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Abstract. The dynamics of long obligue MHD waves in a and the physical nature of the dissipation processes (Minter
collisionless plasma permeated by a uniform magnetic fieldand Spangler, 1995; Lithwick and Goldreich, 2001). These
is addressed using a Landau-fluid model that includes Halbspects are usually addressed separately, the large-scale dy-
effect and electron-pressure gradient in a generalized Ohm’aamics being often described in terms of usual ideal com-
law and retains ion finite Larmor radius (FLR) corrections pressible MHD, while the small-scale (collisionless) dissipa-
to the gyrotropic pressure (Phys. Plasmas 10, 3906, 2003}ive effects are evaluated using a kinetic approach, assum-
This one-fluid model, built to reproduce the weakly nonlin- ing a given turbulence energy spectrum. It would thus be
ear dynamics of long dispersive ABn waves propagating desirable to have a fluid description incorporating the domi-
along an ambient field, is shown to correctly capture the Lan-nant kinetic effects such as wave-particle resonance and FLR
dau damping of obligue magnetosonic waves predicted bycorrections. Such a model would provide a self-consistent
a kinetic theory based on the Vlasov-Maxwell system. Fordescription of the turbulent cascade and allow a realistic es-
oblique and kinetic Alfén waves (for which second order timate of its termination scales. It would in particular con-
FLR corrections are to be retained), the linear character ofribute to a detailed understanding of collisionless dissipation
waves with small but finite amplitudes is established, and theat the origin of heating, and its balance with cooling pro-
dispersion relation reproduced in the regime of adiabatic processes. Among the various collisionless dissipation mecha-
tons and isothermal electrons, associated with the conditiomisms, Landau damping of magnetosonic waves has recently
me/my, L B L T, /Ty, wherep is the squared ratio of the been shown to provide a dominant contribution (Lerche and
ion-acoustic to the Alfén speeds. It is shown that in more Schlickeiser, 2001a). Proper treatment of Landau damping
general regimes, the heat fluxes are, to leading order, not gyin ISM turbulence is also essential for the determination of
rotropic and dependent on the Hall effect to leading order. the full fast mode spectrum and thus of the properties of the
cosmic ray scattering (Lerche and Schlickeiser, 2001b).
Similar problems are encountered in the solar wind where
1 Introduction magnetic fluctuations show an abrupt transition from&(3
power law spectrum at large scale to a steeper slope at the

Magnetohydrodynamic (MHD) wave turbulence is ubiqui- Scales where proton inertia becomes non-negligible (Li et
tous in space p|asmaS, from the solar wind and p|anet mag&'., 2001) In the magnetosheath, a realistic description of
netospheres to the Interstellar Medium (ISM). In the warmthe turbulence reaching the magnetopause could improve the
and diffuse ISM for example, weak MHD wave turbulence is understanding of the high level of magnetic field fluctuations
believed to be responsible for the observed interstellar scinthat is believed to be at the origin of micro-reconnection and
tillation through the density fluctuation they produce (Span-particle penetration in the magnetosphere (Rezeau and Bel-
gler, 1991). A remarkable Kolmogorov spectrum for the den-mont, 2001).

sity fluctuations is measured over more than twelve decades, In order to capture such phenomena, one needs a descrip-
down to scales of the order of 100 km, i.e. the typical ion in- tion going beyond the usual MHD or even the double adia-
ertial length (Armstrong et al., 1995). The properties of this batic approximation (Chew etal., 1956) that retains plasma
turbulence are still debated. Questions concern the origirgnisotropy but neglects heat fluxes. A significant contribu-
of this extended inertial range, the nature of the ISM phasdion in the development of such a tool is provided by the

from where fluctuations originate (possibly also HIl regions) Landau-fluid models of Snyder et al. (1997). A simplified
version of this approach was used by Quataert et al. (2002)

to describe the magneto-rotational instability in collisionless
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accretion disks. Such models are however to be generalized (,u +u - Vu) + V - P + ib x (V x b) =0, )
when the fluctuations extend to scales comparable to the ion 4

inertial length, a regime where finite Larmor radius (FLR) where the pressure tens®iis defined relatively to barycen-
corrections to the pressure tensor, together with Hall effectric velocities. In a weakly nonlinear regime (strong ambient
and electron pressure tensor gradient in a generalized Ohm¥eld), the pressure tensor can be approximated by the sum of
law have to be retained. Such an extension developed by Paghe individual pressures of the various species, even at scales
sot and Sulem (2003b), is described in Sect. 2. In Sect. 3, thisomparable with the ion Larmor radius. In an expansion in
model is shown to accurately reproduce the Landau dampterms of the ratio of a typical hydrodynamic scale to the ion
ing of long magnetosonic waves propagating in an obliqueLarmor radius, the pressure ten§oe= P¢ 411 is dominated
direction, as predicted by the Vlasov-Maxwell kinetic the- by the gyrotropic contribution

ory performed in Appendix A. Section 4 briefly summarizes . .

the case of parallel Alfen waves already discussed by Pas-P® =Y PY = "p.,(1 —b®b)+ p,b®D. ()

sot and Sulem (2003b) for which the Landau damping does r r

not arise as a linear dissipation but enters the derivative nonwhere the parallel and perpendicular componenjs and
linear Schodinger equation governing the long-wavelength . for the individual species are governed by

dynamics (Rogister, 1971; Mjglhus and Wyller, 1988). Sec- R

tions 5 and 6 deal with obliquely propagating Adfvwaves 9;py +V - @ py,) +V - (bqy)

and with the limiting case of kinetic Alsn waves respec- +2pyrb-Vu -b—2q,,V-b=0, (4)
tively. Second order FLR corrections that are relevant in ~

these regimes, are derived in Appendix B. The linear chardP1r +V - @pi)+V - (bgir) +pirV-u

acter of the dynamics in the case of waves of small but fi- —pirb-Vu-b+4q,,V-b=0, (5

nite amplitudes is established, and the computed dispersion

and damping are shown to reproduce classical results in th&lith b denoting the unit vector along the local magnetic field..
regime . < f < ;_ where 8 is the squared ratio of the The heat flux tensors are furthermore supposed to be domi-

ion-acoustic to the Alfén speeds. Possible extension of the qated r?y the glyéptropllfbco?ponemg ."’mdq”’ an assump-

model to more general conditions are discussed in the Cont-lo.lrlr\lN ose val Ity wi e discussed in Sect. 4.

clusion. e f|n|_te Larmor radius corrections to the pres_sure_te_nsor
are described by the tensbrr that, when electron inertia is
negligible, reduces to the proton contributidh,. The lat-

2 Generalized MHD with Landau damping ter is to be computed perturbatively, the required accuracy
depending on the considered regime. Details are given in

As already mentioned, a fluid description going beyond theAppendix B.

usual MHD and including a realistic dissipation mechanism With a generalized Ohm’s law that includes the Hall effect

is believed to provide a very efficient tool for modeling large- and the contribution of the electron pressure gradient, the in-

scale turbulence in a collisionless plasma permeated by auction equation reads

strong ambient magnetic field.

Starting with the Vlasov-Maxwell equations, one easily b —V x(uxb)=
derives a h_iera_rchy of e_quations for th_e succes_sive moments My o [ 1 (V xb)xb— EV ) Pf] (6)
of the distribution functions of the various particle species. qp TP o

When reduced to a one-fluid description, the time evolution

of the density and velocity of the plasma obeys To close this system, one needs to specify the evolution of

the heat fluxes. In regimes where these quantities are not sen-

dhp+V-(up)=0 (2) sitive to the Hall effect, Passot and Sulem (2003b) suggested
d Uth,r q\r 1 T||r
—+ ’ HVM) = Uinr VI Q)
(0 3 ’ 0)
<d’ NETEES) hePy 17 Ty

(]
d b q1 T, T, 14
(35 -5 o) o = o (T4 (Fs 1) ) ®
! Vth,r D], T T, 0

1r 113

whereV) denotes the derivative arid the Hilbert transform  essentially be viewed as a linear version of Egs. (32-35) of

along the ambient field, and where the temperatures are giveSnyder et al. (1997) and was shown to accurately describe the
by py- = nTj andp,, = nT|,. The coefficients,; , refers parallel propagation of weakly nonlinear dispersive Aliv

to the (equilibrium) thermal velocities of thespecies and waves in the long-wavelength limit. Indeed, as discussed in

the superscriptO) to the equilibrium state. This closure can Sect. 4, reductive perturbative expansions performed on the
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above system and on the primitive Vlasov-Maxwell equa-damping is small enough to be comparable with dispersion

tions lead to asymptotic equations that identify up to the re-and nonlinearity, for example in the case of hot electrons and

placement of the plasma response function by suitablé Padcold ions, a Korteweg-de Vries equation with Landau damp-

approximants. ing is obtained (Janaki et al., 1992). We do not restrict our-
Note that, consistently with the weakly nonlinear assump-selves here to this special regime and compute the Landau

tion underlying the derivation of the heat flux equations, thedamping that arises at the level of the linear dispersion rela-

Landau damping is evaluated by integration along the am+ion.

bient field lines, which makes its numerical evaluation easy From the induction and the density equations, one gets to

when using a Fourier spectral code. Convective derivativedeading order

are nevertheless retained in Eqgs. (7-8) in order to preserve

. . . b(l) D)
Galilean invariance. > 1 cosa Ur 0 ©)
Bog Vo
. . () D)
3 Oblique magnetosonic waves %2 _singd®-—o (10)
Bo 0
We here demonstrate that the model described in Sect. 2 M(l) (1) oD
correctly reproduces the dissipation rate of oblique mag-smaT + cosx V p(O) =0, (11)
0 0

netosonic waves predicted by kinetic theory in the long-
wave limit. Assuming a propagation in a direction making that leads to simple expressions in terms of the normal-
an anglex with the ambient field taken along the-axis,  ized magnetic perturbatiof defined by— =1+eA+.

it is convenient to perform the change of reference framewith the scaling associated with magnetosomc waves, one
/ @

x’ = xcosx — zSina ar_1dz = xsina + zcosa. We l%_ — A and thus writed — Sy
concentrate on perturbations depending only on the coordi- 1) o ana e
natez’ along the direction of propagation, that is stretchedand<— = Colsa (Z(O) — A) The linearization of the pressure
asé = el/2(z/ — Vo). The small parameter measures the equatlons gives
amplitude of the magnetosonic waves that are selected by
; e ; (@) &) 1) (€]
perturbing the equilibrium state in the form Py Couy uy qir
o . o o -0 + smoeT + SCOSaV—' + cosw o = =0 (12
p=p”+ep“+--- pLr= P, +epi)+- P 0 0 Yopy,
@ M @ 6 @
tepy + i
Plr = PHr Py —pé{) +2sine 2 4+ cosa - + cosa qlzo) =0, (13)
b.=Bo+eb® +--,  by=eb® ... Py Vo Vo Vo),
uy =eu 4., e =eul® +---, that leads to
— 3211 .. — 32, 4
by =€7°by7 + - -+, uy =€’ uy’ + o VOPﬁ(r» p\(ﬁ) o®
The dispersion and the nonlinearities then act on the slowlr = "cosy »© BW +24 (14)
time t = ¢¥2:. The reductive perturbative expansion is llr

stralghtforward and, in the absence of Landau damping, (1) Vop(fr) ﬁ B Ll) 4 (15)
leads to the usual Korteweg-de Vries equation (Kakutani ef/1r = osy © 50
al., 1968; Kever and Morikawa, 1969; Chakraborty and Das,
2000). In the regimes where the strength of the LandauThe closure equations provide
D [€))
Urp,r COSQ q)r Urh,r Py, p®
% o =13 |50 (16)
\F(l -3 ) vrry 1% i P
@ @ @ T<0>
<—Vo — /%v,h,, co&xH) L() — Uz, COSK (pé)’) p(o) + (=~ ) 1)A> . a7)
Vth,rP 1y py, P T,
After substitution, one easily expresses the transversevherec, = o s and

pressure perturbations as

1 0
pir) p(l) T( )

= P (1- oW (18) MWele)=—="" (19)
O 0O ( TH(?) ) 1- \/;c,H —c?
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can be viewed as the two-pole approximant of the plasmalrhe parallel pressure perturbations involve the four-pole ap-
response function proximant of the plasma response function, in the form

W) = — P/ Cﬂzﬂd +\/E —/2, (20)
(o _\/Z t—o ¢ zcre .

1(8—3m)c? —V2nc,H+4

Wal(cr) = . (21)
" 1eA@r — 8) + V2c3H + (16— 9n)c2 — 3V2r e, H + 4
One has
(@)
p @ _
I _ ( Wy (c,)) p (c,2 —14W; 1(c,)) A. (22)
0
Py
Turning to the momentum equation, one gets
@) © (€] © 0 ) 2 ) (€8]
_y2ta PPl (P Py bt By b e =
Ve Vo + == ) sina p(o) + <p(0) p(0>> COsx By 4mp® COS Bo Sina By ) = 0 (23)
@ ©) O\ @ @
p b; p
— V25— cosa LO—% —+cos<xL0—O. (24)

After substitution of the total parallel and perpendicular presspfjés_ >, p(l) andp(l) >, p(l) one obtains

>

0 @ 0 © © <0>
2 14 2 _v2. [Pl _Pi Pir zn _
0 smzocp(o) + [ —-Vé+ (,o(O) p(o)) cosa +sira ) 0 (1 T(O) A=0 (25)

r lIr

(0)

Pir pt? L Py 1
[ V2 + cofa Z 0 ( (c,))} |:V0 +cofa [p@ 3 o (cf Wy (C,»)>:|] A=0 (26)

r

B2

where the Alf\en wave velocity 4 is defined by;/z4 = M_,ﬁc»- with, following Ferriere and Ande (2002), the operators
The dispersion relation is then readily obtained. It is con-
0 5,0 Cf=Y (c,z + W;l(c,)) 27)
venient to mtroduce the parameta:% S0 Vi = Lo r
vi =3, 0%, vi=3,vf and v} = vi vf together  and
(0) V4
2 =vi4+> 3, (1 - —GWalen | =208 =" LW (er). (28)
r I r Hr
One has
Vo — [(vi + 02 + Cﬁ) cofa + (vf‘ + Ci) Sinza] Vé
+ (03 +03)CF coda + [0F +¢2)f - v} | site) coda =0, (29)

which, up to the replacements of the plasma response fundiot electrons (in an isothermal state). In these linaifs> 1
tion by suitable Pa&l approximants, identifies with the dis- and W(c,) ~ —1/c3 — 3/c} — 15/c5, while ¢, < 1
persion relation directly derived from the Viasov-Maxwell _ . ~ 1 2 T Note that the Pasl ap-
system taken in the long-wave limit (Appendix A), or from a Wice) Ce +\7ceTt P

mixed fluid-kinetic formalism (Ferére and Ande, 2002). proximants of the plasma response function are constructed

in a way that reproduces the adiabatic and isothermal lim-

A simple expression for the Landau damping is obtainedits. As a consequence, the Landau-fluid predicts exact re-
under the condition,; , < Vo < v, associated with  sults in the considered regime. For the sake of simplicity

cold protons (following an adiabatic equation of state) andand easy comparison with the literature, we assume isotropic
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temperatures for the equilibrium state. Taking into accountthe case of a finite angle of propagation,

the smallness of the ratim./m, and also the assumption

me<pL Whereﬂ =3 Tf (that results from the con-
A
d|t|on Vi, p K Vo K Ui,e), ONE hasre = /zf o f with

L (-G ) @

A= X—f" One then easily gets the following formulas valid in that are to be substituted in the dispersion relation

A — a2 <1+

”A ”A UA

One obtains

2 2
ll coszonrC—sm2 >+cosza[c +Sln2a<

22
C\IfJ_ B fL)OZZ o (31)

A2<1+ﬁ f[fEH>+cos’-a[ﬁ—\/,§\/§\/%$(1+zﬁsin2a)ﬁ]=o. (32)

A solution of the form\. = Agr +A;H with A; <« Ag satisfies  or
to leading order , 148 + /AT p2=4fcoda
A = 2 ) (34)
-1+ ;3))3e +Bcofa=0 (33) with a dissipative part prescribed by
222 — - Dy = \/E\/g\/:nziﬁ [—A% +cofa(l+28 sinza)] . (35)
It is then convenient to write
—2% 4 cofa(l+ 2Bsirfa) = (—1% + pcofa) sifa — (A% — 1 — Bsirfa)cofa. (36)

Using the equation satisfied by, one has

B2 sirf o cof o

A2 -1 Bsifag=-—2—— — "7
R P -2 + pcofa

37

This enables one to write the normalized damping kata
the form
sirf

7T [mg
- _‘/’E\/;\/ m, cosu

. (02 — pcoga)? + p2cod o
(222 — B —1)(A% — pcoFa)’

(38)
that also rewrites
_ B \/E e Sirt
8\ m, cosu

2p2%cod
|1
(14 B —2Bcofa)r?

—,300§oei| - (39)

4 Parallel Alfvén waves

A long-wave perturbative expansion of the Landau-fluid
model was performed in the case of parallel &ffvwaves by
Passot and Sulem (2003b). The stretched coordinate along
the propagation i§ = (7’ — Vot) and the perturbation am-
plitudes obeys the scalings ~ by ~ u, ~ uy = 0(e¥/?)
andu, ~b, —Bg~ p—p©@ ~ P — PO = 0(e), with a
dynamical timer = ¢%2;. The FLR corrections play a role

at the level of the wave dispersion coefficient. In the present
regime, they can accurately be captured when using the ap-
proximation given in Yajima (1966) that, in a local frame
where the z-axis is taken along the local magnetic field, reads

1
ny = il = % (By1ux + dyuty) (40)
14
nil=o (41)
iy =l = —2L2 5y — g, (42)
xy — “lyx — 20 iy xUx
P

Equation (38) reproduces Eq. (5.5.2.10) of Akhiezer et

al. (1975) up to the facto%gz—s“f‘ whose absence seems to be a
misprint. This factor is present in Janiki et al. (1992), but is
there multiplied by a different expression.

1
HEV]%] = ng] = Q_ [Zpupazux =+ Plp (8xuz — 8Zux):| (43)

1
ntl =t = -0 [2p)p0zuty + prp (dyu, — 0.uy)] (44)

p
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Here, Q) = 1B E % is the proton cyclotron frequency, and the  To leading ordet, the y-components of the induction and

cm

superscript{1] in the FLR tensor components refers to the momentum equations give

order of the expansion in terms of ®,. For parallel Alf\en a o
waves, the Landau damping does not act as a linear pro¥y_ _ _ 1 by (45)
cess but rather affects the nonlinear coupling. A long-wave Vo cosa By

reductive perturbative expansion performed on the resultand prescribes the propagation velocity of the Atiwaves
ing Landau-fluid model reproduces the derivative nonllneara SV = AgCOSx With

Schibdinger equation obtained by an equivalent asymptotics

performed on the Vlasov-Maxwell system, up to the replace- Bg p(f) pﬁo) X )

ment of the response function of the plasma by suitabl& PadAo =7 + —= = vy + Vi, (46)
approximants in Egs. (18) and (22) for the pressure pertur- o Mo 0

bations. This agreement also holds in the case of multiwhere we used notations defined in Sect. 3.
dimensional Alfien wave trains where mean fields involving At ordere®/2, the magnetic field divergenceless implies
an averaging along the direction of propagation are driven

by the presence of transverse gradients (Passot and Suletp@ 1 bgl) (47)
2003a). - tana
and thex-component of the induction equation
5 Oblique Alfvén waves &) 2 2 @
Ao b b
u)(cl) — _OZ_ — M COSu BEL (48)
Turning to the case of obliquely propagating Adfvwaves, tana Bo Qp Bo

the reductive perturbative expansion now involves the scal

Furthermore, the density equation gives
ingsh, = €1/2(b§,1)+eb§2) 3,y 1/2(u(1)+€u;2)+ o,

while the same expansions as in 'Sect, 3are used for the other o® PV 2 4+12) pY
- : i D= Aog=s — Ao + AL sing d: 2. (49)
fields. As previously, we also assume that the disturbances df: 00 0 Bo O 3 Bo
the equilibrium state vary only along the direction of propa- r
gation whose coordinate is stretchedtas €2(z' — Vor). The x andz-components of the momentum equation ex-
We also introduce the slow time= ¢%?;. press the pressure perturbations as
@ @ 42 22
1 15 v vd v, cog
Pr _ Ao—u)(cl) + vi—L + — 2 Sing Bgu(l) Lp Ip ¢ dsuD
»© tana tana Bg 29, Q, sine Y
> [ COSx b)(cl) b(l) 5 b§l) 2
: — Vi (50)
sina Bg Bo 2Bg
€ D 2 2 (12
Py @ 42 sina by” Vi, — SV, @ _ 2 2. by
= Aou;”’ +v sina dsuy” — (v4 + 2v4) —=, 51
" b(l b2 a .
that also rewrite as linear functions pfY, A = % + 232 anddgby”, in the form
() 2 D
Pi° o, Dofro 2 o cofa Vi, by
p(o) = —v3A — Q_p |:<UA+UAE—UAP+ ”p> Sino + > sina | o Bq (52)
1) (8]
Py 2o 2 2 Moo 2 2 2 ) o by
—= = Aj (v + 2v )A—i——(v +v4, + V5, —V )SlnaZ) —_ (53)
0© p(0> A A Q, A Ae Ap Ip § Bo

At ordere?, the y-component of the momentum equation re- quired corrections, expressed by the teng8&, are com-
quires an accurate description of the FLR corrections. Theputed in Appendix B. Together with the induction equation
usual approximation (40)-(44) is not sufficient and the re-at the same order, one then obtains

1 1 1
b( ) b( ) i
Bo Bo | Bo

@ M\ L@ M3 v2
)28 P\ by by cosx 1
+ cosa (— - —) v3 cosa = | + - —Lsirfa + 202, cof o | dgeu

(2) (@)
Vg | cosa 857 + 853— = cosa d.u' — cosa o
0

20~ ,0 | By Bg Q,
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15 - 1 1 1 2 2
+Q—pva cof a (sma desu — cosa desul )> - Wag (smal‘[fcy] + COSOll_I[yZ]) (54)
u 2 @3] @ b (€3] bt ;l-)
Vo | cosa agvio +8§BL0 =9, 1;0 + cOSat 3¢ M;DBLO + sina 3 u)(Cl)B}_o
v2 b(l) (@) v2 b(l) 12
+ A cosa dg¢ | COst—— — sina —— | + 29, (cosza — sir? a) —— + 2sina cosa =
Q, Bo Bo Q, Bo ZBO
(€3] (€]
1 . le — Ple
+Q—p cosu sina SEST. (55)

The correction ternT1? is due to the distortion of the magnetic field lines, to the time derivativel'8f and also to the
contributions of the Hall effect and of the electron pressure gradient. One has

if’s (Sinaﬂm + COSO!I_I[Z]) — 2 sina cosa 22 (vz —v? ) Dee _b§1>2

p© xy vz q, \Ip P 252
1 2 (202 — 12 ) cod Af 5 2 2002 )2 cod (P

+§ —AO(Zv”p—vJ_p> co a—TvJ_pCOSozSI ot—(vA—i-vAe) Vp, COS o BEEEB—O, (56)

p

The corresponding solvability condition reads

@ 2 4,2 2
by Ao (v5 +4,) 1 Ao vy :
2h0dy =2 — —— A B A — — —L 4 202 )sir? (2 _22>0052 Oe: A

By tana @, 0T Q tana |2 TSIt VL, e, )OS e G

2 )
Ao o p® (] +0%,) Vip 2 2 by
—a,"h sina COSO!B;;W e cose | —* sirf a + <vJ_p - 2va) cofa | e 5o

2 2 (@) 2 2 Q)

(v +vR.) [ 2 2 by Ag | Vip 2 2 by

_—Q% (va _“Hp) c0§ozaggg3—0 + Q—% Tsm2a+ (2v||p — va) cofa 85553—0
(@8] (@8]

Ao , Ple — Ple
+Q— Cosa SInaZ)ggT =0. (57)

p

At this point, one needs to express the perturbationgion of the perpendicular and parallel pressures in the form
of density, pressure and magnetic field as a function of (1)

1
the wave amplitude. These relations are a priori provided”Lr _ & — M sina 35£ -0 (58)
by the dynamical equations for the pressures and the heap(fz p© Aof2)p Bo

fluxes. It however turns out that the scaling associated (1) o 02 4 12 @

with oblique Alfven waves invalidates the assumption that —I” 3% 424 — 24T YAe

o~ sine ds—=— =0.  (59)
the non-gyrotropic parts of the heat flux tensor can be ig-p, Bo

nored in the equations for the gyrotropic pressure CompOpgsming also isotropic temperatures for the unperturbed
nents. The gyrotropic components of the heat flux are '”'plasma, we get for the protons
deed of order while the non-gyrotropic contributions in-
volve the product of the equilibrium pressure with the cur- p(f;, 2 TISO) oD 2 pY

—0) = Pva (60)

Aof2)

7O

v . y
rent which is also of ordes. This situation contrasts with 50 T4~ Aogp Sina 3 = -
that of obligue magnetosonic and parallel Afvwaves for @
which g ~ g1 = O(e) while the current scales like P, LT[ p® 2v2 bV
We are thus led to restrict the present analysis to ,© =p Ar© 3 (61)
oblique Alfvén waves in a plasma with adiabatic protons and e ] )
isothermal electrons, a regime where the above Landau fluid Concerning the equation of state for isothermal electrons,
model remains valid. This regime associated with the condi-he relations obtained in the case of parallel propagation
tion vy, < VA < Vine, COMTESpoNds to a situation where are_expecteo_l to remain valid since the ele_ctrons move very
me g Lo, rapidly (relanvely_to_the _propggatmn velocity of_the wave)
mp Ty along the magnetic field lines in a way that equalizes temper-
In the adiabatic regime, all the heat flux components areatures, making the electron pressure insensitive to the prop-

zero so that we can use the equations governing the evollagation direction of the wave. Taking the isothermal limit

E 244+ A sinad: 2
€32, 0© AoS2)p > % Bo
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Co = jﬁz — 0 for the electron plasma response function +\/E\/E EHA} _ (63)
in Egs. (18) and (22) (that can still be used in the present 2\ mp

regime), we get 1 : : @
We observe that andp'® are linear functions oz by~ . We

thus reach the conclusion that the solvability condition gov-
erning the evolution 0b$"” does not include nonlinear terms
oD f N Me i 62 and reduces to a linear Airy equation, as in the usual MHD
(0) \/> (62) description (Mio, Ogino, and Takeda, 1976; Gazol, Passot,
and Sulem, 1998).

1
Pﬁe) f p(l) Substituting the total pressures in Egs. (52) and (53), we
P = ’3 p 2O in i i imjt

obtain in the considered limg 7 < 1,
TP
Te

p T [me, 4 cof o b;l)
R N (64
(l) (1)
(,3 1- f,/ meH) <1+f,/ / )A——smaagbB— (65)
0

whose solutlon% andA are to be reported in the solvabil- that identifies with the equation obtained in the framework of
ity condition (57) Hall-MHD for a plasma viewed as a polytropic gas (Mio et

Let us first neglect the Landau damping and compute  al., 1976; Gazol et al., 1998).
An explicit form of the dissipation rate due to Landau

,og) va 1 b§l) damping is easily obtained in the smglllimit. Writing
0= "o o0 (66) 1 @ ) 1 @ 1)
00 Qp sina © Bo pM = pp’ + Hp;” andAD = AR + HATY, one gets
o va [cofa B b;l) to leading order
Ay = —— - - —— ) 0 —, (67)
Q, \ sina sino Bo

AD = \/E\/E /&Agy (69)
where the subscrip® refers to the non dissipative part. Sub-

N . @)
stituting in Eq. (57), we simply get Pr (1) ne AD
o (O) f ,O(O) Ap . (70)
(D 3 b(l)

0.0 4 YA (coa — )%, ~0 (68)
"By 292 * sifa 5By which leads to the dynamical equation
b(l) 3 | coSw T m 1 b(l)
9 = A + [B=—2coSa(tafa+—|H |0 =0, 71
" Bo +2§22 S|n2a '32mp a( a+tanza 5By (71)

that reproduces the Landau damping dissipation rate giverequations where the coordinates refer to the stretched ones)
by Akhiezer et al. (1975).

P 2
|2 1
pOh 29 —Lou +v34=0 (72)
ineti € 1

6 Kinetic Alfv én waves Pﬁ ) . b( ) Ao , b§,1)

0 VA g g (v8, — 2 ) 2 “Bo
When describing Alfén waves propagating almost perpen- P 12
dicularly to the ambient field (ces « 1), a different order- + (vz + sz) by -0 (73)
ing is to be used, namely, ~ u, = 0(¢%?), b, = 0(e), A &) 282
by ~ ux ~ u; = 0(e3/?), together withd, = 0(c%/?), ©_ O @ @

2 ; p p by by

9 = —Aod; ~ € andd, = O(e*). This correspondstoa 4 ,® 4 Maz —v20. 2 =0 (74)
propagation angle such that cos = 0(e¥?). The long- y p© Bo Bo
wave expansion also involves the contnbutmtﬁ?ﬁ andb(z) b§,1) @
arising at ordee®?2. The expansion leads to the following % &~ — 4y~ = (79)

0
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p ping
3o +p@9.u® =0 (76)  a:bP +8,6Y =0 (78)
(@) (@)
v2 + v2 by
O —— + Dpuy = — 4By (77)
Bo Qp BO
b(z) 1 pP 1 1 2 b)(cl)bgvl )
du'? Aoa +a,u(> Ao (O)a ulP +uPoulP —vio, B—g
D 1 D3 D, D
49 P pJ_ by 2 by 4o b b;
—_—— 4
: p© Bo A B3 v B2
i, N Y SN S ) bP? Ao o 2
Tag, " T e Q, Aotz 282+ agz Lot = (79)
b(z) b(l) b(l) b(l) b(l) U2 b(l)
BIL d,u (2) + 0,2 — 3, (1) + 0 (w2 — LS A —ABXZZ_
Bo Bo ‘Bo By " B Q, " Bo
2 @ 12 @ D
v by b 1 P p
— e (axx 2axzy—> g2 (80)

Q) Bo 2B2 Q, ° poO =

1 1)
with 9, ( o bBO) — O (u§l)bl;—’0> = 0, since the dynamics is assumed one-dimensidhak sinod: andd, = cosadg).

(l>
M _ Ao By and the solvability condition reads

@ 1) 1 @ @D D
b D Py by b Ao b;
2A08,B%0 —BZ [(T +2 AA B +A08x e vAaXZ

Usingd, = —Agd;, this leads tay

B() Qp Bo

1 1)2 @ @)
Ao, (a pd - bV >+ Ao, Pje —Pl.
XX

Qp ——VUpe B_O - xz;%z Q_p XZT
v2 12 2 (€Y
A by A by
r g u® 8o (vﬁ _— ) B2+ 042 5 Y 0,
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One then computes by
p S (vf‘ + vie) sz 5B

5+ A§0:
@ @ $2p B °

Ao (12 b b(l)

(83)

Py py 5
G~ 0 T 2aA= . . o
o o In the equation resulting from the substitution of the above
Ag 302 4 5 D b(l) A2 b(l) 82 quantities in Eq. (81), one eliminatdél) by means of
29, ( Vip ~ ”IIP> * g T 0B, (82)  Egs. (76) and (78) to get
and uses Eq. (78) to expresg). One also uses the assump- pD D 2 442 b(o)
tion of one-dimensionality to write Ao = Al —TAT Ty (84)
B © Q “Bo
b(l) 0 Y p o’
Oy ) _
Aod (Mx Bo ) which leads to
(€] @
2A00; l;o + 20, (UJ_p -2 (UA - vAe)) dxzA — a, UJ_paxzp(O)
2 D @ @
b Ao p p
2 2, .2 y lle le
+4QZ (A 2(vA+vAe)> axeB—O-FQ—paxZT—O. (85)




254 T. Passot and P. L. Sulem: Fluid description of Landau damping

As in the previous section, we shall make use of the pressurg;l) — _AO%D is the same as Eq. (53) up to t&%}%ﬂl term
equations in order to expregé?/p© andA. In Eq. (73)  that is subdominant in the kinetic Aln wave asymptotics.
for the parallel pressure, we exprelg@z/Bg in terms of  Assuming as previously adiabatic protons and isothermal
A and b§1>/30 that is given by Eq. (84). This reproduces electrons together with the hypothesis of isotropic temper-
Eq. (52) where simd; is here denoted,. Equation (72) atures for the equilibrium state, we get

for the perpendicular pressure, together with the relation

(0) o 0 0 D

T P T T [m va T, by
142 12 1 P 1A — A = L gl g Y 86
ﬁ( + Te«») 0© +< +ﬂTe(°)> \/E,/ 2\ m, 2QpﬁTe<0> * Bo (86)

(0) ) (0 @ (0) 1)

T P T 7T [m, 0 VA T, by
—A+B8+38L )+ (1-28L A+ /B, )= | SH[A-F )= = (1-38-L- | o, 2. (87)

( 70 ) p© 70 f\/ 2\ m, 0© Q, 79 )™ Bo

When neglecting the Landau damping, this system is solvegarallel electric field is easily obtained from the generalized

as Ohm’s law and, to leading order, read
0 1 mpc
ﬁ g g’lgi 9 i (88) Ey=- p(O) 9 (n(l)Te) : (91)
00~ q, 2" 70 ) "By arP
Az Vgl 3T1§0) 5 bg,l) 80 Using thatE, =~ va§1) one recovers the usual relation
= Q—pﬂ + EW By (89)  (Lysak 1990)

- o _ Ej=pfo.Vi E| (92)
In the smallg limit, the Landau damping in Eq. (85) is due
to the anisotropy of the electron pressure fluctuations, whergi, ,2 — T(O)/(m Q2). As mentioned by Hollweg (1999)
. . . . . . . ps — Le P p’ > - y g ’
the contribution of the density fluctuations is dominant. This 54 seen on Eq. (88), a kinetic Alia wave becomes com-

leads to the equation governing the dynamics of long ki”eticpressive as soon as the transverse wavenuinbeatisfies

Alfv én waves the conditionk  va/2, =~ 1, i.e. for scales of the order of
D 0 the ion inertial length. For lovws plasmas, this occurs even
b v3 3T() - . ..
9,2 4 A cosa | —p(1+ 222 though the wave dispersion is negligible.
T . . . .
By 292 410 It is remarkable that kinetic Alfen waves with frequen-

— pD ciesw < 2, can be described by a single fluid generalized
+\/B\/j _EH] BSEEL =0, (90) MHD formalism. This point was noted by Marchenko, Den-

2\ mp Bo ton and Hudson (1996) who derived the linear dispersion re-
o ) lation for kinetic Alfvén waves ignoring Landau damping.

where we made the substitution,; = Cosadgss, the vari-  The crucial ingredients are a generalized Ohm'’s law with

ables denoting the coordinate along the direction of prop- Hg| term and electron pressure gradient, FLR corrections
agation. Note that this equation is linear. It is valid for y, to order 192 and, when retaining wave dissipation, an

propagation angles such that cdde <« B < 1. We re-  appropriate form for the electron Landau damping.
cover in particular the effect on the dispersion of the proton-

electron temperature ratio predicted by Hasegawa and Chen
(1976) using a fully kinetic theory. The same dispersion co-7 Conclusions
efficient was also obtained by Belmont and Rezeau (1987)
using a bi-fluid approach. We here demonstrate that a onewe have studied the dynamics of dispersive MHD waves
fluid approach can reproduce the correct dispersion. As alpropagating in a collisionless plasma permeated by a strong
ready mentioned, the extension of the present approach tmagnetic field, using a Landau fluid model that retains fi-
hotter plasmas and the derivation of the dispersion and disnite Larmor radius corrections to the gyrotropic pressures to-
sipation of kinetic Alf\en waves in this regime (Lysak and gether with the Hall effect and the electron pressure gradient
Lotko, 1996) requires a specific modeling of the influence ofin a generalized Ohm’s law. The predicted Landau damping
the Hall effect on the heat fluxes and will be addressed in ayf magnetosonic waves with a wavelength large compared
forthcoming paper. to the ion inertial length accurately reproduces that derived
In a kinetic Alfvén wave, protons move perpendicularly by a long-wave asymptotics from the Vlasov-Maxwell sys-
to the average magnetic field while electrons move mainlytem. It is also demonstrated that the dynamics of small-
along the magnetic field lines. As a consequence a parallehmplitude oblique Alfén waves is linear, even in the case
electric fieldE| develops which accelerates electrons. Thisof quasi-transverse propagation (kinetic Afvwaves). The



T. Passot and P. L. Sulem: Fluid description of Landau damping 255

dispersion and damping rates, computed in the regime of adi- As in Sect. 3, wherex is the angle between the ambi-
abatic ions and isothermal electrons often considered in thent magnetic fieldBgz (where? is the unit vector point-
literature, also agrees with the results of the kinetic theorying along thez-axis) and the direction of propagation of the
(Akhiezer et al., 1975). Addressing more general regimeswave, it is then convenient to perform the change of frame
would require an extension of the Landau fluid closure de-x’ = x cose — zSinw, z/ = x Sina + z cosw, the dynamics
scribed in Sect. 2 by retaining the influence of the Hall effectbeing assumed independent of theariable. We then intro-
on the heat fluxes. Another development concerns the deduce the stretched variabje= €1/2(z/ — Vor) whereVy < ¢
scription of FLR corrections. In instances, such as kineticis the wave velocity in the z direction, together with the slow
Alfv én waves, a description going beyond Yajima’s (1966)time t = €%/?. It follows that the spatial gradient rewrites
formulas is required. It is obtained in the present paper by & = (e¥/?sinad; , 0, €/? cosads).
perturbative expansion that correctly retains the effect of the In order to select oblique magnetosonic waves,
magnetic curvature, a prerequisite to get the exact cancellaye ~ write b, = b + .-, b, = 63/219§,1) +..
tion ofnonllnear terms whpse presence yvould_ have madethgZ — Bo+ €b§l> 4+... and thus, from Eq. (A2),
resulting long-wave equation mathematically ill-posed. en = e32eM 4 o o™ o 32,0
. . . . P X X y €y y y €z z '
As mentioned in the Introduction, a one-fluid description "~ 1, A Vo, D @
appears to be an efficient tool to investigate both analyti-With <*bx™ = —Cosaey™, 2by" = cosae,” — sinae;™,
cally and by means of numerical simulations, the regime of%bgl) = Sina€§1)-
magnetohydrodynamic-wave turbulence, as it occurs both in We also expand the distribution function in the form
space and laboratory plasmas. Among the questions to be
addressed are the anisotropy of the cascade, the typical scale = FO +e (fr(O) +e2fD 4 ) (A.5)
at which the cascade is arrested and the compared heating
of the electron and proton populations. The role played bywhere F? denotes the equilibrium velocity distribution
dispersion is of specific interest and motivates the developfunction, assumed rotationally symmetric around the direc-
ment of a weak turbulence theory for Hall-MHD (Sahraoui, tion of the ambient field and symmetric relatively to forward
Belmont and Rezeau, 2003). and backward velocities along this direction, thus excluding
the presence of equilibrium drifts.
. o . It is also convenient to express the velocityn a cylin-
Appendix A: Kinetic theory of magnetosonic waves drical coordinate system by defining the velocity space angle

. . =tan?! ). One writes
We write the Vlasov-Maxwell equations in the form ¢ (v2/vy)

r 1 v:(vxz v] COSp, vy = vl Sing, vzzv”) (A.6)
ofr+v-Vf+—(+-vxb)-V,f, =0 (A.1)
my ¢ and
1
-0b=—-V xe (A.2) sing
¢ V, = (cospd,, ——0,,
Az s 1 VL
Vxb=—>Y gn, | vfrd®v+ =de (A.3) cosp
€5 ¢ Sing dy, + ——94 . 8,,|> (A.7)
vyl
V.-e=4n n d>v, A4
qu ' / Jr (A4) Furthermore, chY,(” X Boz) - Vy = —2,:94, where

. . . . rBo :
where f, andn, are the distribution functions and the aver- - = 47 is the cyclotron frequency of the particles of
age number densities of the particles of speciegth charge  SPecies-.

g- and mass,. The displacement curred®, e turns out to Expanding to the successive orders, one gets from
be negligible in the present analysis. Eq. (A.1),
Q,05F9 =0 (A.8)
@ D
q v b , vib .
Q05 £ = m_ [(e;l) + ”Tx)smqbaw - == S|n¢8v":| FO (A.9)

r

v @[ @ b p | vibfY 0
Q05 1V = p— (e — ——-) cospiy, + eV + —— cosp)iy FO

+ (sinav, cosg + cosavy — Vo) 3 £,2. (A.10)
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Equation (A.8) indicates thaE,(O) is independent of the angle

¢. Equation (A.9) leads to

b
10 = DE® cosp= - + 7,

with D =

denotesfﬁo) = (£

1 ff O)dtp

The solvability condmon of Eq. (A.10) together with the

(A.11)

(Ao — v”)avL + vy, andAg = Vp/ cosa. One

divergenceless condition for the magnetic field reads

(v = A0) 72 = — (v — Ao) =y, FOA
2

a5, F(O)q)

vitr

J_ 0) qr
+5 0 YA+

(1)
where A = bé"— and the electric potentiap is such that
0

(1)

= —0d,¢ = coswdzp. Finally, the y-component of
Eq (A.3) gives
1 47T ~1) 3
“Sna A = 5 qrnr/vl COS¢8¢f,( )d3y.

Using Eq. (A.10), one obtains

1 1 cofa
9 A= (AO ) 9 A
SINx UA sina

471 Slnoc 0
5Zmr”r/vlf£)
From Eq. (A.12), one has

(0)
E m,nr/var
"

and from Eq. (A.4),

=4p DA+ 2VA + Mg

MA+ Lo =0,

where

2 00 2
£=27r2w/ 4(£)G,
o M

2 2

v
M =2n2qrnr/0 g,
-
.t

NZZﬂZmrnr/O d(? Igr,

and

1 9F© aF?
g :P/ " dvy+7—=
] v — Ao 0y | av| ly=Ao

One finally gets
1
V2 — (v2 +v3)cofa — <v2 + 202 + —N)
0 ( A A) A €1 ,0(0)

S|n2a+ SInZaMZL_ =0.

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)
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Assuming that the plasma contains only electrons and pro-
tons with bi-maxwellian equilibrium distribution functions

o Lot )
T T @R OO 2T”<r0> or® |

and using the quasi-neutrality condition of the equilibrium

taten(o) n® = 1O one obtains
0042
L= Z n (0) (A.23)
Ty,
©)
M=Y" 04 Ty (A.24)
. T '
.
o TJ(_O)Z
_ _ r
N=> -2 —o L, (A.25)

I

where we defing@V, = W(c,) with the notations of Sect. 3.

Using Eg. (81) of Passot and Sulem (2003b) and intro-
ducing the notatiorC, defined in Eq. (28), one recovers
the dispersion relation of the magnetosonic waves given by
Eqg. (29).

B: Second order FLR corrections to the pressure tensor

In a regime where the electron inertia is negligible, the FLR
corrections are relevant only for the proton pressure tensor
P,. They obey (Kulsrud, 1983)

b
— x II,
Bo

+Pp -V, + (P, - Vup)":| (B.1)

where, as usual, the heat transfer contribution to the FLR
have been neglected. To leading order, the local magnetic
field b is approximated by the ambient field in the left-hand-
side and the ion pressure tengy in the right-hand-side is
replaced by the gyrotropic contributid?ﬁ. This leads to

the components of the leading order FLR correction tensor
given by Egs. (40)—(44). This approximation obtained in a
local frame where the-axis points along the local magnetic
field is often oversimplified by using the same formula in a
fixed frame with thez-axis along the ambient field (Khanna
and Rajaram, 1982; Chakraborty and Das, 2000). These two
references also involve a sign error in the definition of the
components 1 = —I‘I%J and l‘[)[clv] This approximation
turns out to be insufficient in some instances, for example in
the case of oblique Alfen waves for which a higher order ex-
pansion is needed. For the scaling used in the description of
oblique Alfvén waves for example, these corrections involve
both terms of orde¢ ande®2. However they do not contain

all the contributions arising at orde?/?. In particular, one
should also retain the effect of the magnetic field distortion,
the fast-time derivative, 'Y, and also the Hall-term and
electron pressure contribution Py
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Denoting byL (respectivelyR) the corrections of the left

hand side (respectively right hand side) of Eq. (B.1) involv-

ing magnetic field distortion, one obtains

1
2N2 4+ Lox = o (R” + o, 4 Hxx) (B.2)
p
1
n@-n@+ L, =5 (Ry+ani+4,) (@3
P
1
n2 4o, =_— (sz +o,mY 4 sz> (B.4)
P
1
—2n@ 4+ L,y = = (Ryy + a1y + Hyy) (B.5)
P
1
-+ L, = o (RyZ +o,nlY + H Z) (B.6)
1
Lu=2 (RZZ + o, 4 HZZ) , (B.7)
p

where the tensof, associated with the Hall term and elec-
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