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Abstract. The envelope formalism for the descrip-
tion of a small-amplitude parallel-propagating Alfvén
wave train is tested against direct numerical simula-
tions of the Hall-MHD equations in one space dimen-
sion where kinetic effects are neglected. It turns out
that the magnetosonic-wave dynamics departs from the
adiabatic approximation not only near the resonance be-
tween the speed of sound and the Alfvén wave group
velocity, but also when the speed of sound lies between
the group and phase velocities of the Alfvén wave. The
modulational instability then does not anymore affect
asymptotically large scales and strong nonlinear effects
can develop even in the absence of the decay instability.

When the Hall-MHD equations are considered in the
long-wavelength limit, the weakly nonlinear dynamics is
accurately reproduced by the derivative nonlinear Schro-
dinger equation on the expected time scale, provided no
decay instabilities are present. The stronger nonlinear
regime which develops at later time is captured by in-
cluding the coupling to the nonlinear dynamics of the
magnetosonic waves.

1 Introduction

Due to the considerable complexity of the multidimen-
sional MHD equations for both analytic developments
and numerical simulations, strong interest has been paid
to asymptotic equations that provide simplified descrip-
tions in specific limits. When the Hall effect is taken
into account in the generalized Ohm’s law, the system is
dispersive and the dynamics of weakly nonlinear waves
i1s amenable to two different asymptotics. When the
dispersion is kept finite, the modulation of a monochro-
matic wave with a small (but finite) amplitude is gov-
erned by a nonlinear Schrédinger equation for the com-
plex amplitude of the wave with, in some instance, a
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coupling to low-frequency fields driven by the modula-
tion. Differently, long waves for which the dispersion
is comparable to the nonlinearity are amenable to a re-
ductive perturbative expansion. In the context of Alfvén
waves propagating along an ambient magnetic field, due
to the equality of the phase velocity of the Alfvén wave
and of the speed of sound in the zero-dispersion limit,
the latter asymptotics does not lead to the canonical
Korteweg-de Vries equation (Segur, 1978) but to the so-
called “derivative nonlinear Schrédinger” (DNLS) equa-
tion for the two components of the magnetic field trans-
verse to the propagation. Both approaches concentrate
on large-scale phenomena and neglect counterpropagat-
ing waves. The decay instability is in particular ignored.

In the present paper, the validity of the above asymp-
totic models is tested against direct numerical simu-
lations of the Hall-MHD equations, with initial condi-
tions in the form of a weakly perturbed monochromatic
Alfvén wave, a regime where the dynamics is mostly
prescribed by the linear instabilities. The evolution of a
weakly perturbed large-amplitude plane wave was con-
sidered by Hoshino and Goldstein (1989). Here we con-
centrate on small-amplitude waves in order to prevent
the rapid development of a fully turbulent regime and
to enable the system to display, at least for a while,
a weakly nonlinear evolution amenable to asymptotic
analysis.

When dissipative processes are neglected, the Hall-
MHD equations read

Oepy +V - (ppu) =0 (1)
pM(8¢u+u~Vu):—%VpL+(be)xb (2)
8b =V x (uxb)—}t}—iVX (;l;(va)xb) (3)
V- -b=0. (1)

The equations are here written in non-dimensional units,
where the Alfvén velocity is taken as unity, R; denotes
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the non-dimensional ion-cyclotron frequency and ¥ the
polytropic gas constant. The parameter 8 (assumed to
be finite) is the squared ratio of the sonic to the Alfvén
speed. Assuming a uniform background magnetic field
along the x-axis and variations of the fields in this di-
rection only, Egs. (1)—(4) reduce to

0tprs + Oc(prruz) =0 ()
= L ﬁ Y l 2
Otttz + Uz Orus = _pM O (_pr + 5 1] ) (6)
Prr (O1V + uzOzv) = Ob (M)
.o 1
Beb + 8 (ugh — v) = zEa,(Eazb) ®)

where we introduced the complex notation b = b, —igbh,
and v = uy — igu,, with either ¢ = 1 or & = —1. The
longitudinal component b, remains constant and can be
absorbed in the ambient field, taken as unity.
Equations (5)-(8) admit exact solutions in the form
of monochromatic circularly polarized Alfvén waves b =
—(w/k)v = Boe!*—wt) yu, = 0, p,, = 1. Keeping
k > 0, the frequency w of a forward-propagating wave
obeys the dispersion relation w = Tkz +k 14+ X a—ﬁg

where the choices ¢ = 1 or 0 = —1 correspond to a rlght-
hand or left-hand circularly polarized wave respectively.

2 Envelope dynamics
2.1 Modulation equations

The envelope equations governing the slow modulation
of an Alfvén wave with a small (but finite) amplitude is
obtained by a standard multiple-scale analysis (Cham-
peaux et al., 1997). Defining the slow variables X = ez
and T = et and expanding

v=€vy +€va+€Svg -, b=€by + by + €3bs + - - -,

w=1+tEp+lp3+ -, ug=ctug+Suz+ -,

Egs. (5)—(8) yield to leading order

8{01 - 6zb1 = 0, 8¢b1 6 v — i— 6ub1 =0. (9)

R;

The solution of Eq. (9) corresponds to a circularly polar-
ized Alfvén wave by = —(w/k)v; = Bye*¥2=«t) whose
complex amplitude now depends on the slow variables.
Elimination of the secular oscillating terms in the
equations at order €2 for the transverse fields leads to

8rBy + v,0x By =0 (10)

which expresses that B; is advected at the group ve-
. 3 ' -

locity vg = W' = /T(E%JT) At order €2, the so]\fablllty

condition of the equations for the transverse fields reads

i(07 By + v,0x By) + DBy — k(ia, — -252)By =0 (11)
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where we introduced the dispersion operator

_ w
_w2+k2

From Eq. (10), DB, = “’TIlaxxBl. Furthermore, over-
bars denote averaging over the fast variables.

Writing the equations obeyed by 4, and p2, and
defining B = B) + ¢B; one gets, after dropping over-
bars and subscripts,

w? 2k k2
(k—zaxx + ;6){7’ + EaTT). (12)

H

i(8r + v,0x)B + ew-2—3xxB —ek(u—2p)B=0 (13)
Orp+0xu=20 (14)
Oru+ 0x (ﬂp+ %|B|2) = 0. (15)

In the long-wavelength limit ¥ — 0, this system reduces
to that introduced by Ovenden et al. (1983).

In the frame moving at the Alfvén-wave group velocity
the above system rewrites, in terms of the coordinate
€ = X —vyT and of the slower time 7 = €T = et

: W Yg -

z@,B+76ggB—k(u———2—p)B_0 (16)

€0rp+ 0¢(u—vgp) =0 (17)
1

€0-u+ O (,Bp — vgu + §]B|2) =0. (18)

Neglecting the terms of order ¢ in Egs. (17)-(18) make p
and u slaved to the magnetic field amplitude, in the form

2
U= vgp = 2—'25—',%%, (up to a constant in the periodic
g
case). The long-wavelength modulation of the Alfvén

wave envelope then obeys the nonlinear Schrédinger equa-
tion '(NLS)

kuvg
4(B —v?)

This adiabatic approximation (also called static by
Spangler (1987) in the context of the DNLS equation)
clearly breaks down near the resonance g = vg, asso-
ciated with the equality between the group velocity of
the Alfvén wave and the speed of sound. Near this res-
onance, Egs. (16)-(18) simplify through an additional
rescaling. Keeping unchanged the magnitude of the
transverse velocity and magnetic field and defining 8'/2 -
vy = 23X, £ = 3z — vgt), T = €3¢, and u, —
2(pp — 1) = €¥/3¢, one gets the Hamiltonian system
derived by Benney (1977) in a general context

i0: B + = 8553 + |BI?’B = 0. (19)

i0: B + 6E£B k¢B =10 (20)

(')r¢+/\65¢ =~—'8-85|B|2. (21)

Far from the resonance, a Hamiltonian formulation
that differs from Eqs. (16)-(18) by subdominant terms
only can also be given. Using the canonical variables

u_u_(k+_zk_vq_—;)|3|2 and j = p— e ;{ |BJ2, the
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system takes the form of the equations introduced by
Zakharov and Rubenchik (1972) for the interaction of
high-frequency with low-frequency waves (see also Za-
kharov and Schulman (1991))

H

i6,B+%~8§§B~k<ﬂ— %9,3+q|B|2) B=0  (22)

€0-p+ Og(a — vgp) = —k0g|B|® (23)
. - - kv

€0r U+ O¢ (8P — vgtt) = 796§[B|2. (24)

where ¢ = k + %9-’;—"5} Note that in contrast with
g

Egs. (16)—(18), this formulation becomes singular at the
resonance.

2.2 Linear stability analysis

The NLS equation (19) admits a solution with a con-
stant amplitude By and a phase that is uniform in space
and linear in time. At the level of the primitive equa-
tions, it corresponds to a monochromatic Alfvén wave
whose frequency is slightly shifted by the nonlinearity.
Linearization about this solution leads to the dispersion
relation

"
kvgw

4 T 4(B - v2)

BZK?, (25)

which predicts a long-wavelength modulational instabil-

ity for § > v2 or B < v2 according to the right-hand

(w" > 0) or left-hand (w” < 0) carrier polarization.
Linearization of the primitive MHD equations about

an Alfvén wave of wavenumber k and amplitude by (not

restricted to be small), yields the dispersion relation

_ bK?

Q2 - BEHALA = 5

(AsC- +A_Cy) (26)

where

Ar = (W Q)? = (k£ K)? - %(w £ Q)(k + K)?

(]

Cs = —k(kx K)= %k(w + Q)(k + K)

1

AN

Following Wong and Goldstein (1986), the instability is
sald modulational when it affects wave numbers K < k
(not necessarily asymptotically small), and decay when
K > k. Numerical resolution of the dispersion rela-
tion (26) for a carrier of small amplitude by = € By shows
that for right-hand polarization the instability is modu-
lational for 5 > vﬁh and of decay type for 8 < vf,h, where
vpn = w/k is the phase velocity of the Alfvén wave. For
left-hand polarization, the wave is stable for 3 > vZ,,

P
while modulational and decay instabilities coexist for

B8 < vzh (Fig. 1).

Figure 2 displays for different values of the param-
eter (3 the instability growth rate S(Q(K)) for a pre-
scribed right-hand polarized carrying wave, as’ obtained

+%(w(k LK)+ (wQ)(k£K) - }%kz(k + 1<)).
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from the primitive MHD equations and from envelope
models. As often noted, such a polarization is predom-
inant upstream of the Earth’s bowshock. The primitive
MHD equations show that the instability occurs at wave
numbers K = O(¢) for § > v2, as predicted by the NLS
analysis (long-wavelength modulational instability). On
the other side of the resonance g = vg, the small K'’s are
restabilized (an effect which, as noted by Longtin and
Sonnerup (1986), is specific of small-amplitude waves)

and the unstable modes are associated to wavenumbers

5t ({long-wavelength) (a)
modulational

decay+
modulational

decay+
1 5:1)’“ 02r (long-wavelength)
modulational
0 . s 0.0 : " " L
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Fig. 1. Stability and instability regions in the plane (8,k) for
small-amplitude Alfven waves with right-hand (a) or left-hand (b)
polarization.
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Fig. 2. Modulation instability growth rates for amplitudee = 0.1,
k = 0.64 (corresponding to vg = 3.20 and U;2>h = 1.81) and right-
hand polarization at various 3, from the primitive MHD equations
(solid line) and various envelope models: NLS equation (panel(a),
dashed-dotted line), Egs. (13)-(15) (dashed line), near-resonance
model (20)-(21) (panels (b)-(c), dotted line), and improved model
(33)-(35) (panels (d)—(f), dashed-dotted line).
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Fig. 3. Phase velocities of the perturbation modes from the prim-
itive MHD equations with 8 = 2.5 and k = 0.64 (v4 = 1.79) for
e = 0.1 (top) and ¢ = 0.01 (bottom). The merging of the sonic
branches (a) and the Alfvén branch (b) corresponds to the asso-
ciated instability of Fig. 2(d) (¢ = 0.1).

K comparable to k¥ (Wong and Goldstein, 1986). This
transition is conveniently described by the reduced sys-
tem (20)—(21), for which the dispersion relation reads

17”2 2k "2 12
93—AKQZ—°”T1<4Q- Bq 8“’ K3+’\“:1 K5 =0.(27)
From this equation, one easily shows that there exists
Ae = i2-2%B§k|w” | such that the small-K modes are

restabilized when v, — f1/2 > €2/3), (right-hand po-
larized wave) or 81/2 — v, > €2/3), (left-hand polarized
wave), in agreement with the numerical observations on
the primitive MHD equations.

Beyond the resonance 3 = vs, the unstable wavenum-
bers remain finite as ¢ — 0, but the width of the unstable
spectral band scales like €. This is illustrated in Fig. 3,
where the phase velocities R(£2)/K of the modes that
destabilize, computed from the primitive MHD equa-
tions, are displayed in the case 8 = 2.5 and vg = 3.2 for
two different wave amplitudes (¢ = 0.1 and ¢ = 0.01).
The instability occurs when the phase velocity of an
Alfvén branch originating from R(Q)/K = vy + O(e)
as K — 0 becomes equal to that of the acoustic mode
R(Q)/K ~ B2

When § tends to vf,h, the unstable wave numbers ap-
proach the carrier wave number, while the maximum
growth rate decreases and vanishes at 8 = ;‘:h. For
g < vgh, the decay instability develops and its growth
rate rapidly increases as ( gets smaller (Fig. 4).

Analogous results for left-hand polarized waves, for
which modulational and decay instability branches co-
exist, are shown in Fig. 5.

The main observation is that the NLS equation which,
as well known, cannot capture the decay instability, also
misses the modulational instability that occurs in the
region of the plane (3, k) between the two curves 8 = vg
and g = vf,h. In this range of parameters, the unstable
scales are too small to be accurately captured by the
NLS asymptotics. Ir contrast, the dispersion relation
for the envelope equations (13)-(15)

Q% — BEH[4(Q — vy, K)? — W K*
g
~eBiw"kK3(2Q — v K) = 0 (28)
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Fig. 4. Instability growth rates calculated on the primitive MHD
equations for amplitude ¢ = 0.1, £ = 0.64 and right-hand polar-
ization, showing the transition from modulational ((a), 8 = 1.9)
to decay instability ((b), 8 = 1.7; (c), 8 = 1.0; (d), 8 = 0.5; (e),
B = 0.1; (f), B = 0.02) in logarithmic scale.
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Fig. 5. Instability growth rates (modulational and decay) for
amplitude ¢ = 0.1, £ = 0.64 (corresponding to vg = 0.26 and
v;2>h = 0.53) and left-hand polarization at various 3, for the prim-
itive MHD equations (solid line), the NLS equation (panel(a),
dashed-dotted line), the envelope equations (13)-(15) (dashed
line), the near-resonance model (20)—(21) (panel (b)-(c), dotted
line), and the higher-order envelope equations (33)-(35) (panels
(c)-(d), dashed-dotted line).

predicts the persistence of the modulational instability
for 8 < v (right-hand polarization) or 8 > v2 (left-hand
polarization). Considering a perturbation with a wave
number of order ¢! given by K = 2(vy — 8/2)/(ew) +
Z, and a phase velocity Q/K = /2 +¢Y, the dispersion
relation (28) asymptotically reduces to
2 W 2 1 vg/2 "ﬂl/z _

Y°+ TZY — Bikw 8520, — A7) 0. (29)
According to this formula, a right-hand polarized wave
(w” > 0) is unstable when vy/2 < §'/? < v,, while for
left-hand polarization” (w” < 0) the instability occurs
for /2 < wvy/2 or B2 > w,. Assuming vg/2 < Upp
for right-hand polarization, which is usually verified in
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the finite-dispersion regime, and concentrating on val-
ues of B between v2 and vZ;, the present analysis re-
produces the regimes sketched in Figs. 2(d—f) and 5(d).
The quantitative predictions for the range of unstable
wave numbers and for the growth rates become nev-
ertheless poorly accurate when 8 approaches vzh, due
to the loss of scale separation between the carrier and
the unstable modes in this regime. Furthermore, in the
case of a right-hand polarized wave, the envelope equa-
tions (13)-(15) suffer from the existence of a spurious
instability not present in the primitive MHD equations.
For finite 8, it arises in a small wave number band corre-
sponding to scales significantly smaller than the carrier
wavelength (by a factor 6 or 7), thus well outside of
the range of validity of the asymptotics. These scales
are nevertheless present in high-resolution simulations
of the envelope equations, but the instability is conve-
niently removed by prescribing an adiabatic behavior
for p and u at sufficiently small scales. This instability
originates from the spurious crossing at large K of an
Alfvén branch of phase velocity R(Q2)/K ~ vg as K — 0
with the acoustic mode R(Q)/K ~ —8'/2, which should
in fact remain stable for forward-propagating Alfvén
waves. In the cold-plasma limit 8 — 0, the spurious
instability can affect the large scales. In this regime
(where on the primitive equations the dynamics is in
fact dominated by the decay instability) p and u are to
be taken as slaved to the Alfvén-wave amplitude.
When considering (far from the resonance g = vg)
the accuracy of the Hamiltonian formulation (22)-(24)
at the level of the linear stability analysis, the two polar-
izations must be distinguished. For right-hand polarized
waves, the model leads to predictions similar to those of
Egs. (13)-(15), with the advantage that it does not suf-
fer from a spurious small-scale instability. For left-hand
polarization, in the range § <« vg where on the primi-
tive MHD equations decay and long-wavelength mod-
ulational instabilities coexist, the Hamiltonian model
displays, in addition to a modulational instability, an-
other instability at a wavenumber larger than that of
the carrier, which results, in terms of the phase velocity,
from the collision of an Alfvén branch with the acous-
tic branch that originates from 82 at K = 0. As 3
approaches vg the two instabilities tend to merge and
both disappear for 7 > v , In contrast with the primi-
tive system. In the followmg, we thus abandon the use
of Egs. (22)-(24). The Hamiltonian structure does not
indeed seem to play an important role in the present
discussion concerning the evolution of perturbed plane
wave, although it is essential in the context of the exis-
tence and stability theory of localized nonlinear waves.

2.3 Higher-order modulational analysis
The predictions of Eqgs. (13)—(15) concerning the linear

growth rate of the modulational instability when 8 ap-
proaches vih can be refined by pushing the expansion to
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the next order in the modulational analysis of Sec. 2.1.
Writing the solvability condition to eliminate secular os-
cillating modes, we get (D is defined in Eq. 12)

i(0r + ’Ugax)Bs + DB,
k . _ _
TR k2 3T( Or + 8x)*B; + i0x (12 —_UQ—ng)Bi)

—k((ﬁz — %252)Bs + (5 — L 73) B )

k2 k_ . 3 -
(e = 5i)B) iy a0 By
. W 2k? _ w?
+2k2 o ( » Uy — sz)axB1 =0. (30)
The mean fields @3 and p3 satisfy
Orps + Oxuz =0 (31)
Orus + 0x(Bps + B] Bo + B3 B1) =0 (32)

After straightforward substitutions, the equations obeyed
by B = By + €By + ¢?Bs, u = ug + €tiz, p = p2 + €03
take the form

7" 11

i(aT + vgax)B -+ 6(%5}(}( - ic%axxx)B

+e(—k + 1e0x) (u - v—gp)B)

2
1
+ie? ( — pBOx (u — vgp) + vg(2p — §)p6xB) = 0(33)
Orp+ dxu =0 (34)
18Iy _
dru+0x (Bp+ 15— ) = 0. (35)

with p = % (1 - %) and

6 kv kv
"o_ _ _RYg _RYg 1"
Y= w2+k2(1 w)(vg(l w)+kw)'
The associated dispersion relation is
2
(Q2 — BED)[A(Q — v K — %—w"’[(3)2 — WK -
1 -
4BIK (1 - )2+ (p - §)vglx"](§2 —vgK — Eé—w”'lx's)
—e2BAW"kK?(2Q — v, K) = 0. (36)

The instability growth rate associated with this equa-
tion is also displayed in Fig. 2. The decrease of the
growth rate as [ approaches vﬁh is reproduced, even if
the byatem restabilizes for a value of g slightly smaller
than vph Moreover, in this model, the previously men-
tioned spurious instability is suppressed. Note that the
additional terms included in this model are of the same
order in ¢ as those describing the deviation from adia-
baticity in Eqgs. (13)-(15). In contrast with these two
models, the dispersion relation (36) coincides up to or-
der ¢* with the relation (26) derived from the primi-
tive MHD equations. This results in a higher accuracy
at the level of the linear theory. Equations (13)-(15)
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should thus be viewed as models which supplement to
the slow Alfvén wave modulation described by the NLS
equation the lowest order coupling to the magnetosonic
waves that evolve on a shorter time scale, without re-
taining other corrective terms arising at the same order
of the expansion. This coupling is necessary to reveal
the presence of a modulation type instability which for
B between v and vgh occurs at intermediate scales, the
largest scales being stable.

2.4 Nonlinear dynamics

In order to study the nonlinear development of the previ-
ously discussed instabilities, pseudo-spectral simulations
of the primitive MHD equations were performed in a pe-
riodic geometry, using as initial conditions a circularly
polarized Alfvén wave perturbed by a small-amplitude
random noise. Comparisons are presented with the pre-
dictions of the envelope equations (16)-(18). In all the
simulations, the wave amplitude was taken equal to 10!
and the magnitude of the noise of order 101, so that
the early time integration reproduces the linear phase.
Both polarizations and various values of the parameter 3
were considered, for a wavenumber k = 0.64 correspond-
ing to a group velocity vy = 1.79 (right-hand polariza-
tion) or vy = 0.51 (left-hand polarization). A dealiasing
procedure was necessary in the regimes dominated by
the long-wavelength instability.

2.4.1 Right-hand polarization

Simulations of the primitive MHD equations for 8 = 4.0,
much in excess of the value § & 3.2 associated with the
resonance vy = (3'/2, show that in the nonlinear regime
solitonic structures for the envelope of the transverse
fields are formed (Fig. 6) and display a recurrent dy-
namics. Furthermore, as seen in Fig. 7, the density adi-
abatically follows the Alfvén wave intensity b? = b2+52.
As shown in Fig. 8, this dynamics is reproduced by
the envelope equations (16)—(18), for which the adia-
batic approximation is also verified. This model thus
reduces to the NLS equation, which in periodic geome-
try leads to a recurrent behavior (Yuen and Ferguson,
1978). Note that, when normalized to the total elapsed
time, the time difference between the snapshots of the
direct simulation and of the model, presented in Fig. 8,
is about 0.05, and thus consistent with the relative error
of order € = 0.1 on the instability growth rates predicted
by Egs. (16)-(18).

Near the resonance, for § = 3.2, the magnetic field
dynamics obtained from the primitive MHD equations
is still of modulational type, and the envelope equa-
tions (16)-(18) provide a good approximation on the
characteristic time scale, which near the resonance varies.
like €=%/3 rather than the usual ¢~2 (Fig. 9). As seen on
Fig. 10, the density no longer follows the variations of
the magnetic field amplitude. Eventually, strongly non-
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Fig. 6. Snapshots of the magnetic field by from the primitive
MHD equations with 8 = 4.0, for an initially weakly perturbed
right-hand polarized wave of amplitude ¢ = 0.1 and k = 0.64.
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Fig. 7. Snapshot of the density p (corrected by a constant) from
the primitive MHD equations (thick line) and the corresponding
adiabatic prediction (thin line), for 8 = 4.0, amplitude ¢ = 0.1,
k = 0.64 and right-hand polarization.
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Fig. 8. Comparison of the squared Alfvén wave intensity obtained
from the primitive MHD equations in the laboratory frame (top),
and the envelope equations (16)~(18) in the Alfvén wave frame
(bottom), for 3 = 4.0, amplitude ¢ = 0.1, k = 0.64 and right-
hand polarization at comparable times (see text).

linear effects develop on the primitive MHD equations,
and a dissipative smoothing of viscous type is required
in the simulation.

In the case B = 2.45, thus well beyond the resonance,
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Fig. 9. Comparison of the squared Alfvén wave intensity obtained
from the primitive MHD equations in the laboratory frame (top),
and the envelope equations (16)—(18) in the Alfvén wave frame
(bottom), for 8 = 3.2, amplitude ¢ = 0.1, k = 0.64 and right-
hand polarization at comparable times (see text).
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Fig. 10. Snapshot of the density p, corrected by a constant (thick
line) and of the squared amplitude of the magnetic field |b|? (thin
line) obtained from the primitive MHD equations, for 8 = 3.2,
amplitude ¢ = 0.1, k = 0.64 and right-hand polarization.

the simulations of the MHD equations show that the dy-
namically relevant scales are not clearly separated from
the carrier wavelength (Fig. 11). The envelope equa-
tions (16)-(18) can only provide a qualitative descrip-
tion of the dynamics, limited on a relatively short period
of time. Even far from the resonance vy, = B2 the
adiabatic approximation does not hold and the MHD
equations rapidly develop strong nonlinear phenomena,
leading to density shocks (Fig. 11, where the small-scale
oscillations are due to the Gibbs effect which develops
in our non-dissipative code).

The question arises whether a better description of
this regime could be provided by the higher-order sys-
tem (33)-(35) that describes the linear phase very accu-
rately. No significant improvement is in fact expected,
mostly because this model does not include the non-
linear magnetosonic wave interactions that play an es-
sential role in the long-time dynamics. Including these
effects by pushing further the expansion would lead to
a system whose numerical integration runs barely faster
than the primitive equations, in a regime where the lack

of scale separation strongly limits the accuracy of the

envelope formalism.
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Fig. 11. Snapshots of the magnetic field by (top) and of the den-
sity p (bottom) obtained from the primitive MHD equations, for
B = 2.45, amplitudee = 0.1, k£ = 0.64 and right-hand polarization.
Shocks are showed on a magnified scale.
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Fig. 12. Snapshots of the magnetic field b, (top) and, on a mag-
nified scale, of the density p (bottom) obtained from the primitive
MHD equations with 8 = 0.21 (left) and 8 = 0.30 (right), for
amplitude e = 0.1, k = 0.64 and left-hand polarization.

2.4.2 Left-hand polarization

As already mentioned, if the carrying wave is left-hand
polarized, modulational and decay instabilities always
coexist and the dynamics depends on the kind of insta-
bility that is prevalent. For a sufficiently small 3 the
decay dominates the long-wavelength modulational in-
stability (see Fig. 5), and strong nonlinearities rapidly
develop, leading to small scales formation on the density
field (Fig. 12, left). The modulational and decay growth
rates become comparable when g slightly exceeds vg. In
this regime, the modulational instability affects scales
that are not large enough to be accurately described by
the envelope equations, and the corresponding evolution
1s seen in Fig. 12 (right). For larger 3, the dynamics is
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governed by a modulational instability at scales compa-
rable to that of the carrier, and density shocks rapidly
form.

3 Long-wavelength dynamics
3.1 The DNLS equation and its generalization

Consider the MHD equations (5-8) for b = b, + ¢b, and
v = vy+iv,. Define the stretched coordinate £ = ¢(x—t)
and the slow time r = €%¢, and also expand

b—_—C%(b1+€b2+---),

2
, Up = €Uy + €“ug + -+

v:e%(v1+ev2+---),
w=14ep +e2pa+---

At order €3/2 one has O¢(b1+v1) = 0, and thus by = —v;.
At order €2, one gets u; = p) = 3 t;‘_; . At order €%/2,
the solvability condition for the equations governing the
transverse fields then leads (writing b instead of ;) to
the DNLS equation

)
O:b+ 5 p-Oech + B¢ (|b]2b) = 0 (37)

4(1-5)

which is integrable by inverse scattering (Kaup and Newell,

1978). By pushing the expansion to higher order and re-
taining the own dynamics of magnetosonic waves (Pas-
sot and Sulem, 1995; Gazol et al., 1999) one gets (drop-
ping again the subscript indices)

, 4 : _
Orb + 0 ((u - :?-) b) =+ maggb =0 (38)
1
0up + 05 pu) + S0¢(u—p) = 0 (39)
2 -1)-1
Oru+ O (%— + "B('YT)pZ)
1 b2
+;6€ (,Bp-—u+ —) =0 (40)

where the presence of the nonlinearities in the equations
for p and u enables a uniform description of the reso-
nance 3 = 1 (Hada, 1993). Kinetic effects are believed to
be especially important in the latter regime, and can be
modeled by means of a non-local additional term in the
equation for the transverse field b (Mjglhus and Wyller,
1988; Spangler, 1990; Medvedev and Diamond, 1995).
A related model (without these nonlinearities) was con-
sidered by Sakai and Sonnerup (1983) who concentrated
on the linear stability. Comparisons with spacecraft ob-
servations are discussed by Spangler (1997).

3.2 Linear stability analysis
The DNLS equation also admits an exact solution in the

form of circularly polarized Alfvén waves b = boe
where, choosing k > 0, ¢ = %1 for right-hand or left-

hand polarization respectively. Linearization of the DNLS

~io(ké—wT)
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Fig. 13. Instability growth rates (modulational and decay)

for amplitude el/2 = 0.25, k = ¢ = 0.0625 at various 8 for
right-hand polarization (panels (a)}-(c}) and left-hand polarization
(panel (d)), from the primitive MHD equations (solid line), the
DNLS equation (37) (dashed line) and the non-adiabatic DNLS
model (38)-(40) (dotted line).

equation (37) about the above solution leads to the dis-
persion relation

ok b2

22K (4 o)
K K? 30kb? 344 B
+(R_?_W+4R,~(l—ﬁ) + 16(1—ﬂ)2) =0 (41

while the same analysis performed on Egs. (38)-(40)
yields

((Q - %’31&) %) ((e@+ K)? - pK?)

—_ -2 - — ¢
b2K (eQ+ 2)(9 oF: A) - 0. (42)
Equation (41) predicts a modulational instability for
right-hand (left-hand) polarized waves when § > 1 +

QE% (respectively £ < 1-2 Y ) which is also displayed
by the numerical resolution of Eq. (42). In the limit of
small amplitude bg, this result reproduces the NLS pre-
diction taken in the long-wavelength limit ¥ — 0. Note
that because of the equality of the group and phase ve-
locities in this limit, the modulational instability always
affects the small wave numbers and is correctly captured
by the adiabatic approximation.

On the primitive MHD equations, in the case of right-

hand polarization, only the decay instability is present
for 8 < 1. For 1 < ﬂ <14 J—— the wave is stable,

while for § > 1 + %f it s modulatlonally unstable.

In the case of left hand polarlzatlon modulational and
2

bR,
rrl

2= < 3 < 1and the

only the

decay instability is present for 1 —
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Fig. 14. Snapshotsof the magneticfield by for 8 = 1.5, amplitude
€l/2 = 0.25, k = ¢ = 0.0625 and right-hand polarization, from the
primitive MHD equations (top), the DNLS equation (medium},
and the non-adiabatic DNLS system (bottom).

wave is stable for # > 1. The corresponding instability
growth rates are shown on Fig. 13 for various values of
B3, together with the predictions of the DNLS models.

The non-adiabatic system (38)—(40) provides a bet-
ter accuracy in predicting the modulational instability
growth rates than the DNLS equation (37), especially
when @3 approaches 1 (Fig. 13(b)). For § < 0.25, it how-
ever suffers from a spurious instability, similar to that
affecting the envelope egs. (13)-(15) and always local-
ized at wavenumbers K > k where the long-wavelength
expansion is not expected to be accurate.

3.3 Nonlinear dynamics

In order to compare the DNLS models and the primitive
MHD equations considered in the long-wavelength limit,
simulations were performed using as initial conditions
a circularly polarized monochromatic Alfvén wave, of
amplitude /2 = 0.25 and wave number ¢ = 0.0625,
perturbed by a very weak random noise.

In the case of right-hand polarization, we used 8 =
1.5, for which only a modulational instability develops.
For the primitive MHD equations, the linear phase sat-
urates at a time =~ 29000 while, due to the error on the
instability growth rate, it saturates sooner for the DNLS
equation (37) and later for its non-adiabatic generaliza-
tion (38)-(40) (the normalized time shift being about
0.17 and 0.06 respectively). Figure 14 displays snap-
shots of the magnetic field, calculated from the MHD
equations and the DNLS asymptotic models. For each
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Fig. 15. Snapshots of the density p (corrected by a constant)
from the primitive MHD equations (top) and the corresponding
adiabatic prediction (bottom), for 8 = 1.5, amplitude el/?2 = 0.25,
k = € = 0.0625 and right-hand polarization .

system, the snapshots are taken at times ¢t = to + 52
and tg + 10e~2, where tg is the corresponding estimated
time of the linear saturation and 5¢~2 = 1280. By com-
paring Figs. 14 (top) and 14 (medium), we note that
the DNLS equation (37) well approximates the prim-
itive system on a time scale 5¢~2, while its accuracy
begins to degrade after a time 10¢~2, when the adia-
baticity no longer holds and strongly nonlinear density
cusp start to form (Fig. 15). On this time, the non-
adiabatic system (38)-(40), which retains the essential
nonlinear couplings between the fields, provides a bet-
ter approximation of the MHD equations, as seen from
a detailed inspection of Figs. 14 (top) and 14 (bottom).

Left-hand polarized Alfvén waves are stable for § > 1,
therefore we investigate the case g = 0.5. Integration
of the primitive MHD equations in this regime shows
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Fig. 16. Snapshots of the magnetic field by (top) and of the
density p (bottom) obtained from the primitive MHD equations,
for 8 = 0.5, amplitude e!/2 = 0.25, k = € = 0.0625 and left-hand
polarization.
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that the decay instability predominates over the mod-
ulational one and rapidly leads to a strongly nonlinear
phase, with the formation of strong density gradients
(Fig. 16).

4 Conclusion

Direct numerical simulations of parallel-propagating one-
dimensional small-amplitude Alfvén wave trains were
compared to the predictions of the envelope formalism
and of DNLS-type equations in the small-dispersion re-
gime. As well known, these asymptotic models do not
retain backscattered Alfvén waves and thus ignore the
decay instability which, when it coexists with the long-
wavelength modulational instability, appears to be dom-
inant. We note that a non-adiabatic dynamics for the
density and longitudinal velocity is not restricted to the
neighborhood of the resonance vg = B. The own dy-
namics of the magnetosonic waves is to be retained in
order to capture the modulation type instabilities which
develop for 3 between v; and vgh and affect scales com-
parable with that of the carrier, even when the ampli-
tude of the latter is small. It is however important to
stress that the present observations concern the evolu-
tion of a slightly perturbed plane wave. As discussed by
Spangler et al. (1997), the strength of the decay instabil-
ity could in particular be reduced in the case of a wave
with a finite bandwidth. Other studies are to be per-
formed to test the envelope formalism for a dispersive
wave packet of finite extension and to analyze the pre-
dictions of the long-wavelength reductive perturbative
expansion in the case of localized solutions. Of special
interest is the quantitative characterization of the sta-
bility of a DNLS soliton when the parameter (3 is varied,
a question initiated by Buti et al. (1998). Another point
concerns situations where transverse perturbations are
allowed (Vinas and Goldstein, 1991a,b). In the case of
small-amplitude waves, the envelope formalism predicts
a possible filamentation instability and the collapse of
the Alfvén wave (Shukla and Stenflo, 1989), with the
formation of sharp magnetosonic fronts (Champeaux et
al., 1997). The influence of the decay instability in this
regime is to be explored.
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