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Abstract

An example of wave collapse arising in dispersive magnetohydrodynamics is analyzed by means of both direct numerical
simulations and envelope formalism. It is shown that in spite of the presence of various types of waves and of purely
hydrodynamic effects, the evolution of a longitudinally homogeneous Alfvén-wave beam propagating along an ambient
magnetic field is accurately described by a cubic nonlinear Schrödinger equation with an external potential proportional to the
initial wave intensity. In this description, an axisymmetric beam can only collapse on its axis when its transverse extension
significantly exceeds the typical scale of the modulational instability of the carrying wave. An axisymmetric configuration is
however unstable with respect to azimuthal perturbations, leading to off-center collapse, even in situations that are smooth
when axisymmetry is preserved. In the case of a wave packet with a finite longitudinal extension, a minimum size is required
for blowup, associated with the formation of strongly anisotropic magnetic structures.
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1. Introduction

It is well known that through a multiple-scale perturbation analysis, the evolution of a small-amplitude quasi-
monochromatic dispersive wave can be described by envelope equations, such as the nonlinear Schrödinger (NLS)
equation. In several dimensions, these equations can produce a finite-time blowup, called wave collapse[1], that
can in fact cover different behaviors of the original system. As an example, the solutions of the multi-dimensional
sine-Gordon equation remain smooth and the blowup of the associated NLS equation only reflects the breakdown of
the modulation asymptotics, resulting from a local amplification of the original solutions[2]. In contrast, in the case
of the self-focusing of a laser beam, the NLS singularity not only corresponds to a very strong local amplification
of the wave intensity but also captures the global form of the emerging structures. In more complex systems, such
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as the magnetohydrodynamic waves in a plasma, it may be more delicate to figure out the characteristics of the
physical phenomenon associated with the blowup of the solutions of the envelope equations. The dynamics of the
physical system may indeed involve additional couplings that are filtered out when affecting scales different from
those on which the asymptotics concentrates.

The aim of this paper is to analyze the predictive character of the envelope equations[3] governing the evolution
of circularly-polarized Alfvén waves propagating along an ambient magnetic field. Such waves are of great interest
both in natural and fusion plasmas, as the formation of small-scale structures may result in particle acceleration
and heating of the medium. When their wavelength is not too large compared with the Larmor radius of the ions,
the inertia of these particles is not negligible and the fluid description should retain the Hall effect that makes
the Alfvén waves dispersive. Other sources of dispersion can originate from finite Larmor radius effects or from
the presence of dust. We nevertheless concentrate on the Hall-magnetohydrodynamics (Hall-MHD), viewed as
a paradigm for hydrodynamic systems involving dispersive waves. Comparisons are performed between direct
numerical simulations of these equations and predictions of the envelope description. We mainly concentrate on
collapse in planes transverse to the propagation, resulting in Alfvén-wave filamentation[4]. This phenomenon can
be affected by the coupling to the magneto-sonic waves and also, in the case of waves of larger amplitude, by
specific hydrodynamic processes. Filamentation of a weakly perturbed circularly-polarized plane Alfvén wave was
confirmed by direct numerical simulations of the Hall-MHD equations[5]. Section 2summarizes the main results of
this study. The transverse dynamics of an Alfvén-wave beam with a uniform amplitude in the longitudinal direction is
addressed inSection 3. In this case, the two-dimensional NLS equation governing the evolution of the Alfvén-wave
amplitude also includes a repulsive potential proportional to the initial intensity of the wave. The properties of this
system and the effect of enforcing the axisymmetry of the beam are discussed inSection 4. Three-dimensional wave
packets are finally studied inSection 5where the influence of their longitudinal extension on the occurrence of a
wave collapse is analyzed. A brief conclusion is presented inSection 6.

2. Filamentation of Alfvén-wave trains

When the dissipative processes are neglected, the Hall-MHD equations with a pressure term identical to that of
a polytropic gas, read

∂tρ + ∇ · (ρu) = 0, (2.1)

ρ(∂tu + u · ∇u) = −β

γ
∇ργ + (∇ × b) × b, (2.2)

∂tb − ∇ × (u × b) = − 1

Ri

∇ ×
(

1

ρ
(∇ × b) × b

)
, (2.3)

∇ · b = 0. (2.4)

As usual,ρ is the density of the plasma,u its velocity andb the magnetic field. The equations are here written in a
non-dimensional form, choosing as velocity unit the Alfvén speedcA = B0/

√
4πρ0, whereB0 is the magnitude of

the ambient magnetic field andρ0 the mean density of the plasma. In addition,γ is the polytropic gas constant and
Ri = ΩiL/cA denotes the ratio of the length unitL to the ion inertial lengthcA/Ωi. It is also convenient to define
the parameterβ = c2

s/c
2
A (wherecs is the sound speed) that, up to a factorγ/2, measures the relative magnitude of

the magnetic and thermal pressures.
Among the various waves governed by the Hall-MHD equations linearized about a uniform magnetic field,

circularly-polarized monochromatic Alfvén waves propagating along the ambient magnetic field deserve a special
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attention, since they are exact solutions of the Hall-MHD equations[6]. For an ambient field taken in thex-direction,
they are defined byby − iσbz = −(ω/k)(uy − iσuz) = B0 ei(kx−ωt), whereσ = +1 or −1 depending on the
right-hand (RH) or left-hand (LH) polarization,ρ = 1,ux = 0 andbx = 1. For forward propagation, the dispersion
relation readsω = (σk2/2Ri) + k

√
1 + (k/2Ri)2. It is noticeable that these ideal waves display some similarities

with large-amplitude quasi-monochromatic circularly-polarized wave packets observed in the Earth or the Jupiter
bow shock environment[7–9]. The linear instability of these waves and the forthcoming nonlinear evolution were
addressed in[5,10] for small and moderate amplitudes, respectively.

The transverse or filamentation instability leading to the phenomenon of wave collapse is conveniently described
in the context of envelope equations. Consider a quasi-monochromatic Alfvén wave with an amplitude of order
ε � 1, propagating along a unit ambient magnetic field. Its modulation is described in terms of the slow variables
X = εx, Y = εy, Z = εz, T = εt, the field components being expanded as

by = εby1 + ε2by2 + · · · , uy = εuy1 + ε2uy2 + · · · , bz = εbz1 + ε2bz2 + · · · ,
uz = εuz1 + ε2uz2 + · · · , bx = 1 + ε2bx2 + ε3bx3 + · · · , ux = ε2ux2 + ε3ux3 + · · · ,
ρ = 1 + ε2ρ2 + ε3ρ3 + · · · ,

where the prescribed magnitudes of the various field components select the Alfvén-wave eigenmode.
To leading order, monochromatic solutions are circularly-polarized and satisfy

b1 = by1 − iσbz1 = B ei(kx−ωt), (2.5)

u1 = uy1 − iσuz1 = U ei(kx−ωt) (2.6)

with U = −(k/ω)B andω given by the Alfvén-wave dispersion relation.
At next order, one has

ρ2 = ρ̃2 ei(kx−ωt) + c.c. + ρ̄, (2.7)

ux2 = ũx2 ei(kx−ωt) + c.c. + ū, (2.8)

bx2 = b̃x2 ei(kx−ωt) + c.c. + b̄x, (2.9)

where overbars refer to non-oscillating contributions. The amplitudes of the oscillating parts are given by

ũx2 = βk

ω
ρ̃2, ρ̃2 = − ik

2(βk2 − ω2)
∂∗
⊥B, b̃x2 = i

2k
∂∗
⊥B, (2.10)

where∂∗
⊥ = ∂y + iσ∂z. The divergence that occurs forω/k = β1/2 corresponds to the coincidence of the phase

velocities of the Alfvén and magneto-sonic waves, a regime that is not amenable to the present formalism.
In a frameξ = X − vgT = ε(x − vgt) moving at the group velocityvg = ω′ = 2ω3/k(k2 + ω2), the dynamics

on the time scaleτ = εT = ε2t is governed by

i∂τB + ω′′

2
∂ξξB + α∆⊥B − kvg

(
1

vg
ūx + k2

2ω2
b̄x − 1

2
δ̄

)
B = 0, (2.11)

ε∂τ δ̄ + ∂ξ(ūx − vgδ̄) = 0, (2.12)

ε∂τūx + ∂ξ

(
βδ̄ + βb̄x − vgūx + 1

2
|B|2

)
= −iε

α

vg
(B∆⊥B∗ − B∗∆⊥B), (2.13)

(ε∂τ − vg∂ξ)
2b̄x − ∂ξξb̄x = ∆⊥

(
βδ̄ + (β + 1)b̄x + k2

2ω2
|B|2

)
, (2.14)
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where the dispersion and diffraction coefficients are given byω′′ = d2ω/dk2 and

α = kω

2(k2 + ω2)

(
ω2

k3
− βk

βk2 − ω2

)
. (2.15)

We also defined̄δ = ρ̄ − b̄x. Note that the right-hand side ofEq. (2.13)for the mean longitudinal velocity includes
a higher-order corrective term that, together with the time-derivative contribution, becomes relevant in the limit of a
quasi-transverse modulation. Retaining this term is crucial for capturing the filamentation instability[3]. It rewrites
(ε/vg)(∂τ |B|2 + i(ω′′/2)(B∂ξξB

∗ − c.c.)), but since this correction is only relevant in the case of perturbations in
the transverse or quasi-transverse directions, it can in fact be reduced to(ε/vg)∂τ |B|2.

2.1. Transverse perturbations

Eqs. (2.11)–(2.14)simplify in the special case of a purely transverse modulation. In this case, they are solved as

δ̄ ≡ ρ̄ − b̄x = 0, (2.16)

and

ūx = 1

vg
(|B|2 − |B0|2). (2.17)

Furthermore,

ε2∂2
τ b̄x − (β + 1)∆⊥b̄x = k2

2ω2
∆⊥|B|2. (2.18)

After a short transient compared with the time scale of the amplitude modulation, the mean longitudinal magnetic
field perturbation reduces to1

b̄x = − k2

2(β + 1)ω2
|B|2. (2.19)

In the case of an infinitely extended circularly-polarized plane Alfvén wave, the initial intensity|B0|2 reduces to a
constant.

Up to a phase shift, one can get rid of this contribution in the potential ofEq. (2.11)which then reduces to the
canonical two-dimensional NLS equation

i∂τB + α∆⊥B − k

(
1

vg
− k4vg

4(β + 1)ω4

)
|B|2B = 0, (2.20)

from which the criteria for a wave train to be modulationally unstable in the transverse directions (filamentation
instability) are easily obtained[1,3].

2.2. Three-dimensional perturbations

2.2.1. Linear stability analysis
When dealing with fully three-dimensional perturbations, the complete system(2.11)–(2.14)has to be used. A

detailed analysis of the linear instabilities affecting a circularly-polarized plane Alfvén wave is presented in[5]. For

1 As in the case of the Zakharov equations for Langmuir waves[11], this adiabatic approximation forb̄x = ρ̄ is expected to be broken very
close to collapse and thus to affect the eventual asymptotic rate[12]. Here we do not address this regime that is far beyond the validity domain
of the envelope formalism.
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Fig. 1. Contours of the instability growth rate in wave vector space as obtained from the amplitudeequations (2.11)–(2.14)(left) and unstable
modes revealed by a direct simulation of the Hall-MHD equations (right) in the conditions described inSection 2.2.1, where the pump wavenumber
is k = 4. In the left-hand side panel, the axes are labeled by the longitudinal and transverse wavenumbers of the modulation, expressed in the
original variables.

the sake of simplicity, we concentrate here on the case of waves with left-hand polarization, where no longitudinal
instabilities take place. As a specific example, we chooseγ = 2, β = 1.5 andRi = 4, with a pump wave
characterized by a wavenumberk = 4 and an amplitude 0.1 in the physical units. For these parameters,Eq. (2.20)
indicates that a plane wave is transversally unstable.Fig. 1(left) that displays the contours of the instability growth
rate in wave vector space, as analytically derived from the amplitude equations, shows that oblique and transverse
instabilities coexist, the latter initiating the filamentation phenomenon. These oblique instabilities also exist in the
framework of the Hall-MHD equations, as illustrated inFig. 1 (right) resulting from a direct simulation using a
Fourier pseudo-spectral code performed with the same parameters as those retained for the amplitude equations.
Since the stability problem of the Hall-MHD equations consists in the perturbation of a periodic solution, the
eigenmodes involve an infinite number of harmonics, leading to the periodically repeated pattern observed on the
figure. In both descriptions, the instabilities are arrested at small scales, much beyond the range of validity of the
envelope formalism. The very limited extension of this domain also explains that the similarity between the two
panels ofFig. 1 is only qualitative.

2.2.2. The filamentation regime
Due to numerical constraints, both the direct simulations and the integrations of the amplitude equations presented

in this paper involve a spectral truncation that cannot resolve the stabilization that occurs at small scales. In the
context of the envelope equations, the small-scale oblique instabilities are strong enough to produce a rapid blowup
of the simulations in the nonlinear regime. This contrasts with the direct simulations of the Hall-MHD equations
where the large-scale dynamics develops before the small-scale oblique unstable modes are significantly amplified.
Various regimes are obtained in this case, depending on the number of pump wavelengths retained in the longitudinal
direction of the computational box whose transverse extension equals 16 pump wavelengths. The case where this
number is relatively small is illustrated inFig. 2, that corresponds to an initial Alfvén pump of amplitudeb0 = 0.05
and wavenumberk = 1, with only four wavelengths retained in the computational box. As in the previous section,
Ri = 4,γ = 2 andβ = 1.5. A Fourier pseudo-spectral code with a resolution of 1283 collocation points is used. The
initial perturbation of the Alfvén pump wave is taken in the form of a weak random noise, of maximal amplitude
5× 10−4, affecting only the largest scales of the density field (the four smallest wavenumbers in each direction). In
such conditions, the linearly unstable modes present in the simulation are mostly limited to the transverse ones. One
observes in this case the emergence of cylindrical structures aligned with the ambient field, whose intensity grows
and thickness decreases in time. This formation of intense magnetic filaments is usually referred to as Alfvén-wave
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Fig. 2. Formation of intense magnetic filaments under the effect of the transverse modulational instability of a circularly-polarized monochromatic
Alfv én wave with a wavelength equal to 1/4 of the longitudinal extension of the computational box (seeSection 2.2.2). From left to right and
from top to bottom, the panels correspond to the transverse magnetic field intensity at timest = 25,200,350,500,575 and 665.

filamentation and is associated with a transverse collapse of the Alfvén pump. An amplification of the wave intensity
|b⊥|2 by a factor 120 is observed at a timet = 665, as seen inFig. 3 that displays the transverse magnetic field
intensity in a plane orthogonal to the propagation. Slightly beyond this time, the resolution becomes insufficient
and the computation must be interrupted. The simulated evolution can be described by the NLSequation (2.20)that
indeed predicts that filamentation is a slow process developing on a time scale of the order of the inverse square
amplitude of the wave.Fig. 4a shows that the expression(2.17) for the mean longitudinal velocity is accurate at
the early stage of the collapse. At later times (Fig. 4b), the scaling assumptions underlying the derivation of the
envelope equations breaks down and a significant deviation becomes visible for the few data points associated with
the largest values of the amplitude. Most of the points remain nevertheless close to the theoretical line and the linear
correlation coefficient is equal to 0.9988. A similar dynamics is observed in the case of an initial Alfvén pump of
amplitudeb0 = 0.1 and wavenumberk = 4 corresponding to the conditions ofFig. 1, but the collapse is in this case
less violent[5]. A simulation of the possible saturation of the collapse would require the development of a code
based on a mesh refinement algorithm.

2.2.3. Effect of unstable oblique modes
When the size of the computational box is increased in the longitudinal direction in order to include more pump

wavelengths, unstable modes with wave vectors that are almost but not exactly transverse to the propagation are
retained by the spectral discretization. Such a regime is illustrated inFig. 5 in the case where 32 wavelengths are
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Fig. 3. Transverse magnetic field intensity|b⊥|2 in a planex = const. transverse to the propagation in the conditions of the last panel ofFig. 2.

Fig. 4. Plot of the longitudinal velocity〈ux〉 versus the transverse magnetic field intensity〈|b⊥|2 − |b⊥(0)|2〉, averaged on the longitudinal
direction att = 620 (left) and 665 (right), in the conditions ofFig. 2. The straight line corresponds toEq. (2.17)predicted by the envelope
formalism for a purely transverse modulation.

Fig. 5. Isosurface of the transverse magnetic field intensity at 1/3 of the maximum, att = 480 for the simulation described inSection 2.2.3,
when 32 wavelengths are included in the computational box.
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retained, still keepingb0 = 0.05 andk = 1. A resolution of 512× 1282 collocation points was used for this run.
Magnetic structures elongated in the longitudinal direction are again formed, but make a well-defined angle with the
propagation axis. Their intensity appears to be modulated and significantly weaker than in the previous computation.
Furthermore the density fluctuations develop strong gradients associated with the steepening of magnetosonic
waves[3]. Intermediate regimes displaying the progressive distortion of the magnetic filaments are discussed in
[5].

3. Dynamics of an Alfvén-wave beam

3.1. Direct simulations of the Hall-MHD equations

A purely transverse dynamics can also develop in the case of an Alfvén-wave beam corresponding to a wave train
whose amplitude rapidly decays in the transverse directions but remains constant along the propagation axis. In this
case, the dynamics does not reduce to that described by the usual two-dimensional NLS equation. This situation
is thus of special interest for comparison between direct simulations and predictions of the envelope equations. In
particular, the possible formation of an intensity dip on the axis of the beam makes the collapse dynamics sensitive
to the presence of azimuthal variations in the initial intensity.

The initial Alfvén-wave beam is produced by limiting the transverse extension of a circularly-polarized monochro-
matic Alfvén wave of amplitudeb0 = 0.1 and wavenumberk = 4 by means of a Gaussian envelope of the form
0.1 e−(1/288)[(y−10π)2+λ2(z−10π)2] , where the factorλ, that measures departure from axisymmetry, is taken of order
unity. The density and background magnetic field are initially equal to 1, while the initial longitudinal velocity is
set to zero. We consider a periodic computational box whose transverse and longitudinal sizes areL⊥ = 20π and
Lx = 24π, respectively, in such a way that the finite-size effects remain negligible during the simulation times.
A Fourier pseudo-spectral method is used for the space variables. The time stepping is made with a third order
Runge–Kutta scheme[13].

We first discuss a simulation with a transverse anisotropy factorλ = (1.5)1/2, performed with a resolution of 2563

collocation points.Fig. 6illustrates the evolution of the intensity of the magnetic field transverse to the propagation
|b⊥|2. A defocusing of the solution with no significant change in the form of the profile is first observed. An intensity
dip then forms at the center of the structure producing a ring where the wave intensity continues to decrease for
a while (reaching a minimum of 0.0077 att = 90), before starting to increase. During this growth phase, the
deviation from axisymmetry is strongly amplified, leading to the formation of intense peaks subject to a standard
two-dimensional NLS collapse.Fig. 7 displays an isosurface of the transverse magnetic field intensity at a level
equal to 1/3 of the maximum which reaches a value of|B|2 = 0.037 att = 140, just before the simulation breaks
down. Note the presence of oscillations at the scale of the carrying Alfvén wave, associated with a weak departure
from circular polarization. We anticipate that the further evolution will lead to the concentration of the transverse
magnetic field intensity in thin filaments distant from the beam axis.

Another simulation was performed in similar conditions starting with an axisymmetric Alfvén-wave beam (λ =
1), using a resolution of 384× 2562 collocation points. The early dynamics appears similar to that of the previous
run. Nevertheless, as seen inFig. 8 (left), the amplification of the wave intensity is now delayed relatively to the
non-axisymmetric case, even if the rates of growth appear comparable, at least as long as the simulations can
be performed. The later behavior of the two runs could nevertheless be significantly different, as suggested by
Fig. 8 (right) that compares the evolution of axisymmetric and non-axisymmetric beams in the context of the
amplitudeequations (2.11)–(2.14), where the simulation can be pushed far enough to see the saturation of the
amplitude growth in the axisymmetric case. Furthermore, as for non-axisymmetric initial conditions, the circular
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Fig. 6. Snapshots of the transverse wave intensity|b⊥|2 in a transverse planex = const. at (from left to right) the initial time (t = 0), the instant
of minimal intensity (t = 90) and the end of the simulation (t = 140), obtained by direct simulations of the Hall-MHD equations starting with

an Alfvén-wave beam with a (transverse) amplitude profile 0.1 e−(1/288)[(y−10π)2+1.5(z−10π)2] .

polarization is weakly broken in the direct numerical simulation. As a consequence, a helical structure is visible
when isolating the regions where the wave intensity is close to its maximum. Note that this effect is not reproduced
by the envelope equations at the considered order. It is indeed subdominant on the time scale retained by the
asymptotics.

Fig. 7. Three-dimensional isosurface of the transverse magnetic field intensity at 1/3 of the maximum, corresponding to the rightmost panel in
Fig. 6. The striation visible on the surface results from the polarization breaking.
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Fig. 8. Left: comparison of the evolution of the maximum intensity of an Alfvén beam in direct numerical simulations of the Hall-MHD
equations for the non-axisymmetric (λ = (1.5)1/2, solid line) and the axisymmetric (λ = 1, dashed line) initial conditions discussed in
Section 3.1. Right: similar comparison in numerical integration of the envelopeequations (2.11)–(2.14), for the non-axisymmetric initial

conditionB0 = 6 e−[1.3(y−π)2+(z−π)2] (solid line) and the axisymmetric oneB0 = 6 e−[(y−π)2+(z−π)2] (dashed line) discussed inSection 3.2.

3.2. Integration of the envelope equations

Similar numerical computations were performed in the framework of the amplitudeequations (2.11)–(2.14), using
initial conditionsB0 = 6 e−[1.3(y−π)2+(z−π)2] andB0 = 6 e−[(y−π)2+(z−π)2] . TheL2-norm of both initial conditions
significantly exceeds the critical value for collapse of the canonical two-dimensional NLS equation. As discussed in
Section 2.1, in the absence of longitudinal modulation, this system reduces to a Zakharov system with an additional
cubic term in the equation for the Alfvén-wave amplitude. The parameterε is taken equal to 0.05. In both cases, the
mean-field perturbations̄ρ, ūx and b̄x are initially zero. Compared with the direct simulations, these integrations
benefit of both the elimination of the scale of the Alfvén-wave carrier and also of a purely two-dimensional character.
The computations were done using a Fourier spectral method in a box of extensionL⊥ = 2π in both (transverse)
directions. A resolution of 256× 256 collocation points was used.

Snapshots of the intensity|B|2 in a plane transverse to the propagation for the non-axisymmetric solution is
displayed at a few typical times inFig. 9. The time evolution of the maximum intensity corresponds to the solid
line in Fig. 8(right). A defocusing of the solution with no significant change in the form of the profile and a decay
of the maximum wave intensity from 36 to about 28 atT ≈ 0.09 is first obtained. A central dip then forms while
the maximum intensity continues to decrease to about 24.5 atT ≈ 0.12 and concentrates on a ring. Later on, after a
further oscillation, the ring intensity increases (Fig. 9(bottom left)) while the initial anisotropy is strongly amplified,
leading to a concentration of the energy in very localized structures within the ring, suggesting NLS collapse in
various points located at finite distance from the center. A maximum wave intensity of about 800 atT = 0.325 is
obtained before the simulation breaks down.

With the axisymmetric initial conditions, the early dynamics is similar, as seen inFig. 8 (right). The maximal
intensity first decreases to about 25.5 aroundT = 0.144. The later on amplification of the ring intensity is however
only a transient that proceeds to a timeT ≈ 0.256 where an intensity of 57.5 is obtained. A rapid defocusing then
again takes place (seeFig. 10). The energy spreads to large distances and after a while the computation has to be
interrupted due to the insufficient extension of the domain. No axisymmetry breaking is observed in this case, due
to the low level of the numerical noise in spectral simulations, in contrast with the simulation based on an adaptive
mesh algorithm discussed inSection 3.3.

A simulation with an intermediate degree of transverse non-axisymmetry for initial conditions of the formB0 =
6 e−[1.1(y−π)2+(z−π)2] shows that the intensity on the ring formed at early times oscillates before developing a strong
enough departure from axisymmetry to permit the formation of collapsing structures.
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Fig. 9. Snapshots of the wave intensity|B|2 in a transverse plane obtained by integration of amplitudeequations (2.11)–(2.14), with initial

conditionsB0 = 6 e−[1.3(y−π)2+(z−π)2] . From left to right and top to bottom, the panels correspond to timesT = 0.125, 0.244, 0.306 and 0.325.

Other integrations of the amplitude equations in regimes not amenable to direct simulations of the Hall-MHD
equations were also performed. The regime where the radius of the Alfvén-wave beam is significantly larger than
the wavelength of the linearly most unstable mode relatively to the modulational instability of a plane wave, is
illustrated by considering an initial wave packet of amplitudeB0 = 6 e−(1/100)[(y−10π)2+(z−10π)2] in a simulation
with 512× 512 grid points. In this case, the system mostly behaves like a plane wave and is destabilized by the

Fig. 10. Same asFig. 9for an axisymmetric initial beamB0 = 6 e−[(y−π)2+(z−π)2] at timesT = 0.144, 0.256 and 0.419.
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truncation error that breaks the axisymmetry. Wave collapse then occurs. A similar conclusion holds when a weak
non-axisymmetric perturbation is superimposed to the Gaussian profile. The axisymmetric solutions are indeed
unstable. They nevertheless display interesting properties that are addressed in the next section.

3.3. The Schrödinger model

Due to the very localized character of the collapsing structures, only the early period of evolution during which the
solution of the envelope equations is moderately amplified can be simulated using numerical codes with regularly
distributed collocation points. This suggests to adopt a numerical algorithm based on an iterative grid redistribution
(IGR) method[14] where the mesh sizes are dynamically adapted, depending on the local evolution. A description
of the algorithm is presented inAppendix A. Furthermore, it may be convenient to use an even simpler envelope
description by noticing that the longitudinal magnetic fieldb̄x, initially zero, relaxes to the expression(2.19)on a
time scale much shorter than the typical time of the amplitude dynamics (Section 2.1). Eq. (2.11)then simplifies to
a two-dimensional NLS equation:

iBt + α∆⊥B − k

((
1

vg
− vgk

4

4(β + 1)ω4

)
|B|2 − 1

vg
|B0(x⊥)|2

)
B = 0 (3.1)

with an additional linear potential that now displays variations in the transverse directions and thus influences the
Alfvén-wave dynamics. Its effect is equivalent to that of a localized inhomogeneity of the refractive index of the
plasma near the axis of the beam. Note that this potential is repulsing, in contrast with the confining potentials
arising in the description of Bose–Einstein condensation[15] or in the nucleation modeling in the Zakharov system
[16].

It is convenient to rescale the space variables by a factor|α|1/2 (hereα is negative) and the wave amplitude by
a factorg1/2 in the formg1/2B = ψ∗, whereg = k((1/vg) − (vgk

4/4(β + 1)ω4)) and a star denotes the complex
conjugate. It follows thatV = (k/gvg)|ψ0|2, where the subscript zero indicates the initial value.Eq. (3.1)then
rewrites

i∂tψ + ∆ψ + (|ψ|2 − V(x))ψ = 0 (3.2)

with a potentialV(x) that is positive, bounded and rapidly decaying at infinity. This equation preserves the wave
energyE = ∫ |ψ|2 dx and the HamiltonianH = ∫

(|∇ψ|2−(1/2)|ψ|4+V |ψ|2)dx. In contrast, as a consequence of
the breaking of the translation invariance, the linear momentumP = (d/dt)

∫
x|ψ|2 dx = i

∫
(ψ∇ψ∗ −ψ∗∇ψ)dx

is not conserved and obeys

dP

dt
= −2

∫
∇V |ψ|2 dx. (3.3)

Furthermore, the “variance”V = ∫ |x|2|ψ|2 dx satisfies

d2V

dt2
=
∫

(8|∇ψ|2 − 4|ψ|4 − 4x · ∇V |ψ|2)dx = 8H− 8
∫ (

V |ψ|2 + 1

2
x · ∇V |ψ|2

)
dx

= 8H+ 4
∫

Vx · ∇|ψ|2 dx. (3.4)

The right-hand side of(3.4)contains not only the Hamiltonian but also an additional term whose sign is not prescribed
and strongly depends on the profile of the solution. This makes difficult to obtain simple conditions for collapse.
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Note that, with the particular potential corresponding to the Alfvén-wave problem, the Hamiltonian reads

H =
∫ (

|∇ψ0|2 + 1

|α|

(
1

1 − (v2
gk

4/4(β + 1)ω4)
− 1

2

)
|ψ0|4

)
dx, (3.5)

a quantity which is always positive.
The evolution predicted byEq. (3.1)for an initial wave packet of amplitudeB0 = 6 e−[1.3(y−π)2+(z−π)2] is

displayed inFig. 11. The adaptive mesh computation is pushed up toT = 0.3225 when the maximum of|B|2
reaches 1.4923× 104. At this time the minimum mesh size is 1.2× 10−3. Such a simulation confirms the existence
of the wave collapse suggested by the integration of the complete envelope equations.

A similar simulation is performed with the axisymmetric initial conditionB0 = 6 e−[(y−π)2+(z−π)2] . It turns out
that the axisymmetry of the solution is broken after a while by the numerical noise which is larger than in the
spectral simulations. This effect enables the Alfvén wave to collapse in several spikes distributed on the intensity
ring, which confirms the unstable character of the axisymmetric solutions in the present regime.

Fig. 11. Adaptive mesh integration of NLSequation (3.1)for an initial beam of amplitudeB0 = 6 e−[1.3(y−π)2+(z−π)2] . From left to right and
from top to bottom, the panels correspond to the wave amplitude|B|2 at timesT = 0.211, 0.268, 0.306 and 0.3216.
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4. Dynamics of an axisymmetric beam

In spite of their unstable character, the axisymmetric solutions display interesting properties that are amenable to
a more detailed analysis.

4.1. Rigorous results

The conservation laws enable one to show that an isotropic solution of(3.2)cannot collapse without blowing up
at the origin. This property is a straightforward extension of Proposition 2 and Lemma 3 of Ref.[17] for the usual
NLS equation, and results essentially from the observation that the external potential inEq. (3.2)becomes irrelevant
near collapse. More precisely, one has the following result.

Proposition 1. If ψ is an isotropic solution ofEq. (3.2)which blows up at time T, then for alla > 0,

(i) |∇ψ(t)|L2(|x|<a) → ∞ as t → T, (4.1)

(ii) lim sup
t→T

|ψ|4
L4(|x|>a)

|∇(ρaψ)|2
L2

= 0, (4.2)

(iii) |ψ(t)|L∞(|x|<a) → ∞ as t → T, (4.3)
whereρa is aC∞ radially symmetric scalar function such thatρa(x) = 1 for |x| ≤ a, andρa(x) = 0 for

|x| > 2a with, for all x, ρa(x) ≤ 1.

The proof is based on two inequalities established in[17,18], respectively, and given for convenience in the lemma
below in a form restricted to functions defined inR2.

Lemma 2. Let v be a radially symmetric function inH1(R2). Then, for anya > 0:

(i) |v|2L∞(|x|>a) ≤ C

a
|∇v|L2(|x|>a)|v|L2(|x|>a), (4.4)

(ii) |ρau|4
L4 ≤ C(|∇u|L2(|x|<2a) + |u|L2(|x|<2a))

2|u|2
L2, (4.5)

where C denotes numerical constants.

Proof of Proposition 1.

(i) To establish(4.1), one writes

|∇ψ|2
L2 ≤ H+ 1

2

∫
|ψ|4 dx +

∫
V |ψ|2 dx, (4.6)

|∇ψ|2
L2 ≤ H+ CE+ 1

2

∫
|x|<a/2

|ψ|4 dx + 1

2

∫
|x|>a/2

|ψ|4 dx, (4.7)

|∇ψ|2
L2 ≤ H+ CE+ 1

2
|ρa/2ψ|4

L4 + 1

2

∫
|x|>a/2

|ψ|4 dx, (4.8)

whereC is a constant depending on the potentialV . UsingEq. (4.5), one gets

|∇ψ|2
L2 ≤ K + K1(|∇ψ|L2(|x|<a) + K2)

2 + 1

2

∫
|x|>a/2

|ψ|4 dx, (4.9)
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and byEq. (4.4),

|∇ψ|2
L2 ≤ K + K1(|∇ψ|L2(|x|<a) + K2)

2 + K3|∇ψ|L2, (4.10)

|∇ψ|2
L2 ≤ K + K1(|∇ψ|L2(|x|<a) + K2)

2 + 1
2|∇ψ|2

L2 + K4, (4.11)

or
1
2|∇ψ|2

L2 ≤ K + K1(|∇ψ|L2(|x|<a) + K2)
2 + K4, (4.12)

where the constantsKi’s depend on the initial conditions and on the parametera. It follows that if |∇ψ|2
L2 → ∞

ast → T , so does|∇ψ|2
L2(|x|<a)

.
(ii) To establish(4.2), one writes

|∇ψ|2
L2(|x|>a)

= H− |∇ψ|2
L2(|x|<a)

+ 1

2
|ψ|4

L4 −
∫

V |ψ|2 dx ≤ H+ 1

2
|ψ|4

L4(|x|<a)
+ 1

2
|ψ|4

L4(|x|>a)

≤ H+ C|ρaψ|4
L4 + E

2
|ψ|2L∞(|x|>a) ≤ C + C|ρaψ|4

L4 + C|∇ψ|L2(|x|>a)

≤ C(1 + |∇(ρaψ)|2
L2) + 1

2
|∇ψ|2

L2(|x|>a)
, (4.13)

whereC holds for various constants and where the inequality|v|Ls(|x|<a) ≤ C|ρav|Ls was used. It follows that:

lim sup
t→T

|∇ψ|2
L2(|x|>a)

|∇(ρaψ)|2
L2

= const. (4.14)

From the inequalities

|ψ|4
L4(|x|>a)

≤ E|ψ|2L∞(|x|>a) ≤ C|∇ψ|L2(|x|>a), (4.15)

Eq. (4.2)follows.
To establishEq. (4.3), one starts from

H =
∫

|x|<a

|∇ψ|2 dx +
∫

|x|>a

|∇ψ|2 dx − 1

2

∫
|x|<a

|ψ|4 dx − 1

2

∫
|x|>a

|ψ|4 dx +
∫

V(x)|ψ|2 dx.

(4.16)

Dividing by
∫
|x|<a

|∇ψ|2 dx and taking the limitt → T , one gets that

lim
t→T

( ∫
|x|<a

|ψ|4 dx∫
|x|<a

|∇ψ|2 dx

)
= const. �= 0. (4.17)

As a consequence,∫
|x|<a

|ψ|4 dx → ∞, (4.18)

and so does|ψ|L∞(|x|<a). �

4.2. Numerical results

The above proposition establishes that axisymmetric collapsing solutions are necessarily singular at the origin but
does not exclude that a ring singularity also forms (seeEq. (4.14)), in spite of estimate(4.2)that provides an upper
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bound for the behavior of theL4-norm restricted to a region not including the origin. Nevertheless, in the context
of the usual NLS equation at critical dimension, one expects that blowup can only take place at a finite number
of isolated points. Although the existing rigorous analysis[19] does not totally exclude the possibility of a ring
singularity, it makes it highly implausible. We expect this situation to also hold in the presence of a potential, as the
latter becomes negligible near collapse. More insight into the question of the existence and nature of singularities
can be gained by numerical simulations, that in the axisymmetric context can be carried out in details.
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Fig. 12. Adaptive mesh integration of the NLSequation (3.1) for an axisymmetric Alfv́en beam with an initial amplitude

B0 = 6 e−0.02|x|2(1 + 0.01 cos(4π|x|)). The magnetic field intensity|B|2 along a diameter is displayed. Left column: profile in the com-
putational space; right column: corresponding profile in physical space. From top to bottom, the panels refer to timesT = 0, 0.121, 0.1633 and
0.1634.
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The simulations presented inSection 3.3suggest that an Alfvén-wave beam with an initial profileB0 =
Ae−(1/δ2)|x|2 (here |x|2 = y2 + z2) with a maximum amplitudeA = 6 and a widthδ = 1 develops, under
the effect of the repulsing potential, an intensity ring that moves outwards and eventually disperses. A similar
dynamics is observed when the width of the beam is decreased, leading to a broader ring that spreads even faster.
In contrast, when keeping the same maximal amplitude, the width of the beam is enlarged (or equivalently keeping
the width, the amplitude is increased), a modulational instability can develop near the maximum, with a wavelength
λ = (2π/A)

√
(α/g) in the units ofEq. (3.1). This estimate assumes that the beam widthδ is sufficiently large

compared toλ so that the wave packet can be locally viewed as a plane wave. The presence of the potential affects
neither the instability wavelength nor its growth rate, compared to the usual NLS regime. With the values ofk

andβ we used in the present simulation, one hasλ ≈ 3.27/A. In such a regime whereδ � λ, the dynamics will
be similar to that of a plane wave where modulational instability induces wave collapse. We checked numerically
that this effect indeed occurs as soon asδ/λ ≈ 7. This regime is illustrated inFig. 12that was performed using
a one-dimensional version of the mesh refinement algorithm mentioned in the previous section and described in
Appendix A. This simulation corresponds to an initial condition of the formB0 = 6 e−0.02|x|2(1+0.01 cos(4π|x|)),
where the cosine perturbation has a wavelength comparable to that characteristic of the modulational instabil-
ity. One indeed observes the formation of several concentric rings and eventually a collapse at the center. As
expected, the wavelength of the instability is close to 0.5. Note that in the presence of the potential, the mini-
mumL2 norm of the solution for collapse strongly exceeds the critical value for the usual two-dimensional NLS
equation.

A similar dynamics is obtained when the same Gaussian profileB0 = 6 e−0.02|x|2 is perturbed by a random
noise with a 10−4 maximal amplitude. The details of the dynamics are however different. Rings form one at a time,

Fig. 13. Perspective volume-rendering visualization of the transverse magnetic field intensity obtained atT = 0.3 by a simulation of amplitude

equations (2.11)–(2.14), starting from an Alfv́en-wave packet of amplitudeB0 = 6 e−[(1/25)(x−5π)2+2.5(y−π)2+(z−π)2] . The longitudinal extension
of the box is in fact 5 times bigger than the transverse ones, making the intense magnetic structures more elongated in this direction than they
appear.
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move towards the origin and stay there. After several such events, the amplitude at the origin starts increasing and
a collapse eventually takes place.

As the width of the initial profile is sufficiently reduced, for example by takingB0 = 6 e−0.3|x|2, several concentric
rings are still formed and a maximal amplitude equal to about twice the initial one is reached, but these structures
eventually move outwards while the maximum amplitude decreases.

The critical width for beam collapse is delicate to estimate accurately. For example for initial condition
B0 = 6 e−0.05|x|2, peaks reach amplitudes of a few thousands when they are still at a small but finite distance
(of order 10−3) from the axis, indicating that, in spite of the large amplitude, the system did not yet reach the
asymptotic regime for collapse.

5. Alfvén-wave packets

We consider in this section the dynamics of a wave packet with a finite extension in all three directions. Such
simulations are sensitive to the presence of unstable oblique modes. Nevertheless, in contrast with the case of an
infinite Alfvén-wave train, the oblique instabilities do not prevent the integration of the envelope equations, at least
when the aspect ratio of the computational box permits a refined description of the quasi-transverse Fourier modes.
In this case, the collapse dynamics can dominate the small-scale linear instabilities. This enables one to perform
additional comparisons between prediction of the envelope equations and results of direct numerical simulations. It

Fig. 14. Perspective volume-rendering visualization of the transverse magnetic field intensity obtained att = 130 by a direct simulation of an

Alfv én-wave packet with an initial amplitude e−(1/288)[(1/25)(x−48π)2+(y−10π)2+2.25(z−10π)2] . The longitudinal extension of the box is in fact 4.8
times bigger than the transverse ones, making the intense magnetic structures more elongated in this direction than they appear.
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turns out that wave collapse can develop in the case of wave packets that are sufficiently extended in the longitudinal
direction.

Two regimes are observed according to the longitudinal extension of the wave packet. In the context of the ampli-
tude equations, one observes that for an initial Alfvén-wave packet of amplitudeB(x,0) =
6 e−[(x−5π)2+2.5(y−π)2+(z−π)2] with zero initial density fluctuations and mean longitudinal fields, a shell forms at
early times but dispersion proceeds and collapse is prevented. This simulations was performed in a box of extension
10π × 2π × 2π using a resolution of 1283 collocation points. In contrast, with a longer wave packet defined by
B0 = 6 e−[(1/25)(x−5π)2+2.5(y−π)2+(z−π)2] a three-dimensional wave collapse is observed in the same computational
conditions, with a maximal transverse magnetic field intensity of 134 at timeT = 0.3, before the simulation breaks
down. The intense magnetic structures that are formed are displayed inFig. 13. Note that the longitudinal extension
of the computational box is actually 5 times bigger than the transverse ones. The displayed structure should thus be
stretched accordingly, and are thus more elongated than suggested by the picture.

A similar collapse is observed in the direct numerical simulation of an Alfvén wave with an initial amplitude
0.1 e−(1/288)[(1/25)(x−48π)2+(y−10π)2+2.25(z−10π)2] , in a computational box of size 96π × 20π × 20π. A resolution
1024× 128× 256 is used. Even such a large resolution is not sufficient to obtain very intense magnetic structures,
and the maximal transverse magnetic intensity obtained is 0.045 before the simulation breaks down. The resulting
structure is displayed inFig. 14. In this case also, a scaling by a factor 4.8 has to be applied in the longitudinal
direction to obtain the real picture.

In both computations, the high intensity regions appear to be fragments of thin filaments that could result from
the transverse collapse of modulated elongated structures. Furthermore, even if the blowup eventually takes place
at an isolated point, the dynamics probably does not consist in an isotropic three-dimensional collapse.

6. Conclusion

Dispersive Alfvén waves provide an interesting framework to test the predictive character of the envelope for-
malism beyond its strict domain of validity. For this purpose, comparisons with direct numerical simulations of
the Hall-MHD equations were performed for various kinds of initial conditions. A main observation concerns the
formation of intense magnetic filaments, an effect associated with the phenomenon of wave collapse predicted by
the amplitude equations.

Alfvén-wave beams with a homogeneous intensity along the propagation axis show a peculiar dynamics accurately
described by an NLS equation with an additional potential proportional to the initial amplitude of the wave. Their
evolution depends on the width of the beam and also on the presence of azimuthal perturbations. At early time, the
amplitude on the beam axis decreases. This mechanism is coupled to the development of a modulational instability if
the beam is wide enough, leading to a concentration of its energy on co-axial cylindrical surfaces. During this process,
an initial anisotropy increases and wave collapse can rapidly develop on off-center filaments. When axisymmetry
is enforced, collapse has to take place on the beam axis and, for a given width, the critical amplitude for collapse is
significantly larger than in the non-axisymmetric case. Equivalently, for a fixed amplitude, collapse requires that the
beam be sufficiently large. The above dynamics is a consequence of the considered class of initial conditions, where
only transverse velocity and magnetic field components are perturbed. This situation differs from the regime studied
in [3,21], where only the dynamics near collapse was considered, by taking for the initial longitudinal velocity
ūx(0) = |B0|2 instead ofūx(0) = 0. In that case the system obeys the standard NLS equation.

When the beam has also a finite extension in the longitudinal direction, similar three-dimensional anisotropic
collapsing structures are observed in direct simulations of the Hall-MHD equations and by integration of the envelope
equations. For such a finite-time collapse, a minimum length of the wave packet is also necessary.
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The phenomenon of Alfvén-wave collapse addressed in this paper provides an efficient mechanism for small-scale
formation, resulting from the instability of a small-amplitude wave. Such an effect is expected to heat the plasma. An
important question for astrophysical application concerns its persistence in the more general context of Alfvén-wave
turbulence. Preliminary results provided by the CLUSTER satellites tend to indicate the presence of intermittent
structures in the form of current tubes whose diameter is comparable to ion Larmor radius in the earth magneto-sheath,
where dispersive Alfvén waves and turbulence are conspicuous features[22].

Furthermore, the description provided by the Hall-MHD equation may be insufficient in the case of a collisionless
plasma when kinetic effects such as the Landau damping may be relevant. Their influence on the filamentation
phenomenon remains an open problem in the general case but is amenable to a systematic analysis in the limit of
long Alfvén waves[23–25].
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Appendix A. Adaptive method based on an IGR

The adaptive method used in this paper follows the iterative grid redistribution (IGR) algorithm introduced in
[14], based on a variational approach. Grid redistribution is needed if the integrated solution presents quasi-singular
features (large amplitudes, strong derivatives) because, in this case, a fixed Cartesian mesh cannot be sufficient
to achieve the computation with the required accuracy. The mesh points can then be redistributed in an adap-
tive way, to make the evolving solution better behaved. This is accomplished by a coordinate transformation,
which is recalculated and applied whenever it is needed, according to some criterion based on the actual so-
lution. More explicitly, remeshing is applied whenever either the truncation error or some combination of the
solution of its derivatives gets larger than a chosen threshold. In the following we briefly describe the remeshing
algorithm.

Let x andξ denote the physical and computational coordinates defined in domainsΩ ⊂ Rd andΩ′ ⊂ Rd ,
respectively. They correspond by a one-to-one coordinate transformation denoted byx = x(ξ). To establish this
transformation, a variational method is used by minimizing some functional which, in the existing approaches, is
usually expressed in the form

E(ξ) =
∫
Ω

∑
i,j,α,β

gij ∂ξ
α

∂xi

∂ξβ

∂xj
dx, (A.1)

whereG = (gij ),G
−1 = (gij ) are symmetric positive definite matrices which are functionals of the integrated

solutions, here denoted byu(x). The gij control the coordinate transformation by monitoring the behavior of
u(x) and are called monitor functions. The transformationx = x(ξ) and the new mesh are determined from the
Euler–Lagrange equation

∇ · (G−1∇ξ) = 0, (A.2)
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where the gradients are taken with respect to thex variable. More terms can be added to the functional(A.1) to
control other properties of the mesh, such as its orthogonality or the alignment of the mesh lines with a prescribed
vector field[20].

The choice of the monitor functionsgij , which must take into account the variation of the solution and of its
derivatives, is problem-dependent, but in most cases good results can be obtained by using simple functions of the
solution and of its derivatives.

The mesh transformation used in this paper is based on an IGR procedure defined as follows. At stagek of
this iteration, thexk+1-mesh is constructed by the transformation(xk, uk(xk)) → (xk+1, uk+1(xk+1)), where
uk+1(xk+1) = uk(xk(xk+1)) with xk+1(xk) defined fromuk(xk) according to(A.2), the monitor matrixGk being
constructed usinguk(x). This procedure is repeated until a suitable mesh is obtained.

The incorporation of the above algorithm into a static adaptive method for solutions of partial differential equations
(PDEs) is then straightforward. In particular, an initial mesh distribution is determined by the IGR in such a way that
a prescribed criterion involving the initial condition is met. We then solve the PDE in the computational variable
ξ until some timet∗ when the solutionu(ξ , t∗) cannot satisfy anymore this criterion. Then the computation stops,
a new mesh distributionx(ξ) is generated, the solution is calculated on the new grid points by cubic interpolation
and the integration of the equation can proceed.

In the coordinate systemξ = (η, ζ), the two-dimensional NLS equation with additional linear potential(3.1)
discussed inSection 3.3becomes

Bt − i(αDB − C1|B|2B + C2B) = 0, (A.3)

where (Greek subscripts denoting derivatives)

DB = 1

J

{
∂

∂η

(
b22Bη − b12Bζ

J

)
+ ∂

∂ζ

(
b11Bζ − b12Bη

J

)}
, (A.4)

b11 = x2
η + y2

η, b12 = xηxζ + yηyζ, b22 = x2
ζ + y2

ζ (A.5)

with x = (y, z). HereJ is the Jacobian of the coordinate transformation. We also useC1 = k((1/vg) − (vgk
4/

4(β + 1)ω4)) andC2 = (k/vg)|B0|2. In the grid redistribution, the monitor matrix is taken to be diagonal with

g1,1(η, ζ) = 1 + 0.1
|B(η, ζ)|

|B(η, ζ)|max
+ |Bη(η, ζ)|

|Bη(η, ζ)|max
, (A.6)

g2,2(η, ζ) = 1 + 0.1
|B(η, ζ)|

|B(η, ζ)|max
+ |Bζ(η, ζ)|

|Bζ(η, ζ)|max
. (A.7)

A finite-difference space discretization is used to solve this system. The remeshing criterion is set so that the
maximum of the gradient is smaller than a given value TOL= 12.5. The transformed system is solved onΩ′ with
[201× 201] grid points. A second order Runge–Kutta method is used for the time integration. In the case of the
initial conditionsB0(x, y) = 6 e−[1.3(x−π)2+(y−π)2] , about 27 remeshing steps are performed before the computation
reaches the timeτ = 0.32254 when the maximum value of the wave intensity|B|2 is 1.4923×104 and the minimum
mesh size 1.2 × 10−3.
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