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A new model is presented, named collisional-gyro-water-bag �CGWB�, which describes the
collisional drift waves and ion-temperature-gradient �ITG� instabilities in a plasma column. This
model is based on the kinetic gyro-water-bag approach recently developed �P. Morel et al., Phys.
Plasmas 14, 112109 �2007�� to investigate ion-temperature-gradient modes. In CGWB
electron-neutral collisions have been introduced and are now taken into account. The model has
been validated by comparing CGWB linear analysis with other models previously proposed and
experimental results as well. Kinetic effects on collisional drift waves are investigated, resulting in
a less effective growth rate, and the transition from collisional drift waves to ITG instability
depending on the ion temperature gradient is studied. © 2008 American Institute of Physics.
�DOI: 10.1063/1.3036930�

I. INTRODUCTION

It is now widely believed that low-frequency turbulence
developing from small scale instabilities is responsible for
the phenomenon of anomalous transport generally observed
in magnetic confinement fusion experiments.1,2 These micro-
instabilities are driven by equilibrium density, ion, and elec-
tron temperature gradients. However, the physical mecha-
nisms behind the instabilities are not yet fully understood.

Among these microinstabilities, drift waves,3,4 ion-
temperature-gradient �ITG�, and trapped electron mode2,5,6

instabilities play an important role in explaining the anoma-
lous heat and particle transport observed in tokamaks. In-
deed, edge turbulence is usually interpreted as the nonlinear
saturated state of drift waves or interchange instabilities in
the edge plasma.4 In the core plasma, the main instabilities
involved are the ITG driven modes and the collisionless
trapped electron modes.2

To contribute to a better understanding of plasma insta-
bilities, several detailed analysis were conducted in cylindri-
cal magnetized plasmas. Typical examples are Mirabelle,7

Mistral,8 Kiwi,9 Vineta,10 the Auburn ALEXIS device
�Auburn Linear Experiment for Instability�,11 or Columbia,12

to name only a few. Low-frequency density fluctuations
����Ci� are easily observed in linear magnetized plasma
columns.

Small scale linear devices, together with numerical
simulations, can play an important role in understanding ba-
sic plasma processes. To this purpose, fluid models have
been widely used.13–15 Solving three-dimensional �3D� fluid
equations is the most convenient way to compute the plasma
response to the perturbed electromagnetic field when there is
no wave-particle interaction. Indeed, plasma phenomena ob-
served in real experiments can be explained by a fluid model
if phase velocities and thermal velocities are very different.
For example, the nonlocal cylindrical model developed by
Marden-Marshall and Ellis13,14 describes how drift wave
mode stability varies with azimuthal mode number in a

weakly ionized plasma. For such a model, using a set of fluid
equations is all the more justified because collisions consti-
tute the usual assumption of fluid closures.

However, for some devices or for fusion plasmas, inter-
actions between waves and particles may occur. For these
experiments, it is known that the stability threshold given by
fluid equations is lower than the kinetic value.1,16 In addition,
a fluid description usually overestimates turbulent fluxes.
This discrepancy comes partly from the resonant interactions
between waves and particles like Landau resonances, which
cannot be fully described with fluid equations.

In principle, one has to solve a six-dimensional kinetic
equation to determine the distribution function. However, for
strongly magnetized plasmas the Larmor radius is much
smaller than the characteristic density length n / ��n� or the
characteristic magnetic field length B / ��B�, and the cyclo-
tron motion is faster than the turbulent one. Therefore, the
Vlasov equation can be averaged over the cyclotron motion.
The new equation is called drift kinetic equation. Further-
more, it is possible to take into account finite Larmor radius
effects by adding gyroaveraging and polarization drift into
the drift kinetic equation, leading to the gyrokinetic model,17

which for magnetized plasmas gives an interesting way to
study turbulence. This gyrokinetic approximation allows re-
ducing the 3D velocity space into a one-dimensional space
�v�� together with the magnetic moment �=mv�

2 /2B, which
appears as a label. However, solving the resulting equations
is still a nontrivial task even in cylindrical geometry.5,6,18–21

An alternative approach based on the so-called water-
bag model22 can be considered. This representation of the
distribution function is not an approximation but rather a
special class of initial conditions allowing one to reduce the
full kinetic Vlasov equation into a set of hydrodynamic equa-
tions while keeping its kinetic character. In the water-bag
model, a discrete distribution function f taking the form of a
multisteplike function of the parallel velocity variable is used
in place of the continuous distribution function.
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Recently, a gyro-water-bag �GWB� model has been
developed22,23 to investigate ion-temperature-gradient modes
in a collisionless magnetized plasma. Using a water-bag de-
scription for ions imposes collisionless ions. On the other
hand, electron-neutral collisions are needed to describe col-
lisional drift waves.

Compared to Refs. 22 and 23, the idea of this paper is to
introduce in our ion gyro-water-bag model electron-neutral
collisions into the electron response. Ions are always as-
sumed to be collisionless and well described by the Vlasov
equation and the water-bag model. This collisional gyro-
water-bag model �CGWB� is able to describe both collisional
drift waves and ITG instabilities, taking into account the pos-
sible interactions between waves and ions. The goal of this
work is to investigate the low-frequency instabilities in a
laboratory magnetized plasma column using the CGWB
model.

The paper is organized as follows. The gyrokinetic
model is described in Sec. II and the water bag is introduced
in Sec. III. The linear analysis of the new model is presented
in Sec. IV. Fluid model, experimental, and CGWB linear
results are compared in Sec. V. Kinetic effects on collisional
drift waves are studied in Sec. VI. The study of the transition
from drift waves to ITG instabilities is presented in Sec. VII.
The main results are summarized and conclusions are drawn
in Sec. VIII.

II. THE KINETIC MODEL

We consider a cylindrical plasma of radius R. The
plasma is confined by a uniform magnetic field B=Buz,
where uz is along the axial direction. The plasma can be
weakly or fully ionized. Three species can be considered: the
neutral gas, the electron fluid which is free to collide and to
exchange momentum with the neutral gas, and finally the ion
fluid. Ion-neutral collisions are neglected. It is also assumed
that fluctuations of the magnetic field are negligible. The
coupling between both ion and electron fluids occurs through
the quasineutrality equation ne=Zini, Zi being the ionic
charge.

A. The ion drift kinetic Vlasov equation

When the ion thermal velocity is close to the phase ve-
locity �vTi�v�� resonant interactions between waves and
particles can play an important role in determining the insta-
bility growth rate. Moreover, as ion-neutral collisions are
neglected, a more basic kinetic model that directly deter-
mines the distribution function is required. The first step is to
use a drift kinetic model18 where trajectories are governed by
the guiding-center trajectories, which needs to satisfy �
��Ci, where � is the wave pulsation, and �Ci is the cyclo-
tron pulsation; i.e., time variations of the plasma are slow as
compared to gyration frequency. In cylindrical geometry
with B constant, the only drift to take into account is the
electric drift. The ion guiding-center velocity v is then

v = v�uz +
E � B

B2 , �1�

where the electric field E=−�� is due to the perturbation. In
this paper the z subscript �or �� denotes the direction parallel
to B, and the � subscript the direction perpendicular to B.
For v̇�, we get

v̇� = −
q

mi
��� . �2�

Therefore, the drift-kinetic Vlasov equation can be written as
follows:18,22
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�f
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where f is the ion guiding-center distribution function.

B. The electron response

The approach taken here is to assume that the phase
velocity of the instabilities is much lower than the electron
thermal velocity. Moreover, electron-neutral collisions are
considered. Consequently, we assumed kinetic effects to be
negligible so that the electron distribution function is close to
a Maxwellian, which enables us to use a fluid model with an
isothermal compression to close the system of equations. A
viscosity term is introduced into the fluid equation of motion
to take into account electron-neutral collisions.

As seen before, perturbations are assumed to be electro-
static. For electrons the following set of equations is used:

• the fluid equation of motion:

mene� �ve

�t
+ �ve · ��ve� = − ene�E + ve � B� − �pe

− mene�enve, �4�

where �en is the electron-neutral collision rate.
• the continuity equation:

�ne

�t
+ � · �neve� = 0. �5�

Assuming an adiabatic electron response in the direction
parallel to the magnetic field lines �if collisions are ne-
glected�, the linearized density perturbation is

ne1
= ne0

	 e�

KTe

 , �6�

where ne0
is the equilibrium density. The perturbation part is

indicated by the subscript “1.” � is the perturbed potential
�there is no potential at equilibrium�. This is equivalent to
neglecting the electron inertia for the parallel electron mo-
tion. We treat only linear, small amplitude fluctuations.

Furthermore, in this paper we need an accurate treatment
of the collisional drift waves so that electron-neutral colli-
sions have to be considered. Assuming plane-wave perturba-
tions, we get the following linearized density perturbation:13
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ne1
= ne0

e�

KTe
� �* + i	�

� − �0 + i	�
� �7�

with

�* = −
KTe

eB
k��r ln ne0

, �8�

	� =
k�

2KTe

me�en
, �9�

�0 = k�v�0
, �10�

where �* is the electron diamagnetic frequency, k� is the
parallel wave number, and v�0

is the electron drift velocity in
the z direction since in our model a possible electron drift
along the magnetic field lines may occur.

C. Gyroaveraging and polarization drift

Finite Larmor radius �FLR� effects are ordinarily taken
into account by averaging over the gyromotion of an ion and
by introducing the polarization drift. Thus, the ions at a given
position, on average, feel a slightly different electric drift
velocity than the electrons which are subject to the same
electric field. Physically, the term is small but can lead to
rather important effects due to charge separation. Therefore,
finite Larmor radius corrections are taken into account here
by introducing gyroaveraging and polarization drift into the
drift kinetic model. Mathematically speaking, the corrections
change the order of the equation.

The ion guiding-center density at a position r and time t
is given by the integral of the ion guiding-center distribution
function. In order to determine the effective ion density, we
have to replace every guiding-center by a circular charge
distribution.24

The operation going from a given guiding-center density
of particles to its corresponding particle density is equivalent
to a filter operation and is obtained through an integral op-
erator that takes into account the FLR correction. This op-
erator is represented by the Bessel function J0 in wavenum-
ber space. When averaging the Larmor radius over a
Maxwellian the function J0 can be approximated by an ex-
ponential function of the thermal velocity and the cyclotron
frequency.24 Therefore, it is possible to determine the effec-
tive electric field.

Note that electrons are assumed to move with a zero
Larmor radius so that the electron density coincides with the
guiding-center density �the Larmor radius is much smaller
for electrons than for ions�.

It must be pointed out that the FLR gyroaverage operator
has to be applied both to the ion density in the quasineutral-
ity equation, and to the effective potential before its intro-
duction into the drift kinetic Vlasov equation �3�.

The electric field induced by the plasma instabilities is
varying in time. The polarization drift is a second-order term
in � /�Ci �if it is assumed that the characteristic time of
variation of the electric field is large compared to a gyrope-
riod�. The Larmor radius changes when the charged particle

orbits its guiding-center, leading to a drift perpendicular to
the magnetic field, and is called polarization drift, which can
be written

vP =
1

�CiB

dE

dt
. �11�

The polarization drift can be explicitly introduced in the
Vlasov equation or can be written as a perturbed ion density
so that the quasineutrality equation reads18

ne = Zi�ni + �� · 	 ni

�CiB
���
� . �12�

The second term on the right hand side corresponds to
the linearized polarization term.

Finally, the ion Vlasov equation takes the following
form:

�f

�t
−

1

rB

����
��

�f

�r
+

1

rB

����
�r

�f

��
−

q

mi

����
�z

�f

�v�

+ v�

�f

�z
= 0,

�13�

and the quasineutrality equation can be rewritten in the fol-
lowing way:

ne = Zi��ni� + �� · 	 ni

�CiB
���
� , �14�

where �·� represents the gyroaveraged operator that takes into
account the finite Larmor radius correction. Note that for the
right hand side term of Eq. �14� �polarization drift� ni and �
are not gyroaveraged because the polarization drift already
corresponds to a correction.

III. INTRODUCING THE WATER-BAG MODEL

Since the ion distribution function f�r ,v�� �where r
=r ,� ,z� takes into account only one velocity component
�namely, v� parallel to B� it is valuable to turn to a water-bag
solution �see Refs. 21 and 22�.

To sketch out the water-bag modeling and moreover the
differences with a usual kinetic description, let us consider a
special initial condition in which the distribution function f
takes on a constant value A between two contours v+�r� and
v−�r� in the �r ,v�� phase space, and zero outside. According
to Liouville’s phase space conservation property f remains
constant in time between the contours and of course zero
outside.

Therefore, the problem is entirely described by the
knowledge of two functions v+�r , t� and v−�r , t�, which are
the contours of the phase space fluid called “water bag.” The
generalization to the “multiple water bag” is straightforward.
Let us consider 2N contours in phase space v j

+�r� and v j
−�r�,

where j=1, . . . ,N. We get a N-bag system where the distri-
bution function takes on N different constant values Fj �see
Figs. 1 and 2�. The time evolution of the system is com-
pletely described by the knowledge of the contours. We ob-
tain a set of hydrodynamic equations, where the system be-
haves as N fluids coupled together by the electromagnetic
fields �in our case, the quasineutrality�.
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Introducing the bag heights Aj =Fj −Fj+1 as shown in
Fig. 1 the distribution function reads

f�r,v�,t� = 

j=1

N

Aj�H�v� − v j
−� − H�v� − v j

+�� , �15�

where H is the Heaviside unit step function. The relative ion
density of the jth bag is defined by 
 j =Aj�v j

+−v j
−� /n0, where

n0 is the plasma density at equilibrium.
In Eq. �15�, j is nothing but a label since no differential

operation is carried out on the variable v�. What we actually
do is to bunch together particles within the same bag j and
let each bag evolve. Of course, the different bags are coupled
through the quasineutrality equation.

This operation appears as an exact reduction of the phase
space dimension �elimination of the velocity variable v�� in
the sense that the water-bag concept makes full use of the
Liouville invariance in phase space: the fact that the Aj’s are

constant in time is nothing but a straightforward conse-
quence of the Vlasov conservation Df /Dt=0. Of course, the
eliminated velocity reappears in the various bags j, and if a
precise description of a continuous distribution is needed, a
larger N is required. On the other hand, there is no math-
ematical lower bound on N and from a physical point of view
many interesting results can even be obtained with N as
small as 1 for electrostatic plasma. For magnetized plasma,
N=2 or 3 allow more analytical approaches.22

On the contrary, in the usual gyrokinetic description, the
exchange of velocity is described by a differential operator.
From a numerical point of view, this operator has to be ap-
proximated by some finite difference scheme. Consequently,
a minimum size for the mesh in the velocity space is required
and we are faced with the usual sampling problem. If it can
be claimed that the v�-gradients of the distribution function
remain weak enough for some class of problems, then a
rough sampling might be acceptable. However, it is well
known in kinetic theory that wave-particle interaction is of-
ten not so obvious. For instance, steep gradients in the ve-
locity space can be the signature of strong wave-particle in-
teraction and there is the need for a higher numerical
resolution of any Vlasov code, while a water-bag description
can still be used with a small bag number.

Thus, the water bag offers an exact description of the
plasma dynamics even with a small bag number, allowing
more analytical studies and bringing the link between the
hydrodynamic description and the full Vlasov one. Of
course, a special initial preparation of the plasma is required
�namely, a Lebesgue subdivision as compared to the Rie-
mann subdivision used in any numerical sampling�. Further-
more, there is no constraint on the shape of the distribution
function which can be very far from a Maxwellian. Once
initial data have been prepared using Lebesgue subdivision,
the gyro-water-bag equations give the exact weak �in the
sense of the theory of distribution� solution of the Vlasov
equation corresponding to this initial data. Any initial condi-
tion �continuous or not� which is integrable with respect to
the Lebesgue measure can be approximated accurately with
larger N. Therefore, if we need a precise description of a
continuous distribution, it is clear that a larger N is needed;
but even if the numerical effort is close to a standard discreti-
zation of the velocity space in a regular Vlasov code �using
2N+1 mesh points�, the use of an exact water-bag sampling
should give better results than approximating the correspond-
ing differential operator. As a matter of fact, a small bag
number �not more than 10� has been shown to be sufficient to
correctly describe the ion-temperature-gradient �ITG� insta-
bility observed in fusion plasmas �see Ref. 22�.

To turn back more precisely to our gyrokinetic model
described in Sec. II above, and using the ion water-bag dis-
tribution function �15�, we obtain the contour equations

�tv j
� + vE . ��v j

� + v j
��zv j

� =
qiE�

mi
, �16�

where vE is the electric drift. The idea behind the CGWB
model is to connect this ion water-bag description with the
electron-neutral collisional model involved in the electron

FIG. 1. The multi-water-bag distribution function plotted against parallel
velocity, for N=3 bags with vmax=3vTi

. The jth bag is a rectangle with a
height Aj and a length �v j

+−v j
−�. The height of the steps remains constant,

while parallel velocity is time dependent.

FIG. 2. Bag contours in the phase space �x ,v�� for a three-bag system.
Between two contours, the distribution function f remains equal to a con-
stant Fj. The properties of the system are completely described by the
knowledge of the contours.
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response equation �7�. Equations �16� together with Eqs. �7�
and �14� form the basis of the CGWB model, where ni

=
Aj�v j
+−v j

−� couples the different bags.
The full numerical implementation of the water bag for

gyrokinetic purpose �the so-called gyro-water-bag model� is
discussed in detail in Ref. 23. More precisely with the aim of
determining the initial water-bag parameters �the Aj’s�, it is
shown how to consider the equivalence of the multiple water
bag with the corresponding continuous distribution function
in the fluid momentum sense �providing momenta of order
up to 2�N−1� are taken into account�.

IV. LINEAR STUDY OF THE COLLISIONAL-GYRO-
WATER-BAG MODEL

A direct illustration of the ability of the collisional-gyro-
water-bag �CGWB� model to reproduce the physical features
of the drift waves and ITG instabilities is given by the linear
analysis of Eqs. �7� and �13� and the quasineutrality equation
�14�. Velocities and the plasma potential are separated from
their perturbations, keeping only the first-order perturbations.
aj are the contour velocities at equilibrium �v j

�= �aj

+�v j
��, f is an even function of v at equilibrium. There is no

electric field at equilibrium. Considering a plasma slab ge-
ometry, these perturbations are projected on a Fourier basis
in � and z directions:

�v j
� = �v jm�

� �r�exp�i�m� + k�z − �t�� �17�

and

� = �m��r�exp�i�m� + k�z − �t�� . �18�

Note that the exp�−i�t� dependence implies an unstable per-
turbation if Im���
0. According to these assumptions and
using Eqs. �7�, �14�, and �16�, the linearized dispersion rela-
tion can be written

�* + i	�

� − �0 + i	�

+ � − J0
2


j=1

N


 j

Zi�cs
2 + �

j
*�

�2 − k�
2aj

2 = 0 = ���� , �19�

where

� = Zi�s
2���r� + k�

2� �20�

or

� = Z
i
*rLi

2 ���r� + k�
2� �21�

and �cs
2 =k�

2cs
2, J0 is the gyroaverage operator, Z

i
*=Zi /� with

�=Ti /Te, �
j
*=−KTe /eBk��r ln aj, cs=�KTe /mi, �s=cs /�Ci,

k�=m /r, m is the azimuthal mode, and

��r� = − � �2g

�r2 + 	 �g

�r

2

+ 	 � ln n0

�r
+

1

r

 �g

�r
� , �22�

where g�r� depends on the radial profile of the potential
amplitude:

�m��r� = �0m�
exp�g�r�� . �23�

In a linear device, the ratio of the observed frequency to
the ion cyclotron frequency is much greater than for a toka-
mak, even if this ratio is always much less than 1. Therefore,

the effect of the polarization drift is very important, altering
the results obtained when gyroaverage and polarization drift
are not taken into account.

In the one-bag case, a nearly fluid model22 is obtained,
which should give close results. For this one-bag case, the
dispersion relation �19� is

i
�

	�

�3 − �1 + � + i
�0� + �*�J0

2 − 1�
	�

��2

+ �J0
2�* + i

J0
2��0�* − Zi�cs

2 � − ��
2�

	�

�� + ��
2�1 + ��

+ J0
2Zi�cs

2 + i� J0
2Zi�cs

2 �0 + ��0� − �*���
2

	�
�

= 0 = ���� , �24�

where �� =�3k�vTi and vTi=�KTi /mi.
The gyroaveraged and polarization terms �finite Larmor

radius corrections� introduced into the equations can play a
more or less important role in describing the instabilities.
Indeed, if k�rLi

is small compared to 1, the gyroaverage op-
erator can be expressed in the k-space:24

J0 � 1 −
�gyr

2

2
, �25�

where �gyr=k�rLi
, and rLi

is the averaged Larmor radius as-
suming a Maxwellian distribution for the perpendicular ve-
locity. Moreover, the polarization term is of order �pol

2 with
�assuming that ��r� is as the same order as k�

2�

�pol = �Zi�sk�. �26�

Gyroaverage and polarization drift are corrections, respec-
tively, of order �gyr

2 and �pol
2 . The ratio ��2=�gyr

2 /�pol
2 � is equal

to

�2 =
�

Zi
. �27�

In a tokamak plasma, � is approximately equal to 1. In that
case, gyroaverage and polarization drift corrections are of the
same order, according to the gyro-ordering for tokamaks.

In a laboratory plasma device, the � factor can be as
small as 1 /50, for example. The correction due to the polar-
ization drift is therefore 50 times greater than that of gyroav-
eraging.

V. COMPARISON WITH A FLUID MODEL
AND EXPERIMENTAL RESULTS

The CGWB is thus able to describe the collisional drift
waves and the ITG instabilities. In this section the validation
of the model is performed by comparing our new CGWB
model, a fluid model and experimental results.

A. Collisional drift waves

We first look at the collisional drift waves case. This
class of instabilities involves waves which may become un-
stable under the presence of a density gradient, electron-
neutral collisions, and a parallel electron drift.
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Our CGWB model can be used only if ion-neutral colli-
sions can be neglected since the CGWB model requires
phase space conservation of the Vlasov equation �df /dt=0�
for ions, as seen in Sec. III. On the other hand, electron-
neutral collisions are required for collisional drift waves to
occur. Therefore, we have to carefully look at the problem of
ion-neutral collisions. To do that, the linear instability growth
rate 	 given in Ref. 13 in the case of a slab fluid model will
be studied:

	 = 	+ − 	−, �28�

where

	+ =
b

1 + b
	 �*2

	��1 + b�2 +
�0�*

b	�


 �29�

and

	− =
b

1 + b
�i �30�

and where b=k�
2�s

2.
It is clear that electron-neutral collisions are destabiliz-

ing while ion-neutral collisions are stabilizing. Thus, neglect-
ing ion-neutral collisions is equivalent to neglecting their
stabilizing effect.

First a comparison between results obtained by both
CGWB and nonlocal fluid model given in Ref. 13 is pro-
vided. An argon plasma is considered. Only one bag is cho-
sen for the CGWB model, so that the resulting set of equa-
tions is equivalent to the fluid model. The function g�r� is

g�r� = −
�r − r0�2

��r�2 , �31�

where r0 and �r are chosen to fit the perturbation functions
�m��r� obtained in Ref. 13 for azimuthal modes going from
m=1 to m=4. The other parameters are the same as Ref. 13;
namely, Te=2 eV, B=0.2 T, �en=2.6�106 s−1, v�0

=0.2vTe,
and �z=3 m. The density profile is assumed to be Gaussian,
i.e., n0=n0max

exp�−r2 /rn
2�, with rn=1.66 cm. The results are

given for r=r0, where the perturbation is expected to be
maximum. Note that the knowledge of r0 and �r is necessary
to calculate ��r� �Eq. �22�� even if g�r0�=0. Moreover,
�n�r=r0�=−�2r /rn

2�r=r0
, where �n=�r ln n0. The parameters

r0, �r, and �n are summarized in Table I.
The main difference between CGWB and fluid models

relates to ion-neutral collisions, which are neglected in
CGWB. Indeed, the large magnitude of the magnetic field
allows us to neglect ion-neutral collisions: the ratio 	+ /	− is

greater than 40 for m=1 and greater than 10 for m=5. More-
over, � /�Ci

is less than 0.1, which allows us to use the
gyrokinetic model.

The CGWB results are shown Table I and Fig. 3. The
linear growth rate of the instability is plotted against the
azimuthal mode m. A maximum growth rate is equal to 	
=1.3�104 s−1 in the case m=2. These results obtained by
the CGWB model are in full agreement with the values pre-
dicted by the nonlocal cylindrical fluid model.13

The next step is now to validate the CGWB model by
comparing the linear analytical investigation of collisional
drift waves and the experimental results obtained from the
laboratory magnetized plasma column Mirabelle.7,25–28 The
main plasma parameters are given in Ref. 27.

In a linear column like the Mirabelle device, collisional
drift waves are due to electron-neutral collisions, an electron
drift along the magnetic field lines, and a density gradient.
The estimated uniform ion temperature is approximately
equal to 0.03 eV �no temperature gradient�. Actually, the
value of Ti=0.03 eV was found by laser-diagnostic measure-
ments performed in a thermionic discharge.29,30 A measure-
ment setup27,28 allows us to obtain density, temperature, po-
tential profiles, and the parallel wave number.

The plasma diameter can be restricted by inserting a lim-
iter at the entrance of the column. The diameter of the
plasma column is smaller than the diameter of the containing
tube. In this case instabilities are drift waves as long as the
magnetic field is strong enough so that the limiter does not
play any role in confining the plasma. In this situation with a
flat potential profile, instabilities are identified as being drift
waves instabilities.27 Our different assumptions are satisfied
due to a strong magnetic field: � /�Ci

is approximately 0.1
for B=0.1 T �always less than 0.2 for this magnetic field�.

The data of Mirabelle experiments carried out
previously27,28 are used. The function g�r� �Eq. �31�� is the
same as used before. The parameters r0=4 cm, r=r0, and
�r=2.5 cm are chosen so as to fit the radial experimental
profile of the amplitude of the perturbations. The other pa-
rameters are: B=0.1 T, Te=2 eV, �en=1.3�106 s−1 �in

TABLE I. Collisional drift waves growth rate for a variety of plasma con-
ditions. The m=2 mode is dominant.

Mode 1 2 3 4

r0 �10−2 m� 1.21 1.54 1.65 1.66

�n�m−1� −87 −112 −120 −120

�r �10−2 m� 0.8 0.6 0.5 0.45

Growth rate �104 s−1� 1.04 1.3 1.27 1.21
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FIG. 3. Instability growth rate vs azimuthal mode number for collisional
drift waves, with parameters from Ref. 13.
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Mirabelle the pressure is at least twice lower than that of in
Ref. 13, so that an electron-neutral collision rate divided by 2
is considered here�, k� =2 m−1, and �n=−30 m−1, where �n

=�r ln n0. For an argon plasma, mi=6.6�10−26 kg. For B
=0.1 T, the assumption 	+ /	−�1 is satisfied only for m
�5 �	+ /	−
5 for v�0

=0.2vTe, and 	+ /	−
40 for v�0
=2vTe, with �in=0.5�106 s−1�. During the experiments re-
ported here, a coherent mode m=2 or m=1 is recorded,27

whereas for lower magnitudes of the magnetic field �for ex-
ample, B=0.04 T�, higher modes until m=7 can be
obtained.25 Thus, only results for a high magnetic field �B
=0.1 T� for which only low modes occur are presented in
this paper, with the aim of making sure that the assumptions
of the CGWB model are satisfied.

In Mirabelle experiments, the bias of an insulated inter-
nal metallic tube is one of the dynamical control parameters
of the experimental setup.25 The azimuthal mode number de-
creases with the increase of biasing in the tube; meanwhile,
the frequency increases. Next the mode suddenly changes for
a lower mode with a lower frequency.

The goal is to retrieve this behavior from the CGWB
model, the increase of the bias leading to an increase of the
axial electronic drift �v�0�. At the same time we have experi-
mentally observed that the background density profiles are
not altered. Consequently, we only consider the increase of
the parallel electron drift in our simulation.

Without gyroaveraging and any polarization drift, i.e.,
without any FLR effect, the CGWB model predicts an in-
creasing growth rate with m for m modes going from 1 to 5,
for which the stabilizing effect of 	− �Eq. �28�� and the ion
viscosity can be neglected. This result disagrees with experi-
mental results. When gyroaveraging is applied, the CGWB
model keeps predicting an increasing growth rate with m.
Polarization drift has to be taken into account to predict a
decrease of the growth rate with increasing m and to be in a
good agreement with the fluid model and experimental re-
sults. In a device like Mirabelle, the polarization drift is
much higher than the gyroaverage. Indeed � is roughly equal
to 0.01, so according to Eq. �27� the polarization term is
approximately 50 to 100 times greater than the gyroaverage
term.

Therefore, Eq. �24� with only one bag exhibits results
shown in Figs. 4 and 5. In Fig. 4 it can be seen that the
transition from m=2 to m=1 is well described for v�0 going
from 2vTe to 10vTe. Moreover, the frequencies in the range
5–10 kHz given by the CGWB model are in good agreement
with the frequencies recorded in the device. The instability
linear growth rates are depicted in Fig. 5, which shows the
dependence of 	=Im��� on m, for two values of the electron
parallel drift. A transition from the most unstable mode m
=2 for v�0=4vTe to the m=1 mode for v�0=8vTe is predicted.
This behavior is in a very good agreement with the experi-
mental result; i.e., m decreases with an increasing electron
parallel drift.

For such parameters, the similarity between one and sev-
eral bags must be pointed out. Actually, the instability phase
velocity is much greater than the ion thermal velocity. The
plasma-wave interactions have very low influence on the col-
lisional drift waves dynamics in this case. It must be noted

that for the CGWB model, in the case of one bag the tem-
perature profile is related to the density profile.22 This link is
broken if N
1. Thus, in this one-bag case an ion tempera-
ture profile is imposed by the CGWB model, while it does
not exist in Mirabelle. However, this ion temperature profile
does not influence the results �it does not trigger an ITG
mode�, which would be the same if two or more bags were
chosen with a flat temperature profile.

Also note that in this paper the CGWB model is linear-
ized so that nonlinear phenomena cannot be taken into ac-
count. Only a numerical solution of the nonlinear equations
will make it possible to include these effects and avoid the
slab assumption.

FIG. 4. Frequency of the most unstable mode plotted against the parallel
electron drift v�0, with FLR effects, and with one bag �N=1�.

FIG. 5. Instability growth rate vs azimuthal mode number. One curve per-
tains to v�0=4vTe �m=2 is predicted to exhibit the maximum growth rate�
and the other one pertains to v�0=8vTe �m=1 is predicted to exhibit the
maximum growth rate�.
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B. Ion-temperature-gradient instability

The next paragraph is devoted to the ability of CGWB
model to describe ITG instabilities for which an ion tempera-
ture gradient is needed.

The parameter �=�T /�n=�r ln Ti /�r ln n0 �Refs. 31 and
32� has to exceed a critical value to observe an ITG instabil-
ity. This parameter can be increased either by flattening the
density gradient or by increasing the ion temperature
gradient.

We focus here on the Columbia Linear Machine
�CLM�.33 CLM is a linear device with radiofrequency heat-
ing employed to heat the core of the plasma column and to
produce a peaked ion temperature profile. Furthermore, the
mesh for ion heating reduces the density in the central core
and helps to reduce the density gradient. Therefore, this heat-
ing can produce high values of �.

The goal is to compare the CLM experimental results12

with our theoretical CGWB model of the ITG instability,
previously used for fusion plasmas.22,23 A hydrogen plasma
is produced in CLM. The magnetic field is B=0.1 T. For
such a magnetic field, the assumption of collisionless ions is
well satisfied, and � /�Ci

�0.01. An ion parallel drift exists.
However, this drift is slow compared to the ion thermal
velocity.12 Thus, a water-bag distribution function can be
chosen for ions with a zero mean velocity.

Typical plasma parameters in the experimental region of
the device are:12 �=3, Ti=14 eV, B=0.1 T, and r=1.75 cm
�where the temperature gradient is maximum�. Equation �19�
is solved with N=20 bags. Only H2

+ ions are considered, so
Zi=1 and mi=3.32�10−27 kg. The g�r� function �31�, with
r0 and �r is chosen to fit the observed experimental profile
of the amplitude of the perturbations. Data given in Ref. 12
are used: r=r0 and 0.5 cm��r�1 cm. In addition,
−131 m−1��T�−91 m−1, −33 m−1��n�−3 m−1, and
2� /6 m−1�k� �2� /3 m−1, where �T=�r ln Ti and �n

=�r ln n0.
For these parameters, the destabilizing terms are tem-

perature and density gradients. The collision rates can be
neglected. CGWB results are shown Fig. 6. The real fre-
quency is plotted against k� and �n. Error bars on the other
parameters �T and �r do not change the obtained frequency
range and are not considered. �T and �r are taken to be,
respectively, equal to −111 m−1 and 0.75 cm. The m=2
mode is always the most unstable mode and the real fre-
quency is negative, meaning that the perturbation propagates
in the ion diamagnetic drift direction.

The CGWB results shows that the m=2 mode is always
dominant for such parameters, with a real frequency in the
range 2–11 kHz. Furthermore, the perturbation propagates
in the ion diamagnetic direction, as expected for ITG insta-
bilities.

This ITG mode is confirmed in the CLM device, where a
m=2 mode is obtained with a finite parallel wavelength and
an azimuthal propagation in the ion diamagnetic drift direc-
tion. The real frequency of the mode lies in the 6–10 kHz
range, which is in fairly good agreement with CGWB pre-
dictions. However, these experimental values are slightly
greater than the frequencies given by CGWB, but if error

bars and a possible mixing between H+ and H2
+ ions are

considered, we can conclude that the experimental real fre-
quency of the mode is very close to what is expected from
the CGWB dispersion relation.

Also note that for this CLM experiment it is clear from
Eq. �27� that polarization drift and gyroaverage are quite
equivalent, � being approximately equal to 3.

VI. ION TEMPERATURE INFLUENCE ON COLLISIONAL
DRIFT WAVES

We have previously compared the CGWB model with
experimental results. The goal in this part is to study the role
of kinetic effects in CGWB on collisional drift waves.

With several bags, the model makes it possible to ex-
plore the kinetic aspects of drift waves. In the Mirabelle
device, ions being cold the ionic thermal speed is much less
than the phase velocity, which points to very weak kinetic
phenomena in such a plasma.

Thus, for collisional drift waves kinetic effects will ap-
pear only with an increase of the ion temperature, ion ther-
mal velocity being close to phase velocity.

Here we only consider an increase of the ion temperature
�without any temperature gradient�, and consequently its ki-
netic effects on the collisional drift waves.

We work within the framework of a Mirabelle-like ex-
periment, in which we would have implemented an ion heat-
ing device, as in the Columbia machine, in order to increase
the ion temperature and to decrease the �n parameter. Here,
�T=0 is assumed in order to avoid ITG instability and to
study only kinetic effects on drift waves. We consider again
the plasma parameters given in Sec. V: r0=4 cm, r=r0, �r
=2.5 cm, Te=2 eV, �en=1.3�106 s−1, k� =2 m−1, �n

=−10 m−1, and B=0.1 T. The plasma is an argon plasma. We
take Ti=2 eV, and v�0=vTe. With this set of parameters, the
most unstable mode is m=2.

FIG. 6. Instability frequencies obtained by the CGWB model plotted against
k� and �n. The real frequencies are in the range 2–11 kHz and instability
propagates in the ion diamagnetic direction �ITG instability�.
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Furthermore, let us recall that we have to neglect 	− as
compared to 	+ for allowing the use of the Vlasov equation
for ions. Assuming that the ion-neutral collision rate �in is

proportional to �Ti �since it is proportional to vTi�, we then
get 	+ /	−=6 with m=2. We make the assumption that this
ratio is large enough. Note that this ratio becomes larger with
increasing v�0

or if a hydrogen plasma is considered instead
an argon plasma.

Results are shown in Fig. 7. The instability growth rate
is plotted against the mode number m, with Ti=2 eV, which
corresponds to a thermal velocity equal to 2.2�103 m s−1,
while the drift wave phase velocity is almost equal to v�

=5.1�103 m s−1, which means vTi /v�=0.43. Thus, wave-
particle interaction effects can be expected. Two curves are
presented. The first one with only one bag is equivalent to a
fluid one, and indeed is not able to take into account the
kinetic effects. In the second one the bag number is large
enough �N=20, vmax=5vTi

� to be equivalent to a continuous
kinetic model.

It must be noticed that the instability growth rate clearly
decreases with an increasing bag number. This result con-
firms that the kinetic phenomena play a stabilizing role when
the thermal velocity is close to the phase velocity. These
observations are in good agreement with the following re-
sult: The fluid models overestimate the transport coefficients
as compared to those given by the kinetic models. Indeed,
using the mixing length estimate and a random walk estimate
�a first naive approach� yields a diffusion coefficient propor-
tional to 	max, where 	max is the maximum linear growth
rate.2 In the case studied here, the m=2 mode remains the
most unstable mode while N increases, but with other plasma
parameters a different most unstable mode could be ob-
served. Thus, when the ion thermal velocity is comparable to
the phase velocity, a kinetic model clearly appears to be the
most suitable tool to study these instabilities.

VII. TRANSITION FROM DRIFT WAVES
TO ION-TEMPERATURE-GRADIENT „ITG… INSTABILITY

Our model is able to describe simultaneously collisional
drift waves and ITG instabilities. For both types of instability
the kinetic effects are taken into account.

The goal here is to study the transition from collisional
drift waves to ITG instabilities when the parameter �T

=�r ln Ti increases. If this parameter is zero, only drift waves
occur. When �T exceeds a critical value, ITG modes become
unstable.

The plasma parameters given in the previous section are
used: r0=4 cm, r=r0, �r=2.5 cm, Te=2 eV, �en=1.3
�106 s−1, k� =2 m−1, �n=−10 m−1, and B=0.1 T, for an ar-
gon plasma. Ti=2 eV is chosen and �T is in the range
0–10�n, with N=20 bags up to 5vTi. Here, v�0=vTe is as-
sumed. For this set of parameters, m=2 is the most unstable
mode.

Results are shown in Fig. 8. For ��T� in the range
0–42 m−1, the linear growth rate is about 103 s−1 and corre-
sponds to collisional drift waves. ITG instability occurs if
��T� exceeds the critical value ��T � =42 m−1, for which the
ITG growth rate is greater than that of drift waves. The linear
growth rate keeps increasing with ��T�. Note that the ratio
�=�T /�n is 3.2 at the ITG instability threshold, given by the
collisionless GWB model without any parallel drift.22

The real pulsation corresponding to this most unstable
mode is plotted against the parameter ��T� �Fig. 9�. It can be
pointed out that for ��T � �42 m−1, �r is greater than zero and
is almost equal to the electron diamagnetic pulsation �*.
Moreover, the perturbation propagates in the electron dia-
magnetic drift direction as expected for drift waves. Note
that � /�Ci

�0.06. Moreover, note that the frequency of the
drift waves varies with increasing ��T� because the equation
of dispersion �19� depends on �

j
* ,�

j
* being a function of

�T.22

FIG. 7. Instability growth rate plotted against the mode m, in the one-bag
case �equivalent to a fluid model�, and in the 20-bag case �equivalent to a
kinetic model�, with v�0=vTe and Ti=2 eV.

FIG. 8. Transition from collisional drift waves to ITG instability. The
growth rate of the most unstable mode is plotted against the parameter �T

=�r ln Ti. Drift waves �left side� or ITG instabilities �right side� can be
observed as a function of �T. If �T exceeds a critical value, the ITG insta-
bility growth rate becomes rapidly greater than that of drift waves.
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For ��T � 
42 m−1, �r becomes negative, meaning that
the perturbation propagates in the ion diamagnetic drift di-
rection as expected for ITG instabilities. Moreover, it is clear
that �r given by the CGWB model is in good agreement with
the theoretical prediction obtained within the framework of
the fluid limit �v��vTi� and with �n=0:22

�ITG = −
1

2
	 k�

2vTi

2 ��
T
*�

�

1/3

, �32�

where

�
T
* = k�

KTi

qB
�T. �33�

The very good agreement between these two curves al-
lows us to conclude that ITG instabilities are actually ob-
served. Nevertheless, the agreement between the two curves
is less impressive if the ion temperature increases or if v�0
changes, even if the agreement keeps being satisfactory
enough.

Finally, these results show that for �T large enough, the
ITG instability growth rate becomes greater than that of drift
waves.

VIII. CONCLUSION

The water-bag model appears to be an interesting alter-
native to the usual fluid description for a laboratory magne-
tized plasma column. Interesting results have been obtained
pointing to the ability of the collisional gyro-water-bag
model to describe kinetic effects for drift waves and ITG
instabilities. The analytical formulation of the linear disper-
sion equation as a summation over an assembly of oscillators
provides a very clear description of the kinetic effects. Con-
verting analytical problems into algebraic ones, without a
loss of generality, represents one interesting property of the
multi-water-bag model. As a direct consequence, the multi-
water-bag problem converts the parallel velocity dependence
into a set of hydrodynamic equations. Thus, the multiple wa-

ter bag offers an exact description of the plasma dynamics
even with a small bag number, in the sense that the water-bag
concept makes full use of the Liouville invariance in phase
space. From a physical point of view, many interesting re-
sults can be obtained even with a small number of bags,
basically N=10 or 20 bags, allowing much more analytical
approaches bringing the link between the hydrodynamic de-
scription and the full Vlasov one.

In this paper, we have first presented the results obtained
with the CGWB model in the case of the drift instability in a
weakly ionized plasma in the collisional regime, with cold
ions. Thus the CGWB model has been validated in the linear
phase by comparing the calculated growth rates to a fluid
model and experimental results in linear devices.

In order to excite ITG instabilities, the radial ion tem-
perature gradient has to be increased. The CGWB model has
been shown to be in good agreement with the ITG mode
observed in the Columbia Linear Machine.

For larger ion temperatures we have studied the influ-
ence of kinetic effects on the collisional drift waves. We have
shown that the linear growth rate given by a kinetic model is
significantly lower than the one given by a fluid �or equiva-
lent� model if the phase velocity of the instability is close to
the ion thermal velocity.

One of the most important results of this paper was to
prove that the CGWB model is able to study both collisional
drift waves and ITG instability simultaneously. These insta-
bilities depend strongly on the temperature gradient as mea-
sured by the �T parameter. It has been shown that as soon as
the ITG instability appears this instability becomes
dominant.

Of course, studying linear behavior is not enough to un-
derstand all the mechanisms involved and the processes re-
sponsible for the saturation of fluctuations. The results re-
ported in this paper suggest that the CGWB model is able to
depict the kinetic effects in the nonlinear regime at the nu-
merical cost of a multifluid simulation. Actually, the water
bag affords an exact reduction of the phase space dimension:
no differential operation is carried out on the variable v�. Of
course, the eliminated velocity reappears in the various bags
j, but the multiple water bag offers an exact description of
the plasma dynamics, while the full Vlasov equation needs to
approximate a differential operator by some finite difference
scheme. The use of an exact water-bag sampling should give
better results than approximating differential operator. Very
encouraging primary results have been obtained with a 3D
code in cylindrical geometry and for electrons following the
adiabatic law,23 based on discontinuous-Galerkin type meth-
ods. A nonadiabatic collisional response of the electron will
have to be introduced into the code for a CGWB simulation.

The next step will be to take under consideration the
effects of the toroidal geometry �magnetic gradient and cur-
vature drifts� which have been neglected in the present paper.
Work is still in progress for a tokamak plasma.34
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