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Ion temperature gradient instabilities play a major role in the understanding of anomalous transport

in core fusion plasmas. In the considered cylindrical geometry, ion dynamics is described using a

drift-kinetic multi-water-bag model for the parallel velocity dependency of the ion distribution

function. In a first stage, global linear stability analysis is performed. From the obtained normal modes,

parametric dependencies of the main spectral characteristics of the instability are then examined.

Comparison of the multi-water-bag results with a reference continuous Maxwellian case allows us to

evaluate the effects of discrete parallel velocity sampling induced by the Multi-Water-Bag model.

Differences between the global model and local models considered in previous works are discussed.

Using results from linear, quasilinear, and nonlinear numerical simulations, an analysis of the first

stage saturation dynamics of the instability is proposed, where the divergence between the three

models is examined. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4804272]

I. INTRODUCTION

Ion temperature gradient (ITG) instabilities play a major

role in the understanding of anomalous transport in core

fusion plasmas. Considerable research efforts have been

invested in the past decades in the study of the inherently

complex dynamics of drift-waves/zonal flow driven turbu-

lence,9,10,15 either through fluid or gyrokinetic2 models.

Numerous high performance gyrokinetic simulation

codes5,6,8,11 have been developed to allow for the numerical

study of the instability growth and saturation processes, as

well as its impact on transport and require substantial amount

of computing resources. In the following study, the analysis

is restricted to cylindrical geometry, where magnetic field

gradient and curvature effects are neglected, and the drift-

kinetic limit (l! 0) of the gyrokinetic model for the

description of ion dynamics. A specificity of our approach is

the use of the so-called Multi-Water-Bag (MWB) model for

the parallel velocity dependency of the ion guiding centers

distribution function. This model was leveraged in the previ-

ous works7,12–14 for the linear analysis of both collisional

drift waves and ITG modes in cylindrical geometry. While

differing both in the kind of instability studied or the selec-

tion of finite Larmor radius effects taken into account, those

previous studies all considered a radially local treatment of

the instability, either by using an ansatz for the radial enve-

lope of the electrostatic potential normal modes7,12 or

neglecting polarization drift.13,14 In this work, we consider a

model where the radial differential eigenvalue problem

arising from the introduction of the polarization drift in the

quasi-neutrality equation is solved in order to obtain both

temporal (frequencies and growth rates) and geometric (ra-

dial envelopes) characteristics of the unstable normal modes.

Comparing results obtained from the ansatz and radially

solved models, we observed previously3 a significant sensi-

tivity of the ansatz method results to the choice of ansatz. A

second difference arising from the radially solved method

presented hereafter lies in the nature of equilibrium quanti-

ties. In both local and global models, the multi-water-bag pa-

rameters for low number of bags cases are obtained by a

constraint on the parallel velocity moments of the distribu-

tion function. The extension of this moment constraint from

a single radial position to the whole radial domain restricts

the control on the sampling of the parallel velocity dimen-

sion brought for by the multi-water-bag model. For both

aforementioned reasons, no point-to-point quantitative com-

parison can be made of our results with those previous

works. Qualitative differences in overall parametric behavior

will nonetheless be pointed out when deemed significant. In

a first part, reduction of the problem dimension is obtained

by using a multi-water-bag model for the parallel velocity

dependency of the ion distribution function. Under hypothe-

ses on turbulence and mean fields levels and evolution time

scales, linear and quasilinear dynamical models are then

obtained from the initial full nonlinear one. The second part

is devoted to global linear stability analysis. Main character-

istics of the unstable normal modes are examined, and com-

parison with a continuous Maxwellian model is used to

evaluate the finite sampling effects of the Multi-Water-Bag

reduction and the influence of the number of bags. This

allows us to choose a bag number showing an acceptable
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compromise between accuracy and computing costs for

the subsequent nonlinear study. In a third part, numerical

simulation results of the instability growth and early satura-

tion stages from the three dynamical models are analyzed

and early saturation mechanisms discussed.

II. MULTI-WATER-BAG MODEL IN THE DRIFT-KINETIC
LIMIT

A. Main physical model description

The physical system under consideration is a cylindrical

plasma column of length Lz and radius a, magnetized by a

constant axial magnetic field B0 ¼ B0uz. The z direction is

considered periodic, giving the cylinder toroidal topology.

We consider a single population of ions of mass mi, charge

qi ¼ eZi, and vanishing magnetic moment l � 0, whose par-

allel velocity distribution function obeys the drift-kinetic

evolution equation

@tf þ VE�B � r?f þ vz@zf �
qi

mi
@z/@vz

f ¼ 0; (1)

where VE�B ¼ uz �r/=B0; / is the electrostatic potential.

To describe the parallel ion dynamics, we define a MWB dis-

tribution function as a finite sum of constant height gate

functions in vz, the so-called “water-bags,” in the form

f ðr; vz; tÞ ¼
X

j

AjHðvjðr; tÞ � vzÞ; (2)

where H is the Heaviside function, j ranges from �N to N
excluding j¼ 0, Aj > 0 for j¼ 1, …, N are the bags heights,

A�j ¼ �Aj, and the couples ðv�j; vjÞ; j ¼ 1;…;N define the

bounds of the water-bag in vz and bear the spatial and tempo-

ral dependency of the distribution. A distribution of the form

(2) is an exact weak solution of Eq. (1) provided the contours

vj are smooth, do not cross and obey the transport equation

@tvj þ VE�B � rvj þ @z
qi

mi
/þ

v2
j

2

" #
¼ 0: (3)

The four-dimensional equation (1) is thus reduced to a sys-

tem of three-dimensional fluid-like transport equations.

Electrons are considered adiabatic with e/=kBTe � 1, and

the system is closed by the linearized quasi-neutrality equa-

tion with polarization-drift

�r � Zini0

B0XCI
r?/þ

ne0

kBTe0

ð/� h/iFSÞ ¼ Zini � ne0; (4)

where ni0; ne0; Te0 are given equilibrium radial profiles, h�iFS

denotes the flux surface average, ni ¼
P

j Ajvj and the equi-

librium electrostatic potential has be assumed vanishing so

that Zini0 ¼ ne0. Throughout the text, all quantities will be

normalized using the following reference quantities defined

from a reference on-grid radial position r0 � a=2 : �T
¼ Teðr0Þ; �t ¼ X�1

CI ; �v ¼ cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTeðr0Þ=mi

p
; �r ¼ �z ¼ cs=xCI;

�/ ¼ kBTeðr0Þ=qi. Scalar fields X ¼ vj;/ are decomposed

along both periodic directions in Fourier series of the form

Xðr;#; z; tÞ ¼
P

Xn
mðr; tÞexpðim#þ inkkzÞ, where kk ¼ 2p=Lz.

B. Dynamical approaches and corresponding codes

Without additional assumptions, systems (3) and (4) are

solved by the semi-lagrangian Runge-Kutta code GMWB3d-

SLCS.1 It will be referred further on as the nonlinear model,

as all nonlinearities in Eq. (3) are taken into account.

Considering the ð#; zÞ Fourier transform of Eq. (4) for a sin-

gle mode (m, n), under the hypothesis that the turbulence

level is low, we neglect all coupling terms not involving the

(0, 0) mode, leading to the transport equation

@tvj
n
m þ iðk#@r/

0
0 þ nkkvj

0
0
Þvj

n
m þ iðnkk � k#@rvj

0
0
Þ/n

m ¼ 0:

(5)

The evolution of the (0, 0) mode is given by

@tvj
0
0
þ 2

X
m;n>0

k#@r=ð/n
mvj

n�
m Þ ¼ 0: (6)

It must be emphasized that, contrary to Eq. (5), Eq. (6) does

not rely on the small turbulence level hypothesis, and keeps

the same form as in the non-linear model. Combining Eqs.

(6), (5), and (4), one can obtain a self-consistent quasilinear

model. We want, however, to be able to evaluate the impact

of mode coupling truncation in Eq. (5) by comparing it to the

nonlinear model, without the influence of the back reaction

of the turbulence spectrum on the (0, 0) mode. We thus con-

sider Eq. (5) driven by imposed ðvj
0
0
ðr; tÞ;/0

0ðr; tÞÞ fields

whose time evolution is obtained from the nonlinear model

data. This model will be further named the forced quasilinear

model, keeping in mind that only half of the overall dynam-

ics is solved. This model has been implemented in the initial

value QUALIMUWABA code, using a simple 4th order

Runge-Kutta scheme in time. Considering now that as some

instant t0 the (0, 0) mode evolution is slow enough so that

the driving terms of Eq. (5) can be considered as constant in

time, we can solve the initial value problem for

ðvj
n
mðr; tÞ;/

n
mðr; tÞÞ starting from time t0 using Fourier-

Laplace transform. From Eq. (5) we obtain the coupling

equation for an unstable mode ð~vj
n
mðr;xÞ; ~/

n

mðr;xÞÞ

~vj
n
m ¼
ðnkk � k#drvj

0
0
Þ~/n

m þ ivj
n
mðr; t ¼ t0Þ

x� nkkvj
0
0 � k#dr/

0
0

; (7)

where x ¼ xR þ ic; c > 0. By substituting Eq. (7) with van-

ishing initial condition into the quasi-neutrality equation,

and defining ~w
n

m ¼
ffiffiffiffiffiffiffi
rn0
p ~/

n

m, we obtain for the normal modes
~w

n

m the eigenvalue problem

½�d2=dr2 þ Qn
mðr;xÞ�~w

n

m ¼ 0; (8)

with Qn
m ¼ BmðrÞ þ Fn

mðr;xÞ and

BmðrÞ ¼ k2
# þ

1

ZiTe
þ 1ffiffiffiffiffiffiffi

rn0
p

d2 ffiffiffiffiffiffiffi
rn0
p

dr2
; (9)

Fn
mðr;xÞ ¼ �

X
j

Aj

n0

nkk � k#drvj
0
0

x� nkkvj
0
0 � k#dr/

0
0

: (10)
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The eigenvalue problem defined by Eq. (8) with homogene-

ous Dirichlet boundary conditions at rmin and rmax ¼ a is

solved by the linear eigenvalue code CYLGYR.3 For most

results presented hereafter the nonlinear (with respect to the

spectral parameter x) eigenvalue solver of CYLGYR was

used, as it is well suited when only the most unstable mode

is sought for given spectral numbers (m, n). The full x-linear

solver, which allows to obtain the full spectrum and eigen-

vectors with a much higher computing cost, has been used

for calibration and cross-checking tests with the nonlinear

solver, and to ensure that the most unstable mode for given

(m, n) can be considered as dominant, i.e., that the corre-

sponding eigenvalue is well isolated. The code takes as input

the (0, 0) mode contours and electrostatic potential profiles

ðvj
0
0
ðr; tÞ;/0

0ðr; tÞÞ, either imposed for equilibrium studies or

extracted from the nonlinear code data as in the forced quasi-

linear model. For each couple (m, n), it provides an output

frequency xR ¼ <x, growth rate c ¼ =x, and complex ra-

dial envelope ~/
n

mðrÞ of the most unstable mode. The validity

of such a drastic selection in the spectrum relies on the

assumption that this mode is effectively dominating the

behavior at time t > t0. To simplify notations, we will drop

the (m, n) indexes in the following, as the comparisons will

be made on eigenmodes for a given (m, n) couple. Let ~/q be

the right eigenvectors solutions of the eigenvalue problem at

time t0 and ~vq the corresponding left-eigenvectors. Let ~/qmax

be the complex envelope of the most unstable mode, with

growth rate cqmax
. The dominance condition writes

t� t0 	 sup
k 6¼qmax

1

cqmax
� ck

ln

���� h~vkj~/ðt0Þi
h~vqmax

j~/ðt0Þi

����
" #

; (11)

where hujvi is the sesquilinear two-form used to define the

adjoint problem. If ðt� t0Þ can be taken large enough, the

most unstable mode will eventually be dominating even if

the projection coefficient h~vqmax
j~/ðt0Þi of the initial state is

not. Perturbing the equilibrium with a single eigenmode per

(m, n) couple provides a quasi-perfect linear growth phase

with a transient reduced to the minimum.3 Considering now

a discrete sequence of (0, 0)-mode profiles at times ti and

given (m, n), the eigenbasis ~/qðtiÞ solution of the eigenpro-

blem at time ti, one can follow the evolution of the most

unstable mode characteristics ð~/qmax
ðtiÞ; cqmax

ðtiÞ;xqmax
ðtiÞÞ.

We emphasize the fact that, even if the (0, 0) adiabaticity

condition is fulfilled, those characteristics necessarily

diverge with the equivalent ones computed on the real state,

as the projection of an eigenmode at time ti spans several

eigenmodes in the basis computed at time tiþ1. Taking

instants ti sufficiently short allows to reduce this spectral

spreading (i.e., minimize the angle between ~/qmax
ðtiÞ and

~/qmax
ðtiþ1Þ) but shortens the time necessary for mode domi-

nance. With a proper adiabatic evolution, one could choose

large enough time intervals with low spectral spreading

thanks to the slow evolution of the eigenbasis. As will be

shown later, this is not the case in the first saturation phase

of the instability, leading to divergence between the adia-

batic linear model and the forced quasilinear and nonlinear

ones.

C. Test cases description

1. Equilibrium parameters

All studies presented hereafter are based on three refer-

ence cases differing in radial size a ¼ 9qs; a ¼ 14:5qs; a
¼ 20qs. The limited range of radius chosen was no meant to

provide q? ¼ qs=a scan studies, but to allow variations in

unstable zone width and position keeping constant radial

sample number. Equilibrium density and temperature radial

profiles are staircase-shaped ones defined by XðrÞ
¼ exp jXDrX

tanh r�rX

DrX

� �� �
with X 2 fn; Tg, leading to radi-

ally localized gi profiles (Fig. 1). In all cases considered

here, Zi ¼ 1 and Te ¼ Ti. The three reference parameters sets

are given in Table I. All parametric studies are done by vary-

ing one or a few parameters, domain size excepted, from this

three cases. In all cases, the equilibrium electrostatic field is

assumed nonexistent. The equilibrium multi-water-bag pa-

rameters are obtained by imposing that the N first even paral-

lel velocity moments of the MWB distribution equate those

of a Maxwellian. Using a homotopy continuation procedure,3

this condition is fulfilled up to machine precision on the

whole radial domain.

2. Simulation scenarii

In a first linear analysis stage, the normal modes corre-

sponding to the equilibrium are computed. A perturbed state

is built by adding to the equilibrium fields perturbations of

the form

~X ¼ �glob

Xp

q¼1

�q
~XqðrÞcosðmq#þ nqkkzþ aqðrÞ þ bqÞ; (12)

where X 2 fvj;/g; �glob sets the perturbation level, �q

2 ½0; 1� allow to weight the various normal modes, ðXq; aqÞ
are the modulus and phase profiles of the qth normalized

eigenmode of spectral parameters ðmq; nqÞ; bq is a random

constant phase factor. Numerical experiments were con-

ducted using 1-mode, 2-modes, and many-modes (10 to 300)

perturbations, where only the most unstable mode for each

(m, n) couple was selected. The second phase consists in

computing the time evolution of the system using the nonlin-

ear code. In a third phase, the ðz; #Þ averaged fields evolu-

tions are extracted from the nonlinear code data and fed back

to the forced quasilinear and linear codes.

III. LINEAR ANALYSIS

In this section, a description of the main characteristics

of the spectrum and eigenmodes of problem (8) is given. The

influence of the multi-water-bag model is then examined by

comparing its spectral characteristics with those of a

“continuous” Maxwellian one.

A. Spectrum and normal modes characteristics

For given (m, n) wavenumbers, the point spectrum

obtained by solving the discretized problem (8) contains a

large majority of real eigenvalues, leading to stable modes,
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and a few unstable eigenmodes, representing at most 2% of

the spectrum in the more favorable (large unstable zone)

cases. The spectrum convex hull is also highly asymmetric,

with maxjxRj / 102maxjcj. Both characteristics make analy-

sis near marginal stability difficult, as the conditioning of the

eigenvalues near the real axis degrades. Moreover, the physi-

cal interpretation of eigenmodes for which c� cmax as

unstable is dubious: in the case of an initial globally unstable

equilibrium, they are quickly dominated by the more unsta-

ble modes, and in the case of a marginally stable state, with

all modes either stable or nearly stable, they will be practi-

cally indistinguishable from stable modes. In all the follow-

ing, all modes for which c=ðnkkÞ < 10�2 are considered as

stable.

Considering only the most unstable mode for each spec-

tral couple (m, n), one can recover for a given equilibrium

the instability zone in the (m, n) spectral plane. This zone

shows steep cutoffs in parallel wave number n. The low

poloidal wave number m cutoff is also steep, with a slow

nearly linear decrease for high m values (Fig. 2): this absence

of clear cutoff is due to the fact that the only finite Larmor

radius effect taken into account is the polarization drift,

allowing small scales perturbations to develop. Frequency

xR exhibits an overall linear dependency on n with

�xR=ðnkkÞ of the order of unity (Fig. 3).

Mode envelopes are strongly localized in the gi peaking

radial region (Fig. 4), with low dispersion in the spectral

plane (m, n) (Fig. 5(a)). Radial envelope characteristic width,

estimated by computing the radial standard deviation r of

the envelope modulus and peak curvature (through

FIG. 2. Growth rate of the most unstable mode in the (m, n) spectral plane

for the case BIG with Nbag ¼ 10.

FIG. 1. Equilibrium radial profiles; den-

sity and temperature (a); gi (b); MWB

contours vjðrÞ (c).

TABLE I. Reference cases parameters set.

Case name SMALL MEDIUM BIG

rmin=qs 1 0.1 0.1

rmax=qs 9 14.5 20

Nr 128 128 128

Index r0 64 64 64

jnqs 10�2 5:51� 10�2 10�2

Drn
=qs 2 2.9 4

jTqs 10�1 2:7586� 10�1 10�1

DrT
=qs 0.3 1.45 2

kkqs 10�3 4:17� 10�3 10�3

Nbag 6 6 6
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d2
r j/jðrpeakÞ), is a decreasing function of k#ðrpeakÞ for fixed n

(Fig. 5(b)). In the considered cases and for fixed n, a para-

bolic model c0 þ c1k# þ c2k2
# for the inverse width 1=r

shows a good fit with the computed data. While this depend-

ency is consistent with the direct parametric dependency of

Eq. (8) in k# if one neglects the m dependency of x, it is not

guaranteed to be generalized as we have considered here

only a specific class of strongly localized equilibrium gradi-

ent profiles. Radial phase variations (Fig. 4(b)) can reach sig-

nificant values but do not cause a strong perturbation of

overall mode geometry as they occur either in regions where

envelope modulus is negligible or modulus variation is dom-

inant. In order to examine more closely the correlation

between the localization of the instability and the peaking

gradient region, the latter is translated over the radial domain

by varying the reference position r0. Let us first consider the

evolution during this scan of the characteristics of the most

unstable mode over the whole (m, n) plane. The growth rate

c and normalized frequency X ¼ xR=ðnkkÞ of this mode are

close to invariant by translation of the gradient zone. The ra-

dial position of this mode follows the peaking gi one, and the

poloidal wave number m evolves so as to maintain k#ðr0Þ
constant. This is confirmed more generally by observing the

characteristics f ðn;mÞ ¼ cðn; k#ðr0ÞÞ. For a fixed value of

the parallel wave number n, the various curves f(n, m) nearly

overlap, i.e., f ðn;mÞ � f ðnÞ (Fig. 6).

In all the previous results, only fairly localized unstable

zones have been considered. Let us now consider a situation

where the equilibrium gi profile presents two peaking zones,

i.e., when the density and temperature radial profiles exhibit

two gradient steps (Fig. 7). The spectrum is first computed

first for a unique gi-peak located at r1 ¼ 5qs (Fig. 8(a)), then

for a unique gi-peak located at r1 ¼ 15qs (Fig. 8(b)), and

finally for an equilibrium combining both gi peaks.

Interaction between the two unstable zones is evaluated by

comparing the growth rates of the double gi-peak equilib-

rium with the maximum of the growth-rates of the one-peak

equilibria (Fig. 9), and checking the position and characteris-

tics width of the mode envelope (Fig. 10). Combination of

the two gradient zones has a slight destabilizing effect, lead-

ing to a widening of the unstable zone in the spectral plane.

This coupling effect is weak in this situation, and the double-

peak growth-rate map is very close to the maximum of the

isolated peaks growth rates maps, confirming the essentially

local nature of the instability.

B. Model comparisons

Though the multi-water-bag distribution is an exact,

albeit weak, solution of the Vlasov equation, the finite (and

in our case small) number of bags induces a finite sampling

in parallel velocity at each instant at a given position. To

evaluate the effects on the obtained spectra and normal

modes, the multi-water-bag model is compared with a con-

tinuous Maxwellian one (labeled as “kin” for “kinetic” in fig-

ures). Following the same perturbative treatment, one

obtains the same eigenvalue problem on the Liouville trans-

formed electrostatic potential ~w
n

m as Eq. (8), the only differ-

ence appearing in the density response function Fn
mðr;xÞ

which takes the form

Fn
m ¼

1

T
ð1þ nZÞ� k#

nkk
ffiffiffiffiffiffi
2T
p jn �

jT

2

h i
Z þ jTnð1þ nZÞ

� �
;

(13)

where jn ¼ drlogn; jT ¼ drlogT; n ¼ x
nkk
ffiffiffi
T
p ; Z ¼ ZðnÞ is

the Fried and Conte function.4 In this context, for a given ra-

dial position, the multi-water-bag form (10) can be viewed

as a particular quadrature formula for Eq. (13), with 2N
quadrature points in parallel velocity. It should be noted that

FIG. 3. Frequency of the most unstable mode in the (m, n) spectral plane for

the case BIG with Nbag ¼ 10.

FIG. 4. Radial envelope of normal mode

(13, 7) for the BIG case with Nbag ¼ 10;

modulus (a); phase (b).
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the numerical implementation of the continuous Maxwellian

model cannot be strictly considered as continuous, as the

computation of the Fried and Conte function relies on quad-

rature formulas as well; the “continuous” denomination

relies on the high accuracy of those numerical quadratures.

For small number of bags MWB distributions, i.e., small

number of sampling points in vk, the number and position of

vk sampling points may thus have a significant influence on

the obtained spectrum. A first comparison is done for a given

equilibrium, and performing a scan on the number of bags.

For Nbag 
 5, multi-water-bag growth rates and frequencies

are in very good agreement for the low parallel wave number

part (small n values) of the spectrum (Fig. 11(a)), while dis-

crepancies appear near the high parallel wave number cutoff

(Fig. 11(b)). The higher sensitivity of the results on contour

distribution for the larger n values can be explained by con-

sidering the ion density response function Fn
mðr;xÞ defined

by Eq. (10), for a given radial position, as a function of the

normalized frequency X ¼ xR=ðnkkcsÞ. The normalized

growth rate Y acts as a damping factor which controls the

broadness of the resonances at the poles defined by the con-

tours vjðrÞ. For small n values (Fig. 11(a)), Y is large enough

compared to typical inter contour distance, to make the

global response largely insensitive to individual contour

position. For larger n, though (Fig. 11) Y decreases, the

global response becomes sensitive to contour distribution.

The absence of net convergence with the number of bags

towards the continuous model in that case is due to the fact

that the typical sampling density in parallel velocity does not

vary significantly for the range of bag number scanned.

Mode envelope geometry is well preserved, with negligible

impact on modulus, and slight variation in phase (Fig. 12).

A second characterization of the influence of the number

of bags is done by evaluating the gradient threshold of the

instability. It should be noted that, as the eigenvalue problem

is solved globally on the radial domain, the obtained spec-

trum is strictly speaking a functional of equilibrium radial

profiles, all other parameters being kept constant. The infi-

nite dimension space of equilibrium radial profiles does not

allow to define a general stability criterion depending on

a finite set of input parameters. Stability analysis is here

FIG. 5. Position rpeak and width r of mode en-

velope modulus in the spectral plane.

FIG. 6. BIG case; parametric scan of gi peak position r0; overlap of growth-

rates as function of k#ðr0Þ for modes (m, 3), m 2 ½1; 50�.

FIG. 7. Case BIG; double steps radial

profiles; density and temperature (a);

etai (b).
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FIG. 9. Double gi-peaks study; maxi-

mum of the isolated growth rates maps

(a) and double peak growth rates map

(b).

FIG. 10. Double gi peak study; radial

localization of the modes (a); characteris-

tic mode width r (b).

FIG. 11. SMALL case; normalized growth

rates Y ¼ c=ðnkkcsÞ for the multi-water-bag

model (mwbN) and continuous Maxwellian

model (kin); n¼ 1 (a), n¼ 4 (b).

FIG. 8. Double gi peak study; growth

rates maps for each isolated peak

equilibrium.
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restricted to a small subset of possible input equilibrium pro-

files: considering single gradient peak zone profiles localized

at the center r0 of the radial domain, and keeping all other

parameters constant, a scan in the peak density and tempera-

ture normalized gradients ðjnðr0Þ; jTðr0ÞÞ is performed, and

for each corresponding equilibrium, the maximum growth-

rate over the whole (m, n) map is kept. Consistently with the

previous observation, in the lower range of bag number

scanned (5–8), the multi-water-bag instability threshold can

differ significantly from the continuous one (Fig. 13(a)). The

10-bags distribution shows a good match with the continuous

one. For this range of number of bags, there is no monotonic

convergence with bag number to the continuous case, as the

position of the bag contours has a non-negligible impact on

the obtained thresholds. However, even in the case of the

6-bags MWB distribution, large discrepancies with the con-

tinuous Maxwellian model occur only for near-threshold val-

ues: for most of the scanned equilibria, relative errors on the

growth-rate are below 10% (Fig. 13(b)).

A noticeable qualitative difference can be observed

between the gradient scan results presented here and those

obtained previously from a local model.14 The multi-lobe

structure of the stability zone boundary observed in the local

model is replaced by a far smoother one in the non-local one.

C. Concluding remarks

The multi-water-bag linear model allows, in the range of

bag numbers considered, to describe with overall good

accuracy the features of the ITG instability. As for any dis-

cretization procedure with few sample points, the smallest

bag number distributions (N¼ 4, 5, 6) may show sampling

artifacts: the highest parallel wave numbers modes are less

accurately described and their thresholds overestimated. For

the following nonlinear simulations, 6-bags distributions

were chosen, as an acceptable tradeoff between accuracy and

computing costs.

IV. SATURATION DYNAMICS OF THE INSTABILITY

Following the simulation work-flow described in Sec.

II C 2, few-mode and many-modes perturbations simulations

were conducted. Cross-validation of the three dynamical

models in the linear growth phase of the instability was

examined in a previous work:3 growth rates, frequencies,

and mode radial envelopes of the modes show good agree-

ment, with relative variations of the order of 1%, establishing

the consistency of the three models in this phase.

A. Overview of relaxation dynamics

The overall behavior is the same in all considered situa-

tions: growth of the perturbation generates through nonli-

nearities both large scale modes, dominated by the (0, 0)

one, and small scales ones. In all cases, the system relaxes

towards marginal stability, with a broad low-level turbulence

spectrum. It should be emphasized that, as Dirichlet bound-

ary conditions are used for the (0, 0) electrostatic potential,

longtime evolution of the system leads to dramatic increase

FIG. 12. SMALL case; model compari-

son of mode envelope geometry; modulus

(a); phase (b).

FIG. 13. SMALL case; model compari-

son; gradients scan over 2400 equilibria

(30� 80); maximum growth rate ðjn;jTÞ
map for the continuous Maxwellian

model and interpolated instability thresh-

old lines for the multi-water-bags models

(mwbN) and continuous Maxwellian

(kin) (a); distribution of relative errors on

growth-rates between the 6-bags MWB

model and the continuous Maxwellian

model (b).
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of the mean radial electric field. No analysis of the time as-

ymptotic state of the system can thus be conducted in that

context, restricting the discussion to the initial relaxation

stages. It is important to notice that the simulations scenarii

considered here describe an overall free relaxation process.

As a consequence, evolution of the (0, 0) mode entails con-

gruent mean gradients relaxation and zonal flow generation.

Comparing the mean density and temperature radial profiles

between the initial and post-relaxation states, one observe an

overall flattening of the temperature profile and steepening

of the guiding-center density profile in the initial peaking

gradient zone (Figs. 14 and 15). It should be noted that the

latter does not entail any actual turbulent particle radial

transport, but shows the difference between particles and

guiding-centers density arising from the zonal flows through

the polarization drift. Dynamics of the relaxation of the (0,

0) mode and spectral evolution depend on the spectral broad-

ness of the initial perturbation. For few-modes perturbations,

mean gradients relaxation occurs in multiple stages (Fig.

16(a)), as the system goes through successive marginally sta-

ble and unstable states in regard to the initial perturbation

(Fig. 17(a)), and a non-monotonic evolution towards global

marginal stability (Fig. 17(b)). Zonal flow geometry (Fig.

18(a)), invariant in the linear phase, is strongly perturbed

during the successive relaxation steps. For broad spectrum

perturbations, this oscillatory behaviour is far less pro-

nounced (Fig. 16(b)), with a quasi direct relaxation towards

marginal stability (Fig. 17(c)). Zonal flow geometry evolu-

tion shows as well a smoother transition from the linear

phase envelope to the post-saturation one (Fig. 18(b)).

FIG. 15. SMALL case perturbed by 239

modes; mean density (a) and temperature

(b) radial profiles at beginning and end of

simulation.

FIG. 14. SMALL case perturbed by (10,

5); mean density (a) and temperature (b)

radial profiles at beginning and end of

nonlinear simulation.

FIG. 16. SMALL case; time evolution of the

mean normalized temperature gradient for single

mode perturbation by (10, 5) (a) and 239 modes

perturbation (b).
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In few modes perturbation cases, the first stages are

dominated by the interplay of the few perturbed modes with

the (0, 0) one, and spectral broadening becomes significant

later (Fig. 19(a)). The initially broad and flat spectrum is first

reshaped in the linear phase in accordance with the linear

growth rates ordering; this does not lead to a strong spectral

narrowing as the linear growth-rate variation is mild around

the most unstable mode (Fig. 19(b)). Though as stated earlier

no strict steady state is attained, observation of the evolution

of the electrostatic potential k? spectrum reveals a conver-

gence towards a power-law tailed spectrum (Fig. 20). A

more direct observation of the evolution of perturbation ge-

ometry can be done for 1-mode perturbations: Fig. 21 shows

the perturbed ionic density at key instants of the simulation.

Fig. 21(a) shows the initial mode structure which is pre-

served throughout the linear growth phase. Figs.

21(b)–21(e), taken after the first saturation of the (6, 3)

mode, show the progressive poloidal shearing of the

convective cells and the birth of smaller convective struc-

tures. In Fig. 21(f), at the end of the simulation, the perpen-

dicular structure is strongly dominated by the zonal flow.

B. First saturation mechanism

Saturation of the instability occurs through two main

mechanisms:

• the growth of the (0, 0)-mode, driven by the self-coupling

terms of the Reynolds stress in Eq. (6), leads to generation

of an azimuthal shear flow, or zonal flow, and relaxation

of the mean gradients radial profiles.
• the harmonic cascades driven by the quadratic coupling

terms of Eq. (3) transfer energy from the perturbed mode

to the rest of the spectrum.

In the nonlinear simulations, both mechanisms operate,

and the interplay between all modes prevents a clear

FIG. 17. SMALL case; linear growth rate

evolution obtained from the linear code

with (0, 0) mode fields extracted from

nonlinear simulation data; growth rate of

the (10, 5) mode for single mode pertur-

bation by (10, 5) (a); maximum growth

rate over (m, n) for the single mode per-

turbation by (10, 5) (b) and the 239

modes perturbation (c).

FIG. 18. SMALL case; time evolution of the

normalized mean poloidal velocity for single

mode perturbation by (10, 5) (a) and 239 modes

perturbation (b).

FIG. 19. SMALL case; filtered power spec-

tra ratios Rn
m ¼ jj/n

m k2
2 =ð

P
jj/n0

m0 k2
2Þ; 1-

mode perturbation by (10, 5) (a); bath of 239

modes (b)—modes for which maxtR
n
m < 5%

are binned as “others.”
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separation. In the quasi and linear models, no harmonics gen-

eration can occur, and saturation occurs only by the back

reaction of the (0, 0) mode on unstable modes. In order to

insure that the (0, 0) mode is the same in the nonlinear and

quasilinear models, the later is used with the (0, 0) mode

imported from the nonlinear simulation: divergence of the

two models can then be interpreted as a clear signature of the

second saturation mechanism. In the case single mode per-

turbations simulations, the nonlinear and quasilinear models

are in agreement up to the first saturation stage, while the lin-

ear models predicts a faster quenching of the unstable mode.

(Fig. 22). Saturation can then be attributed exclusively to the

effect of the zonal flow. Moreover, divergence of the linear

model with the quasi and nonlinear ones can be attributed to

the fast evolution of the (0, 0) flow just before saturation,

which breaks the adiabaticity hypothesis.

Now linear instability quenching by the (0, 0) mode can

itself be considered as a twofold mechanism: an unstable

mode can be stabilized by relaxation of the mean gradients

(k#drvj
0
0

term in Eq. (7)) which reach under-threshold levels

or through the Doppler shift induced by the zonal flow shear-

ing rate term k#dr/
0
0 in Eq. (7). Estimating the relative

weight of both mechanisms is simply done in the linear and

quasilinear models by nullifying the shearing-rate term and

checking for discrepancies. For the first saturation stage, the

effect of the zonal flow shearing rate appears to be negligi-

ble, and the saturation is driven by the contour gradients evo-

lution. For broad spectrum perturbations, the saturation

mechanism is more intricate. The quasi and nonlinear mod-

els diverge, which implies a non-negligible influence of the

(in that case numerous) nonlinear couplings other than with

the (0, 0) mode (Fig. 23). Let us now consider two specific

modes, differing by their initial growth rate. For the SMALL

case, the mode (10, 5) is the most unstable in the whole

(m, n) plane for the initial equilibrium. As can be seen by

comparing Figs. 22(b) and 23(b), the saturation processes are

similar in the single perturbation and bath case, with first sat-

uration durations of bout 2000X�1
CI . This can be expected

since at the end of the linear phase, the Reynolds stress driv-

ing the zonal flow (through (6)) is dominated by the terms

stemming from the most unstable modes, among which (10,

5) is the most unstable. For the (6, 3) mode (Figs. 22(a) and

23(a)), it can be noticed on the first hand that the first satura-

tion process is slower for all models in the case of the mode

bath perturbation, with a characteristic duration of about

8000XCI. Considering the quasilinear evolution to exclude

nonlinear couplings influence, it appears that the back-

reaction of the zonal flow on the (6, 3) mode is more efficient

when the zonal flow is generated exclusively by this mode.
FIG. 21. SMALL case perturbed by (6, 3); snapshots of perturbed density

n(r, t) – n(r, 0)

FIG. 20. SMALL case; electrostatic

potential normalized power spectra; sin-

gle mode perturbation by (10, 5) (a); 239

modes perturbation (b)
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This phenomenon is also observed for the two-modes pertur-

bation by (6, 3) and (10, 5): the mere fact that in that case

the zonal flow is driven dominantly by (10, 5) breaks the cor-

relation between (6, 3) and (0, 0) (Fig. 24). A remarkable

fact can be noticed on in the 2-modes and bath perturbation

case (Figs. 24(b) and 24(c)): the most unstable mode (10, 5),

which drives the zonal flow is quenched first by (0, 0) mode

back reaction, allowing the initially less unstable (6, 3) mode

to grow and reach higher levels than the (10, 5) mode.

Trying to evaluate naively turbulence (m, n) spectrum after

the first saturation from spectral data computed at t¼ 0

would in that case be erroneous since the early quenching of

the initially most unstable modes can lead to spectral order-

ing inversion: relaxation towards linear marginal stability is

not a uniform process in the (m, n) spectral plane (Fig. 25)

On the second hand, the linear growth rate shows a sur-

prisingly good agreement with the nonlinear one at the

beginning of the saturation (Fig. 23(a)) between t ¼
4000X�1

CI and t ¼ 6000X�1
CI ). This should not be interpreted

as a success of the linear model, but an effect of the nonlin-

ear couplings which happen to compensate for the model

divergence. The good agreement of the linear and quasilinear

model between t ¼ 6000X�1
CI and t ¼ 10 000X�1

CI (Fig. 23(a))

is the sign that the adiabaticity condition is restored as the

(0, 0) mode evolution slows down due to saturation of the

most unstable modes (Fig. 23(b)).

V. CLOSING REMARKS

Previous numerical experiments3 showed good agreement

of the three dynamical models examined in the linear growth

phase of the instability. It is thus possible in this phase to

describe accurately the system state, zonal flows included,

using only linear normal modes. To that end, the knowledge

FIG. 22. SMALL case; comparison of

pseudo growth rates of nonlinear and qua-

silinear potential Fourier modes with lin-

ear growth rate; single mode perturbation

by (6, 3) (a) and (10, 5) (b).

FIG. 23. SMALL case; comparison of

pseudo growth rates of nonlinear and qua-

silinear potential Fourier modes with lin-

ear growth rate; perturbation by 239

modes; results for modes (6, 3) (a) and

(10, 5) (b).

FIG. 24. SMALL case; radial L2 norm of

electrostatic potential; (a) single mode

perturbation by (6, 3); (b) two modes per-

turbation by (6, 3) and (10, 5); (c) 237

modes perturbation
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of both temporal and geometric characteristics of the domi-

nant normal modes must be recovered, justifying the need to

fully solve the linear eigenvalue problem. Moreover, the sam-

pling artifacts (lobe structure) of the multi-water-bag model

observed in previous local models14 are less pronounced in

the global one, at the price of a more constrained water-bag

parameter setting procedure. Nonetheless, as the sensitivity of

linear modes characteristics on parallel velocity sampling

increases when one considers modes closer to marginal stabil-

ity, some care must be taken to adapt the number of bags used

to the required accuracy. Numerical results of linear, quasilin-

ear, and nonlinear simulations presented here show that, apart

from the obvious effect of nonlinear couplings, the linear

description can fail to capture the dynamics of the system

because of the fast relaxation of the mean fields during early

saturation stages. Moreover, the non uniformity of the stabili-

zation of linearly unstable modes in the (m, n) spectral plane

by zonal flow evolution has a non negligible impact on the

post-saturation spectrum.
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FIG. 25. SMALL case perturbed by 239

modes; linear growth rate map of initial

equilibrium (a) and computed from nonlin-

ear simulation mean fields at XCIt ¼ 6094

(b).
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