V (t, x)

i~∂tψ = H(~, V (t))ψ = −~2

2
∆ψ + V (t, x)ψ, (65)

which defines a unitary dynamics in L2(Rd) and therefore we assume that the wave-
function ψ satisfies the normalization condition,∫

Rd
|ψ(t, x)|2dx = 1 .

With

V (t, x) =

∫
Rd
V(x− y)|ψ(t, y)|2dy, (66)

one has the family of self consistent Schrödinger equations with in particular the
Schrödinger Poisson equation when V is the Coulomb Potential or the Non-Linear
Schrödinger equation when V is the Dirac mass.

On the other hand with the introduction of the commutator [A,B] = AB−BA,
the so-called self-consistent Von Neumann equation

i~∂tK~(t) = [K~(t),H(~, V (t))] with V (t, x) =

∫
Rd
V(x− y)K~(t, y, y)dy, (67)

defines a dynamics on trace 1 self-adjoint unitary operators in L2(Rd) (with kernel
denoted by K~(t, x, y)). In particular whenever ψ~(t) is solution of the equation

(65) with V (t) given by (66), K~(t, x, y) = ψ~(t, x) ⊗ ψ~(t, y) is a solution of the
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Von-Neumann equation (67). Eventually we introduce the Wigner transform of the
operator K~(t)

W~(t, x, v) =
1

(2π)d

∫
Rd
e−iy·vK~

(
t, x+

~
2
y, x− ~

2
y
)
dy, (68)

and we observe that its formal ~ → 0 limit W (t, x, v) is a solution of the Vlasov
equation

∂tW (t, x, v) + v · ∇xW (t, x, v)

−∇x
(∫

Rd
V(x− y)

∫
Rd
W (t, y, w)dwdy

)
· ∇vW (t, x, v) = 0,

with

W0(x, v) := W (0, x, v) = lim
~→0

W~(0, x, v). (69)

Such results are proven when the potential V is smooth enough (cf. [30] or [19]).
For the Non-Linear Schrödinger equation and for its formal limit the V−D−B

equation the situation is completely different. Since the Cauchy problem may be ill
posed (cf. Theorem 4.2) there are in general no chances of such convergence (even
for C∞ data and small time). However, for d = 1, convergence should hold for
initial data of the form

K~(0, x, y) =

∫
R
ei
x−y
~ vW0

(
x+ y

2
, v

)
dv,

with W0(x, v) being a one-bump profile satisfying in term of v±(0, x, a) the hypoth-
esis of the Theorem 6.1 because the limit problem is well posed. We are not aware
of such result. On the other hand if W0 (cf. (69)), is analytic (satisfying the Jabin-
Nouri hypothesis [25]) convergence should hold for a finite time. Here also, to the
best of our knowledge there is no general proof of this fact. However in the WKB
limit there is a contribution of P. Gerard [18] which may be generalized. This WKB
limit refers to the ~ scaling of the equation (as above) and to initial data in the
form

ψh(0, x) =
∑

1≤k≤N

ρk(x)ei
Sk(x)

~

which give for the Wigner transform at time t = 0,

W~(0, x, v) =
1

2π

∫
R
e−iyvψ~

(
0, x+

~
2
y
)
ψ~

(
0, x− ~

2
y
)
dy. (70)

Now under general hypothesis (ρk ∈ L1
loc, ∂xSk ∈ W

1,1
loc ) and the ∂xSk(x) linearly

independent one has

W~(0, x, v)→
∑

1≤k≤N

ρk(x)δ(v −∇Sk(x)), in D′(R). (71)

For N = 1, this corresponds to a mono-kinetic initial data. This is a case (also
the “extreme case” of the one-bump profile) of initial data which give for V−D−B
equation a local in time (before the appearance of singularities) stable solution.
Therefore in this setting one can expect that the Wigner transform of ψ~(t, x) ⊗
ψ~(t, y) will converge to the solution of V−D−B equation. And in fact several
proofs of such convergence are available (as said above [18] in the analytic case)
but also Grenier [20, 21] with a proof based on a modification of the Madelung
transform and finally Jin, Levermore and McLaughlin [26].
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Note also that the case N > 1, in formula (70), has been considered by Zakharov
[44] with formal proofs of convergence. These proofs should completely work in
the analytic case as an application of [18]. In less regular cases for example with
N = 2 and (71) the examples of section 5.0.2 lead to the conjecture that with non
analytic initial data, local in time convergence may hold in some cases but not in
every cases.

The proof in ([26]) which holds for the mono-kinetic limit is based on the com-
plete integrability of the Non-Linear Schrödinger equation by inverse scattering.
And therefore the V−D−B equation appears to share many properties of integrable
systems. Zakharov [44] says “it is integrable in a certain sense”! And he insists
on the existence, for the genuine Benney equation of an infinite number of inte-
grals of motion obviously related to the infinite set of invariants for the nonlinear
Schrödinger equation and to the infinite set of conserved quantities (entropy) for
the 2× 2-equations of fluid mechanics.

8. Conclusion. This contribution has been essentially devoted to a singular one-
dimensional version of the Vlasov equation where the potential, which in the original
case is derived from the Laplace equation, has been replaced by the Dirac mass.

Having briefly recalled that there are good physical reasons to consider this
equation we have emphasize the mathematical properties of this problem.

The spectral analysis share much in common with the approach of Penrose (be-
cause of the one-dimensional structure and of the fact that the potential is positive
semi-definite). However due to the singularity the effect of the initial data on the
behavior of the solution (both for the linearized problem and for the original nonlin-
ear equation) are much more drastic than for the classical Vlasov–Poisson equation.
The case where the problem is locally in time well posed are treated thanks to in-
terpretation in term of fluid mechanic. This justifies the name “Benney” in our
contribution.

As said above the stability results are very sensitive to the geometrical structure
of the initial data and this sensitivity persists all over the article from the property
of the linearized problem to the stability analysis of the nonlinear one and to its
interpretation as a WKB limit of nonlinear Schrödinger type equations.

What we dubbed energy-entropy quantities are in fact invariants of the dynamics
and could be related at every level of the analysis to an intrinsic hamiltonian struc-
ture of the problem and should play the same role as the Casimir in the stability
theory of Arnold for the two-dimensional Euler equation (cf. for instance [1]).

Therefore this leaves some room for further studies both on one hand for appli-
cation to approximation and numerical analysis and on the other hand, at intrinsic
mathematical theory, for the role that this type of equation may play at the cross
road of different limits that share in common some hamiltonian structures. Eventu-
ally one may consider perturbation of profiles G(v) with “multi-bumps” but small
enough so that there would be no unstable mode:

∀ω∗ ∈ =+,

∣∣∣∣1− ∫
Rv

G′ε(v)

v − ω∗
dv

∣∣∣∣ > η. (72)

In this case one can describe the evolution of the linearized problem (near this pro-
file) by a distribution groups of operators [29, 10] as described in [2]. This means a
“almost well-posed Cauchy problem” or more precisely an evolution equation well
posed with a finite lost of regularity. In this setting it may be possible that the non-
linear problem be approached with the Nash Moser Theorem. Such a construction
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seems to require not only more regularity with respect to the x variable but also to
the v . And this type of hypothesis are definitely not satisfied for approximations
like the multi water-bags considered above.
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Séminaire sur les Equations aux Dérivées Partielles, 1992–1993, Exp. No. XIII, 13 pp., Ecole

Polytech., Palaiseau, 1993.
[19] P. Gérard, P. Markowich, N. Mauser and F. Poupaud, Homogenization limits and Wigner

transforms, Comm. Pure Appl. Math., 50 (1997), 323–379.

[20] E. Grenier, Limite semi-classique de l’équation de Schrödinger non linéaire en temps petit,
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