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Predicting turbulent transport in nearly collisionless fusion plasmas requires one to solve kinetic (or,
more precisely, gyrokinetic) equations. In spite of considerable progress, several pending issues
remain; although more accurate, the kinetic calculation of turbulent transport is much more
demanding in computer resources than fluid simulations. An alternative approach is based on a
water-bag representation of the distribution function that is not an approximation but rather a special
class of initial conditions, allowing one to reduce the full kinetic Vlasov equation into a set of
hydrodynamic equations while keeping its kinetic character. The main result for the water-bag
model is a lower cost in the parallel velocity direction since no differential operator associated with
some approximate numerical scheme has to be carried out on this variable v,. Indeed, a small bag
number is sufficient to correctly describe the ion temperature gradient instability. © 2007 American

Institute of Physics. [DOI: 10.1063/1.2804079]

I. INTRODUCTION

Microinstabilities are now commonly held responsible
for turbulence giving rise to anomalous radial energy trans-
port in tokamak plasmas. Such a turbulent transport governs
the energy confinement time in controlled fusion devices. In
this framework, the quest for performant discharges with
good confinement properties relies crucially on our ability to
accurately predict the level of turbulent transport. The low
frequency ion-temperature-gradient-driven (ITG) turbulence
is one of the most serious candidates to account for this
anomalous transport,1 as well as the so-called trapped elec-
tron modes.’ During recent years, ion turbulence in tokamaks
has been studied intensively both with fluid (see, for in-
stance, Refs. 3-5) and gyrokinetic simulations using particle-
in-cell codes®™® or Vlasov codes.” ™"

It is now well known that the kinetic and fluid descrip-
tions of the instability can lead to different linear properties;
namely, the instability threshold and the linear growth
rate.'*"° Besides, fluid codes are usually reported to overes-
timate the turbulent transport level.'® So as to reduce the
discrepancies between these two approaches, new fluid clo-
sures have been recently developed to account for some ki-
netic effects.'” ' In this framework, it is important that gy-
rokinetic simulations quantify the departure of the local
distribution function from a Maxwellian, which constitutes
the usual assumption of fluid closures.

In a recent paper,22 a comparison between fluid and ki-
netic approach has been addressed by studying a three-
dimensional kinetic interchange. A simple drift-kinetic model
is described by a distribution depending on only two spatial
dimensions and parametrized by the energy. In that case it
appears that the distribution function is far from a Maxwell-
ian and cannot be described by a small number of moments.
Wave-particle resonant processes certainly play an important
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role and most of the closures that have been developed will
be inefficient.

On the other hand, although more accurate, the kinetic
calculation of turbulent transport is much more demanding in
computer resources than fluid simulations. This motivated us
to revisit an alternative approach based on the water-bag
(WB) representation.

Introduced initially by DePackh,” Hohl, Feix, and
Bertrand®**® the water-bag model was shown to create a
bridge between fluid and kinetic descriptions of a collision-
less plasma. Furthermore, this model was extended to a
double water bag by Berk and Roberts”’ and Finzi,”® and was
further generalized to the multiple water bag.30733

It is the aim of this paper to revisit this model and its
possible application to gyrokinetic modeling.

After a brief introduction of the well known gyrokinetic
context, we will present the water-bag model, stressing the
reasons that it is well suited in a gyro context. A linear analy-
sis of the slab branch of ITG modes using the water-bag
distribution will be presented. Finally, the first attempts to
developing nonlinear numerical simulations will be
discussed.

Il. THE WATER BAG MODEL FOR GYROKINETIC
MODELING

A. The drift-kinetic equation

Although the gyrokinetic reduction from Hamiltonian
consideration can be carried on in different phase space co-
ordinates such as action-angle variables, as done in Ref. 9,
the usual gyrokinetic description as used for instance in the
GYSELA code (as described in Ref. 10) makes full use of the
v), i coordinates: the vy variable is indeed a kinetic variable,
while the u (magnetic moment) is a label associated with a
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set of distribution functions f,. In the more simple drift-
kinetic description, only u=0 is considered.

The ITG instability relies on the resonant interaction be-
tween waves and particles. In principle, one has to solve a
six-dimensional kinetic equation to determine the distribu-
tion function. However, for strongly magnetized plasmas, the
Larmor radius r; is much smaller than the characteristic
length L of density or magnetic field, and the cyclotron mo-
tion is faster than the turbulent motion. The Vlasov equation
can then be expanded in r; /L and averaged over the cyclo-
tron motion. The new equation is called the drift-kinetic
equation. It is also possible to take into account finite Larmor
radius effects by adding gyroaveraging and polarization drift
into the drift-kinetic equation, leading to the gyrokinetic
model.** Thus, for strongly magnetized plasmas, gyrokinet-
ics allows us to recast the Vlasov equation into a five-
dimensional equation in which the fast gyroangle does not
appear explicitly, but in which the particle information is not
lost.

The gyrokinetic model is based on the Vlasov equation
for the guiding-center ion distribution function f=f(r,v,1).

With an adiabatic response for the electrons,”* we get
(9£f+ VE.Vf+ ngf+ U”V‘lf'i' U’H&U”f= 0, (l)
where
B VJ¢
=— X —, 2
VE B B (2)
My (B N B VB
L M(B N u(s, v) o
g8 \B R,/ ¢ \B B
B My (B N i
U=—[—+—v<—><—> |:ﬂVB+iVj0¢:|,
B ¢B\B R, M,; M;

(4)

and where 7 is the gyroaverage operator, N/R, is the field
line curvature, and w is the first adiabatic invariant of the ion
gyrocenters. The quasineutrality equation reads

q<
Z,Jon; + Zi;lriVL(niVL B) = n e PO, (5)

i

The second term on the left-hand side of this equation cor-
responds to the polarization density. Moreover, to study slab
ion temperature gradients instabilities, a simplified drift-
kinetic model in cylindrical geometrylo is used in this paper:

e The uniform and constant magnetic field B is along the
axis of the column (z coordinate). It follows the perpen-
dicular drift velocity does not admit any magnetic curva-
ture or gradient effect: v,=0 and v, =vp;=E X B/B>.

e The equation of motion provides v=q,E,/M;.

e Jon finite Larmor radius effects are neglected as well so
that only the guiding-center trajectories are taken into ac-
count: Jy=1, k, r;, — 0, where ry is the ion Larmor radius.
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e Electron inertia is ignored (adiabatic response to the low
frequency fluctuations), electric potential is small when
compared to the electron kinetic energy: e¢p<<T,.

There is no equilibrium radial electric field. The plasma
quasineutrality approximation on;=dn, is sufficient for low
frequency electrostatic perturbations.

With these assumptions, the evolution of the ion
guiding-center distribution function f(r , ,z,vy,?) is described
by the drift-kinetic Vlasov equation (see Ref. 10 for more
details)

azf(l',l)u,l) + Vg - Vlf(l',vu,l) + U||(92f(l',UH,l)

a4k

4 L=
M;

dy f(r,0,1) =0 (6)
for the ions (g;,M;), coupled to an adiabatic electron re-
sponse via the quasineutrality assumption

Zif f(r,v,0)dv; = ”eo(l + %b) (7)

assuming (ep<T,). Here, e=+1.6 X 107'° C, g,=Z;e, and vg
is the E X B drift velocity.

The most important and interesting feature is that f de-
pends only on the velocity component v parallel to B. Let us
now turn to the water-bag model.

B. The water-bag model

Consider a more simple problem, in which the physical
quantities do not depend on the perpendicular direction r
[i.e., two-dimensional (2-D) phase space z,v], in which at
initial time the situation is depicted as follows.

Consider two single-valued functions v,(z)>v_(z) in
phase space. Between the two corresponding curves, we im-
pose f(z,v;,0)=A (A is a constant). For velocities bigger
than v, and smaller than v_, we have f(z,v;,0)=0.

According to phase space conservation property of the
Vlasov equation, as long as v, and v_ remain single-valued
functions, f(z,vy,#) remains equal to A for values of v, such
that v_(x,1) <v,<wv,(x,r). Therefore, the problem is entirely
described by the two functions v,(z,) and v_(z,1).

Remembering that a particle on the contour v, (or v_)
remains on this contour, the equations for v, and v_ are

Dv, dv.(z,0) . g

Dt a Vg _MiE”(Z’t)' ®

Now let us introduce the density n(x,t)=A(v,—v_) and
the average (fluid) velocity u(x,t)=%(v,+v_) into Egs. (8)
by adding and subtracting these two equations. We obtain

on Jd

—+—(nu) =0, 9
P az(””) )
du u 1 P g
—ty—=———+4+—F N3 10
o T g T B (10)

M.

Pn3=—-. 11
SERETYE (1)
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FIG. 1. The multi-water-bag distribution function along the velocity direc-
tion (v)).

\4

Equations (9)—(11) are, respectively, the continuity, Eu-
ler, and state equations. This hydrodynamic description of
the water-bag model was pointed out for the first time by
Bertrand and Feix,25 but the state equation (11) describes an
invariant both in space and time while in the hydrodynamic
model we obtain (D/Dt)(Pn~")=0. It must be noticed that
the physics in the two cases is quite different.”

The generalization to the multiple-water-bag model was
straightforward;30732 Berk and Roberts”’ and Finzi®® used a
double WB model to study the two-stream instability in a
computer simulation including the filamentation of the con-
tours and their multivalued nature (a highly difficult problem
from a programming point of view).

Let us consider 2N contours in phase space labeled v;
and v; (where j=1,...,N). Figure 1 shows a three-bag sys-
tem (N=3) where the distribution function takes on three
different constant values: F, F,, and Fj3.

Introducing the bag heights A;, A,, and A, as shown
also in Fig. 2, the distribution function reads

FIG. 2. Contours vf in the phase space (z,v;) for a three-bag system, and
associated values of the distribution function.
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N
flzut) = 2 Aj{Y[UH - U;(Z,t)] - Y[v, - U;(ZJ)]}, (12)
j=1

where Y is the Heaviside unit step function. Notice that some
of the A; can be negative. With respect to the conservation
property of the Vlasov equation, the height A; of each bag is
a constant of the motion (see Fig. 1).

The properties of the system are completely described by
the knowledge of the contours vf, which obey the motion
equations

* + +
Dv; s (z,1) +vi(7_vi_

qi
Dt ot e =ME”(Z’I)' (13)

Let us now introduce for each bag j the density n;, av-
erage velocity u;, and pressure P;, as done above for the
one-bag case: n; —A (v —v;), u; —(1/2)(v +0; 7), and P
=M,/ (12A2) For each bag J, we recover the cont1nu1ty and
Euler equatlons as written in Egs. (9) and (10); namely,

on;

_L_,__ )=0, 14
P (nju;) (14)
ou; au; 1 (?P

P v R ] (15)

The coupling between the bags is given by the total density
2n; in the quasineutrality equation.

C. Water-bag model and moments of a continuous
distribution function

The connection with a multifluid model is more illumi-
nating if we consider the equivalence in the fluid momentum
sense of a multi-water-bag distribution and a continuous
distribution.*

Let us consider an homogeneous equilibrium distribution
function fy(v;). For simplicity, we suppose f, is an even
function of v, (odd momenta are zero). In the water-bag for-
malism, this means symmetrical equilibrium contours vy
=z#a;. Let us define the {-momentum of f; (¢ even only) as

o)

vl folvpdo, (16)

-0

Me(fo) =
and the €-momentum of the corresponding water bag as

(WB)_e—E 24" (17)

Let us now sample the v axis with appropriate a; values.
Thus, equating Egs. (16) and (17) for €=0,2,...,2(N-1)

yields a system of N linear equations for the N unknown

A;, j=1,...,N. Using an integration by parts, we get
* d
2 24,0 = f f”dfodu", €=0,2,....2(N-1).
- U
(18)

A water-bag model with N bags is equivalent to a con-
tinuous distribution function for momenta up to €, =2(N
—1). Nevertheless, Eq. (18) has the form of a Vandermonde
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FIG. 3. (Color online) Distribution of the initial bag velocities a ; and asso-
ciated values of F;.

system that becomes ill-conditioned for higher values of the
number of bags N (for instance, for N=15 and a cutoff in
velocity space ay=>5vy; the matrix elements vary from 1 to
528).

A more convenient solution can be found for a larger
number of bags and for a regular sampling of the v, axis; i.e.,
a;=(j—1/2)Aa (see Fig. 3). The idea is to compute the F;
values at the middle of each interval Aa=ay/(N-1/2); we
have F;=fy(a;—Aa/2) and F},,=fy(a;+Aa/2). With such a
choice of a; distribution and since A;=F;-F;,,, from Eq.
(18) the solution is straightforward:

A; dfO
—[=_ A 2_ 1
P v”+(9( a’) (19)

As depicted in Fig. 4, such an approximation becomes
accurate for N greater than 10. Of course, for N smaller than
10, the exact A; can be obtained solving directly the linear
system (18).

0025 T : ; . =
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FIG. 4. (Color online) Accuracy of the second-order Taylor expansion
method when compared with a continuous Maxwellian distribution function,
as a function of the number of bags (N).
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D. Using water-bag invariants to reduce phase
space dimension

In Eq. (13), j is nothing but a label since no differential
operation is carried out on the variable v;. What we actually
do is to bunch together particles within the same bag j and
let each bag evolve using the contour equations (13). Of
course, the different bags are coupled through Poisson’s
equation.

This operation appears as an exact reduction of the phase
space dimension (elimination of the velocity variable) in the
sense that the water-bag concept makes full use of the Liou-
ville invariance in phase space: the fact that the A; are con-
stant in time is nothing but a straightforward consequence of
the Vlasov conservation Df/Dt=0. Of course, the eliminated
velocity reappears in the various bags j (j=1,...,N), and if
we need a precise description of a continuous distribution a
large N is needed. On the other hand, there is no mathemati-
cal lower bound on N and from a physical point of view,
many interesting results can even be obtained with N as
small as 1 for an electrostatic plasma. For magnetized
plasma, N=2 or 3 allow more analytical approaches (as seen
below).

On the contrary, in the Vlasov phase space (z,v), the
exchange of velocity is described by a differential operator.
From a numerical point of view, this operator has to be ap-
proximated by some finite difference scheme. Consequently,
a minimum size for the mesh in the velocity space is required
and we are faced with the usual sampling problem: If it can
be claimed that the v-gradients of the distribution function
remain weak enough for some class of problems, then a
rough sampling might be acceptable.41 However, it is well
known in kinetic theory that wave-particle interaction is of-
ten not so obvious. For instance, steep gradients in velocity
space can be the signature of strong wave-particle interaction
and there is the need for a higher numerical resolution of the
Vlasov code, while a water-bag description can still be used
with a small bag number. As a matter of fact, it is well
known that this mesh problem is closely related to poor en-
tropy conservation (see, for instance, Ref. 29).

To conclude, the multiple water bag offers an exact de-
scription of the plasma dynamics even with a small bag num-
ber, allowing more analytical studies and bringing the link
between the hydrodynamic description and the full Vlasov
one. Of course this needs a special initial preparation of the
plasma. Moreover, if we need a precise description of a con-
tinuous distribution, it is clear that a larger N is needed; but
even if the numerical effort is close to a standard discretiza-
tion of the velocity space in a regular Vlasov code (using
2N+1 mesh points), we believe that the use of an exact
water-bag sampling should give better results than approxi-
mating the corresponding differential operator.

E. The gyro water-bag (GWB) model

Let us now turn back to the drift-kinetic equation (6).
Since the distribution f(r,,z,v,) takes into account only
one velocity component v, a water bag can be considered
and Eq. (12) now reads
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N
f(th,Uu,f) = E Aj{Y[UH - U;(rl,z,f)]
Jj=1
- Y[Uu - U;-(I'J_,Z,t)]}, (20)
and provides the set of contour equations
x + x. o+ 4iE
&tv; +vg VLU‘; + v;ﬁzv}' = ](4— (21)

l

coupled to the multi-water-bag quasineutrality

N
72 Ajvi - v7) =neo<1 + eT—‘ﬁ> (22)
j=1

Let us introduce for each bag j the density nj:(v;f
—vj)A; and the average velocity u;=(vj+v;)/2. Equations
(21) and (22) allow us to recover continuity and Euler equa-
tions; namely,

on;

3[1 + VL . (njVE) + &Z(njuj) = 0, (23)
ou; u; 1 0P; i
_M'L+VE'VLMJ-+MJ‘_M'L=—__'L+&EH, (24)

where M; and g; are ion mass and charge, respectively.
The partial pressure takes the form

3 2

The connection between kinetic and fluid description
clearly appears in the previous equations: the case of one bag
recovers a fluid description (with an exact closure) and the
limit of an infinite number of bags provides a continuous
distribution function.

lll. LINEAR ANALYSIS AND GYRO WATER-BAG
DISPERSION RELATION

A direct illustration of GWB’s ability to reproduce the
physical features of gyrokinetics is given by the linear analy-
sis of the gyro water-bag equations (21) and (22). On the
following pages an even equilibrium multi-water-bag distri-
bution v;==a;(r) depending only on the radial variable r
will be assumed.

A. Linearizing the gyro water-bag equations

Let us consider the following expansion around the
equilibrium:

vi(r.0.2,0) = £ a,(r) + wi(r)e ") 1 e e (26)

&(r,0,2,1) =0 + S(r)e ki) 4 ¢ c. (27)

assuming that plane wave dependencies are convenient with
a linear analysis. Defining ky=m/r, we obtain the linear
water-bag system

- s | @k ke s
(0 F kja)w; - [ M B ] 6¢4=0, (28)

i
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en,

22 AW —wy) =25, (29)
T,

from which the multi-water-bag dispersion relation 6,26((1))

=0 is easily obtained. The gyro water-bag dispersion func-
tion is written in normalized units,

o - 1-o0r
ekg(w) =1-Z'>, aj—Lé)Z 2 (30)
=1 —dj

J

where Z'=ZT,/T;. The normalizations are defined as fol-
lows (by using v3.=T;/ M,):

&= kg, (31)
a=alvy, (32)
k = kik, (33)
b=qi T, (34)

Moreover, two water-bag parameters have been intro-
duced in Eq. (30):

* The relative bag density a;=2A;a;/n;, [where n;(r) is the
radial ion density profile].

e The water-bag diamagnetic frequency related to bag j:
Q;:Ig(,d, ln(aj)/QC,-, where Q;=gq;B/ (M kupy). It is inter-
esting to note that QJ* values are related to the diamagnetic
frequency ()} by the relation 2}, ;07 =0,

For simplicity, the ~ notation will be dropped on the fol-
lowing pages.

B. Water-bag and Landau damping of ion
acoustic waves

The special case without radial dependence [i.e., a;(r)
=const or Q;:O] will be interesting to consider first. It will
help us to understand how kinetic effects will be taken into
account with the water-bag model and more precisely how
the linear Landau damping can be recovered for ion acoustic
waves as a phase mixing process of undamped
<3igenm0des,30’33 which is reminiscent of the Van Kampen—
Case treatment of the electronic plasma oscillations.*®?’

Setting Q}':O, Vv j=1,...,N in Eq. (30), the dielectric
plasma function becomes an even function of w:

N
dw)=1-2"> — 1. (35)

2
=1 @

The one-bag case allows us to recover the usual acoustic
frequency:

o’=(3+27). (36)

Now, if all A; are positive (single-hump distribution
function), Eq. (35) has 2N real frequencies +w, located be-
tween *a; and *a;,, (see Fig. 5).

The water-bag description is a discrete form of the con-
tinuous spectral Van Kampen—Case approach.%’37 The result-

ing time-dependent electric potential is obtained by solving
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FIG. 5. (Color online) Dependency of the plasma dielectric function on @
for a two-bag case. Zeros are represented with a + sign. N=2, Z'=1.

the linear water-bag system as an eigenvalue problem. The
eigenfunctions W;=A;w; obey the eigenvalue equation

N
a.
(w,—a)W;=Z L > W, =0, k+#0,

(37)
4j k=-N
k#0
assuming the electric potential can be written
N
Plz.1) = 2, Celimentd), (38)
j=1
The coefficient C, values are given by
C - E;\]:][a)n(s(]-)Jr - 8?_) + aj(s?Jr + s?_)]/(wi - a,z-) (39)

N 2_ 22 ’
S 2w,a(w, - a;)
where the quantities s;)i are the relative amplitude of the
initial contour perturbation

vi(z.t=0)= £a;(1 + &) " +c.c.).

The electric potential [Eq. (38)] behaves like a superpo-
sition of N oscillators that are in phase at time 0. As time
increases they will gradually lose their synchronization and
the electric potential decreases according to the Landau pre-
diction (see Fig. 6). In the case of a Maxwellian equilibrium
distribution function the theoretical damping rate is given by
the imaginary part of solutions of the following equation:

LdZ(w)

1-27Z =0,

" dw (40)

where Z is the well known Fried-Conte function. For ex-
ample, for Z7=5, the water-bag value ywp=—0.23+0.02 is
very close to the theoretical value %heoretml:—0.2210.02.38
It should be pointed out that a recurrence phenomenon is
occurring in Fig. 6. The recurrence time T is related to the
possibility for the N oscillators to return almost in phase after
a time of the order of the longest period (corresponding to
the smallest pulsation value). This recurrence time T is

2m

Tr ~ .
R Aa
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2 -~‘”~50 bags
5 —10 bags/||
o ,/|---20 bags
= /. J
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time in (k|| v.n) units

FIG. 6. (Color online) Linear Landau damping: time evolution of the elec-
tric potential (normalized units) with Z}=5.

This recurrence is a well known phenomenon in Vlasov
simulations for situations close to linear ones, where the field
is small. The free streaming of particles gives rise to a fine
structure in velocity space: if the free streaming is the only
process (E=0), the exact solution of the Vlasov equation
(9f/ dt+vaf/ox=0) is fi(v,1)=fy(v)exp(ikvt); if a numerical
discretization is introduced with a mesh size Av, it is clear
that a recurrence effect has to occur at time Tr=27/kAv. Of
course, it is the same for the water bag with its natural (not
numerical) discretization of the velocity space. Actually, this
recurrence phenomenon disappears when the nonlinearity is
more important and hides the free streaming.z'9

IV. THE ITG INSTABILITY

The aim of the present section is to complete a linear
analysis of drift-kinetic water-bag equations, in order to
compare our model to analytical results obtained with con-
tinuous Maxwellian distribution function. Such an analysis
will provide a test for the nonlinear solver, which will be
presented in the last part of the paper and in a forthcoming

paper.

A. Radial multi-water-bag parameters and moments
of a continuous distribution function

The first problem we have to solve is to determine physi-
cally relevant radial water-bag parameter. We use the same
method as given in Sec. II C, by considering both momenta
and their radial derivatives. With a view to describe ITG
modes, we choose to develop radial profiles in terms of tem-
perature and density profiles only.

The continuous distribution function is assumed as
follows:

Jeq(r,vy) = @g<ﬂ> ,
Ui v

Ti

(41)

where G is a normalized and even function. n;y(r) and v(r)
are the radial profiles of ion density and thermal velocity,
respectively.

Consider now the gyro water-bag dispersion function
(30). At a given point r=r the @; can be computed using the
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same trick as explained in Sec. II C. However, as compared
to Eq. (35), new unknown Q; appear that measure the local
density gradient of the corresponding bag j. Of course, these
unknowns have a sense relative to our model. They have to
be calculated from the knowledge of the equilibrium gradi-
ents at r=r; namely, the diamagnetic frequencies expressed
in terms of the density gradient () and the temperature gra-
dient Q. Let us write

a V=58, + v, A,

J

(42)

where the unknown coefficients 8; and vy; are determined as
follows. In Sec. II C, a method was given to compute the «;
from an equivalence between the moments of the stepwise
water bag and the corresponding continuous function. Taking
the derivative of the moments along radial direction, and
using Eq. (41), we obtain

N

[
> an; j: (Q}E + Q;)v[ﬁ/\/l,, (43)
j=1
where M, is the /th-order moment of the G function, with the
definition
1=0,2,...,2(N-1).

M, = f X'G(x)dx, (44)

Finally, inserting expression (42) in Eq. (43), and sepa-
rating between ()} and (), yields the coefficients for each
bag:

> aal=(1+1)vyM, (45)
Jj=1
> Bidh =M, (46)
Jj=1
> ')’jaj' = UZTiMZ' (47)

j=1

In Egs. (45)—(47), the matrix we have to invert remains a
Vandermonde one, with the same numerical problem as in
Sec. II C. A Taylor expansion provides us

F.—F.
a’j=2aj‘;¢1, (48)
nio
F+F;
'y,:Aa—;ﬂ, (49)
' Njo

It is important to note that we have supposed a relatively
general form of the distribution function (41), including the
case of non-Maxwellian equilibrium distribution functions.

B. Instability threshold and linear growth rate

With respect to radial dependencies (27,€))), the dielec-
tric plasma function (30) could now admit complex conju-
gate roots corresponding to reversing some asymptotes.
Finding the instability threshold is equivalent to solving the
system
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FIG. 7. (Color online) Dependence of )} on () at the threshold for N=3,
ay=3vy;.

fk(,(w) =0,

(51)
dweke(w) =0.

A parametric approach relative to w provides us a linear
stability threshold.* Therefore, it is possible to compare
these curves with an analytical result given in Ref. 10 in the
case of a Maxwellian continuous distribution function (Figs.
7 and 8). In the three-bag case, we obtain two domains of
existence of instabilities, with a lobelike structure (Fig. 7).
Although a quantitative agreement is hard to obtain with
such a small number of bags, actually, the qualitative fea-
tures of ITG instability threshold are recovered.

The accuracy of the water-bag model improves rapidly
with an increasing number of bags. Indeed, analyzing the
dependence of the linear growth rate y on the bag number N
for A(Q),=—1.0,0;=-8.0) (see Fig. 8) close to the threshold
shows that vy reaches, respectively, 93% and 98.5% of its
continuous rate (N—o0) for N=5 and N=10. This result
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FIG. 9. (Color online) Dependence of the linear threshold on the value of
ay. With the parameters Z; =1, Nigp=8, ag=15/19X5v7;=3.95v7;, Nyoiiom
=16, a,4=31/19 X 5v4;=8.16v;, and Aa=const=10/19=0.53.

seems to suggest that for such usual coordinates (€,,Q;)
(see Refs. 10 and 42) about ten bags are enough to correctly
describe ITG instabilities.

C. Influence of the water-bag parameters

With respect with our normalizations, increasing  is the
same as considering an increasing value of the phase veloc-
ity. As shown in Fig. 8 (see points associated with w=vy; or
3vy;), the large values of the phase velocity are located on
the first and third quadrants, while the slow ones are located
on the second and fourth ones.

We have drawn in Fig. 9 stability domains associated
with N=8 and N=16 bags. We choose to deal with a constant
interval Aa between each a s with the reference that the tenth
bag contour a,, is located at five thermal velocities.

As shown in Fig. 9, by adding to the eight-bag case eight
new bags, eight new lobes should occur and describe the fast
phase velocities. However, the last ones do not appear on the
figure because they are too thin; this phenomenon is clearly
related to the very small value of the distribution function
corresponding to those fast velocities. Accordingly, in the
following, a cutoff velocity equal to five thermal velocities
will be chosen, whatever the number of bags.

To describe ITG instabilities, the # parameter (7
=07/Q) is widely used. We can see in Fig. 9 that particles
with velocities less than the thermal one are located near the
n=2 asymptote, and fast particles generate the #7—0
asymptote.

D. The fluid limit

Going back to the dispersion equation, we can recover
gyro fluid results by assuming small parallel wave number. If
we consider unnormalized quantities, we have in this limit
o> kyy;. With our normalizations [Eq. (31)], such an ap-
proximation allows us to neglect the coupling between a bag
and all others:
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1 1 a* at
5 2:—2|:1+;%+0<;%):|, (52)

—a- w
w a]

where we have taken into account the small parameter
1/ w?o €. The dielectric function (30) reads in that case

MRS DU o a’ at
& (w) =1 -z, ajTL 1+ ;% +0<;ﬁ) . (53)
j=1

By considering only the two main terms, and using the
relation =Y 7=,

w=-Z'Q0, (54)

we recover the basic result given by the fluid description;
namely, the plasma response is an oscillation at the diamag-
netic frequency w;=-Z7(. It is important to note that all
other solutions are negligible with respect to the order in w
we consider.

By taking into account the two following terms, we have

&+ Z V0 - Z o+ Z (U + Q) =0, (55)

where we have used the momenta equivalence to explicit
summations in terms of 7 and ().

As compared with Eq. (54), Eq. (55) is an expansion
with the following ordering:

w~ e
1 (56)
Qy~€'.

To obtain the limit w> ks, it must be supposed that
x<l.

With the assumption of a flat density profile, an analyti-
cal expression of the linear growth rate is obtained to the first
order:

=
V3 * () *
Y= 7|Zi QT|1/3' (57)

The real part associated is of the same order in €, and we
validate x=2/3 <1. Such a result is well known in the case
of a Maxwellian distribution function (see, for example, Ref.
10).

The case of one bag recovers the result of a collisionless
fluid description:

P+ ZVw—as -7 a; =0. (58)

Using the momenta definitions, we obtain the following:
0+ Z Vo-3+2)=0 (59)

with the condition Q7=2€), which can also be expressed as
n=2.

Therefore, a well known result is recovered: a collision-
less fluid description is unable to describe any linear insta-
bility. The case of a flat density profile allows ion acoustic
modes.
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FIG. 10. (Color online) Influence of the Zj parameter value on linear growth
rate 7y for two fixed values of density gradient (). N=10, a,,,=5v7;.

E. Z; parameter and kinetic description

In the case of ion acoustic modes, kinetic effects are
controlled in amplitude by the ion charge and the tempera-
ture ratio between electrons and ions. It follows that the Z;
=Z,T,/T; parameter determines the amplitude of the kinetic
Landau damping.38 We investigate in the present section its
effect on the competition between kinetic and fluid effects,
particularly on relative values of the linear growth rate 7y (see
Fig. 10).

With an increasing value of Zl* , and whatever the value
of (), we can see in Fig. 10 that the linear growth rate
increases globally.44

Another interesting feature of our model is to show that
the linear growth rate of instability is maximal around the
Q=0 value, which corresponds to a flat density profile. The
fact that the linear growth rate decreases as () increases
corresponds to the stabilizing effect of a density peaking.
Such an effect is stronger for high values of Z, as we can
see on the bottom of Fig. 10, where the value of the linear
growth rate 7 is quite the same for Z;=6 or Z;=40.

We can conclude that the stabilizing effect of a density
peaking increases with the Z value of the plasma (only com-
posed of one ion population, with the assumptions of a cy-
lindrical plasma column).

V. NONLINEAR WATER-BAG SIMULATION

The above results have been analytically obtained in the
frame of a linear theory. How nonlinear effects modify the
linear prediction is a question for which one needs to resort
to numerical simulation. As compared to a fully gyrokinetic
code, the water bag needs to cope only for a limited number
of phase space trajectories (the contours) and it has been
shown that typically ten bags could do the job at a reasonable
price. It is beyond the scope of this paper to develop a full
nonlinear water-bag code. We will present in the following
the premises of this work.
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In a seminal paper by Berk and Roberts,”” each contour
(and, more precisely, a phase space region in a neighborhood
of the contour) was approximated by a chain of Lagrangian
points. These points satisfy the particle equations of motion
and at first glance it might appear that the problem of solving
Vlasov’s equation by computing the motion of these points
should be similar to that of moving individual particles in a
particle code.

However, this Lagrangian numerical scheme makes the
computation of the contours difficult due to numerical noise
inherent to particle model. An alternative method of follow-
ing the evolution of the system is to track each contour C;
using now an Eulerian description; i.e., by solving the partial
differential equation (3) with an Eulerian numerical scheme.
Once the boundary curves are known, the distribution is well
determined and it is not necessary to follow fluid points in-
side the regions even though they may be undergoing com-
plicated motions.

To test the numerical ability of the water-bag model in
solving nonlinear problems, the first step is to validate an
appropriate numerical scheme in a simplified space. In the
following, we present in the first section the nonlinear set of
water-bag equations; the second part describes the discon-
tinuous Galerkin (DG) method, a test of the solver in the
case of Landau damping is achieved as an illustration.

A. The model

In this section, we consider an initial value problem with
periodic boundary conditions

7 + V907 + d.p = 007(0, - ) = v(-), (60)

* N
Z; N
¢="t1Z,2 A0 —v)) =nol, 2 Q=101 (61)
e0 j=1

We assume adiabatic electrons, with ¢<1 (where ¢ is
normalized to (%:Z,-ﬂf)/ T;), and we neglect any transverse
dependency (Q7=0,0Q"=0). The Z' parameter represents the
ion charge corrected by the temperature ratio, ie., Z;
=ZT,/ T;; it controls the amplitude of the damping.

B. Description of the numerical method

In this section we present briefly the numerical method
we use to solve Egs. (60) and (61). The discontinuous Galer-
kin (DG) method™*® has been used to investigate these
equations. This is a finite element method space discretiza-
tion by discontinuous approximations, that incorporates the
ideas of numerical fluxes and slope limiters used in high-
order finite difference and finite volume schemes. The DG
methods can be combined with Runge-Kutta or Lax-
Wendroff time discretization scheme to give stable, high-
order accurate, highly parallelizable schemes that can easily
handle h-p adaptivity, complicated geometries, and bound-
aries conditions.

Let Q) be the domain of computation and M, a partition
of Q) of elements K such that UKthl?:ﬁ? KNQ=3, K,
QeM,, K#Q. We set h=maxg r, hg, where hy is the
exterior diameter of a finite element K. The first step of the
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method is to write Eq. (60) in a variational form on any
element K of the partition M. Using a Green formula, for
all test-functions ¢, for all j=1,...,N, we get

J P~ f [Fw?) + ¢(2)]9.0dz
K K
+ f [F7) + d(2)Ingedl, YK e M,,  (62)
JK

where JdK denotes the boundary of K, ng denotes the outward
unit normal to 9K, and F(-)=(-)?/2. Now we seek an ap-
proximate solution (U;_:,j’ ¢;,) whose restriction to the element
K of the partition M, of ) belongs, for each value of the
time variable, to the finite dimensional local space P(K),
typically a space of polynomials. We now determine the ap-
proximate solution (vij,dy,)‘,( e P(K)®P(K) for >0, on
each element K of M, by imposing that, for all ¢, € P(K),
for all j=1,...,N,

J tvhj(Ph f[}-(vhj)"‘(f’h(f)] 9, epdz
K

+ f [Fug(v}) + dunglendl, (63)
JIK

where we have replaced the flux terms [}'(v )+ ¢lng in Eq.
(62) by the numerical flux an(vh )+ g because in Eq.
(62), the terms arising from the boundary of the cell K are
not well defined or have no sense since vﬁ’ j» @i, and @, are
discontinuous (by construction of the space of approxima-
tion) on the boundary JK of the element K. Now it remains
to define the numerical flux “. For two adjacent cells K" and
K! (where r denotes the right cell and / the left one) of M,
and a point z of their common boundary at which the vector
nge with a e {r,l} are defined, we set ¢} (z)=lim._  ¢,(z
—€enga), and call these values the traces of ¢, from the inte-
rior of K. Therefore, the numerical flux at z is a function of
the traces vi’j”‘; ie.,

Frgivi ) (2) = Frglvh(2),054(2)).

In addition, the numerical flux must be consistent with the
nonlinearity Fng,, which means that we should have
ng\l(v ,0)=F(v)ng. In order to give a monotonic scheme in
the case of piecewise-constant approximation, the numerical
flux must be conservative; i.e.,

Frg(v31(2).037(2)) + Fr(037(2),0774(2) =0

and the mapping v'—>]-';,(\z(v, -) must be nondecreasing.
There exist several examples of numerical fluxes satisfying
the above requirements: the Godunov flux, the Engquist-
Osher flux, and the Lax-Friedrichs flux (see Ref. 45). For the
numerical flux qb;n‘K\z we can choose average, left, or right
flux. We can also choose other numerical fluxes.*>*® There-
fore, for each cell K, after the space-discretization step, we
get the ordinary differential equation (ODE)
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d + + =1 el
szg,m{: Lx{v}, i, Pu K N K e IK}),

VYV KeM, j=1...,N. (64)

In the general case, the local mass matrix M of low order
[equal to the dimension of the local space P(K)] is easily
invertible (if we choose orthogonal polynomials M as diag-
onal). Therefore, we have to solve the ODE

d . .
d_tvzjzch(vﬁ,jv(ﬁh)’ J= 1, 9N' (65)
In order to solve Eq. (65), we can use Runge-Kutta
methods For the discretization of the initial condition, we
take v} ;(0) on the cell K to be the L*-projection of vy, () on
P(K); i.e., for all ¢, e P(K),

fvf,j(o)%dz:f Von,Pndz.-
K K

To solve Eq. (61), we take its L2-projection on P(K); i.e., for
all ¢, € P(K),

z( &
f¢h@hdz_f o (ZEA(U;U Up) = no)dZ

C. Nonlinear Landau damping of ion
acoustic waves

If a wave has a slow enough phase velocity to match the
thermal velocity of ions, ion Landau damping can occur. The
dispersion relation for ion wave is

w=(Z+3)"2.

It T,<T; or T,~T,, the phase velocity lies in the region
where the Maxwellian unperturbed part of distribution func-
tion has a negative slope. Consequently, ion waves are
heavily Landau damped. Ion waves propagate without damp-
ing if T,>T;, so that the phase velocity lies far in the tail of
the ion Ve1001ty distribution. For a single ion species, for
k*\p<<1 (\p the Debye length) is

where Z(-) stands for the plasma dispersion function. The
numeric value of the parameters are L=4m, vy=1, N=16,
Umax=0, no=1, and T;/T,=0.5. The damping rate given by
the numerical solution of the system (60) and (61) is
v=-0.288, which is in good agreement with the theoretical
value y=-0.290. Moreover, the theoretical normalized recur-
rence time Tr=27/(Av) is equal to 32.46, which is in agree-
ment with that observed in Fig. 11.

VI. DISCUSSION

The water-bag model appears to be an interesting alter-
native to the usual gyrokinetic description of a tokamak
plasma. Interesting results have been obtained pointing to the
ability of the gyro water bag to depict and resolve kinetic
effects in the nonlinear regime.
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Landau damping for ions acoustic waves
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FIG. 11. (Color online) Evolution in time of the Logarithm of electric
energy.

An original method has been developed to obtain satis-
factory agreement with a continuous distribution function.
More particularly, the momenta equivalence between con-
tinuous and multi-water-bag distribution functions allows us
to obtain the relevant physical water-bag parameters.

The analytical formulation of the linear dispersion equa-
tion as a summation over an assembly of oscillators provides
a very clear description of the Landau damping mechanism.
Converting analytical problems into algebraic ones, without
a loss of generality, represents one interesting property of the
multi-water-bag model. As a direct consequence, the multi-
water-bag problem converts the parallel velocity dependence
into a set of contour equations.

Thus, the multiple water bag offers an exact description
of the plasma dynamics even with a small bag number, in the
sense that the water-bag concept makes full use of the Liou-
ville invariance in phase space. From a physical point of
view, many interesting results can be obtained even with a
small N, sometimes N=2 or 3 allowing much more analytical
approaches, bringing the link between the hydrodynamic de-
scription and the full Vlasov one.

However, if we need a precise description of a continu-
ous distribution, it is clear that a larger N is needed; but even
if the numerical effort is close to a standard discretization of
the velocity space using equivalently 2N+ 1 mesh points, the
use of an exact water-bag sampling should give better results
than approximating the corresponding differential operator.

Furthermore, there is no constraint on the shape of the
distribution function which can be very far from a Maxwell-
ian. In this paper we first wanted to test the water-bag ap-
proach for a case where analytical results are known. Hence,
the choice of ITG modes for a Maxwellian plasma in a cyl-
inder for which the linear stability is well known.

As an example, ITG linear modes are well described
even with a ten-bag model: we obtained a good agreement
between a water-bag distribution and a Maxwellian one.

Nonlinear simulations have been investigated prelimi-
nary in 2-D space case, the Landau damping rate recover its
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usual value. The Galerkin discontinuous numerical scheme
provides an interesting solution for nonlinear multi-water-
bag simulations.

Furthermore, finite Larmor radius (FLR) effects, which
have been neglected in the present paper, are now under
consideration without any further conceptual difficulties, and
will be published in a forthcoming paper. It is important to
point out that the water-bag concept (i.e., phase space con-
servation) is not affected by adding FLR or curvature terms,
excepting of course a more complicated algebra.

For example, gyroaveraging and polarization drift effects
have now been introduced using a cylindrical geometry. The
presence of impurities in a plasma also strongly aspects its
stability, and the water-bag model could describe easily the
coupling between two ion populations. Finally, toroidal ge-
ometry, poloidal magnetic field and curvature effects are go-
ing to be implemented [Egs. (1)-(6)], in order to simulate a
toroidal ion turbulence in a tokamak, without any further
conceptual difficulties as said before.

Nevertheless, collisions will not be taken into account
due to phase space conservation properties required for using
a water-bag description. However, within the aim of model-
ing collisions, appropriate equations for the A; values have to
be established. Analytical work on this fundamental topic is
now under consideration.
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