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1. Introduction

The generally accepted explanation of the sunspot cycle is in terms of a
kinematic af2-dynamo wave propagating with fixed period from the pole
to the equator (see Parker [1]); for a recent review see Riidiger and Arlt
[2]. Since such oscillatory behaviour is a robust feature generic to all af2-
dynamo models, the simplicity of the idea is compelling. Both solar and
stellar dynamos generally operate in convective spherical shells. There are
two limiting cases, namely thick or thin shells as characterised by the ratio
€ of the shell thickness to shell radius. In the thick shell limit, it is necessary
to consider the full partial differential equations involving the radial and
latitudinal dependence. Conversely in the thin shell limit € < 1, it is pos-
sible to average the dynamo equations radially leaving a one-dimensional
system dependent on the latitude # alone.

Numerical integrations (Moss et al. [3]) of the full partial differen-
tial equations governing axisymmetric af2-dynamos in the thin shell limit
€ € 1, upon which we will focus, indicate that there is a short latitudi-
nal length scale comparable to the shell depth. Advantage of this feature
was taken by Kuzanyan and Sokoloff [4], who employed WKBJ methods
to solve the one-dimensional kinematic af2-dynamo system with latitudi-
nally dependent a-effect and differential rotation. This non-uniform back-
ground is characterised by local magnetic Reynolds numbers with func-
tional forms —e7'R,, f(#) and £72Rqg(#) respectively; the product of the
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dimensionless parameters —s~'R, and £ ?Rq defines the dynamo num-
ber —e73D = —¢3R,Rq. The quasi-kinematic extension, in which the
a-effect is quenched, was investigated both analytically and numerically by
Meunier et al. [5]. Strictly the af-dynamo case corresponds to R, — 0.
When R, is finite, the dynamo is of a*Q-type, for which Griffiths et al. [6]
undertook the corresponding analytic development (but see also Meunier
et al. [7]). In this paper we summarise some of their key results and out-
line further recent developments, which include new supporting numerical
evidence.
Our a?Q-dynamo waves are governed by the model equations
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where, in suitable dimensionless units, ¢ is time, B and —eR,0A/06 are
the azimuthal and radial magnetic fields respectively (|B]is the total field),
and the scaled dynamo number

D := R, Rq (2)

has the opposite sign to that often employed. We restrict our discussion to
the particular case f(#) := sin @ and g(#) := 2cos# and so introduce the
scaled a-effect Reynolds and Dynamo numbers

R(0) = Rysinb and D(8) = Dsin(26), (3)

respectively.

The reduced problem is characterised by the two parameters R, and D.
To understand the nature of the solutions that our numerical integrations of
(1) reveal, it is helpful to note the simple steady state solutions with long
azimuthal length scales. For them, all § derivatives in (1) are negligible
except in thin boundary layers which have no significant consequences. So
restricting attention to the Northern hemisphere, the zero amplitude state
bifurcates to R, A = B = Bg(#), where

{ +/(R(#)—1)/2  onapolarcap 0Os<68<7w/2,

0 elsewhere on 0 <6 < g,

Bs(0) = (4)

and 65 = sin"!(1/R,). There is a polar boundary layer of latitudinal length
scale O(e) across which adjustments of A and B are made to meet the po-
lar boundary conditions. There is a boundary layer also at fg leading to



exponentially small values of the magnetic field at the equator = 0. Con-
sequently the nature of our asymptotics means that we cannot comment on
symmetry as we are unable to distinguish between dipole and quadrupole
parity. This is a general feature of the thin shell limit which is not restricted
to these particular a?-dynamo modes. Only for thick shells can these im-
portant parity issues be addressed (see e.g. Jennings [8] and Tobias [9]).

Our main concern is with the bifurcation to short length scale travelling
waves either as a primary bifurcation from the zero amplitude state or as a
secondary bifurcation from the steady finite amplitude state (4). For fixed
R, that bifurcation occurs at some critical value D.(R,) of the dynamo
number D with some critical frequency w.. The latitudinal length scale of
these modes is O(g). We also determine the nature of the fully developed
finite amplitude travelling wave states. These are localised at mid-latitudes
and can be identified simply by demanding that the magnetic field associ-
ated with them decays to zero as both the pole and equator are approached.
They also have the generic feature that these (Parker [1]) waves evaporate
smoothly at some latitude #p at the equatorial end but are terminated
abruptly across a front of width O(g) (the wave length scale) at some lat-
itude @ at the polar end. The presence of fronts in this class of dynamo
problems was first identified by Worledge et al. [10] in the case of a uni-
form background state. Much of the underlying analytical theory for our
non-uniform background is reviewed by Soward [11].

2. Linear Theory

Since the waves of interest have short O(e) length scale, we consider a
WHKBJ representation of small perturbations locally proportional to

exp(i€), where Ei=wt+efkdd. (5)

In the case of perturbations to the non-magnetic basic state, the complex
frequency w is related to the complex wave number k() by the dispersion
relation

(iw + 14+ kH? = R*(1 + k*) — iDk =0. (6)

For perturbations to the steady a?-dynamo (4), we write
[aA, Bl = Bs(0)[1,1] + [Raa(8), b(0)] exp(i&) (7)

and the most important consequence of Bg # 0 is that the a-effect is
quenched. As a result the coefficient of the exponential of the linearised
perturbation to
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Thus linearising (1) leads, for R > 1, to the local dispersion relation
[+ 1+ +1-R P -R MM+ - (1-R Y -iR*Dk=0 (9)

which replaces (6) at locations 6, where Bg(#) # 0. Of course, both relations
are identical at 05, where R(fs) = 1.

In order that the WKBJ solution is a uniformly valid approximation
everywhere between the equator and the pole it is necessary that both the
complex group velocity and complex phase mixing vanish,
wr =0, wg =10, Im{w} = 0, (10)

)

at some 6. and k. possibly complex (see Huerre and Monkewitz [12]). These
conditions have been applied to the dispersion relation (6). When R, = 0,
6. is located at 7 /4, the local dynamo number maximum, but k. is complex
(see Kuzanyan and Sokoloff [4]). This means that the maximum of the
generated magnetic field is localised elsewhere at a lower latitude s (say).
As R, is increased, 8.(R,) moves off the real axis and becomes fully complex
like k.(R,) (see Griffiths et al. [6]). Otherwise, the characteristics of the
solution are similar to the localised R, = 0 af2-dynamo wave.

3. Nonlinear Analytic Theory

Weakly nonlinear theory is difficult to implement in the small e-limit and
leads to surprisingly complicated results (see Griffiths et al. [6], Bassom
et al. [13]). Its range of applicability is limited to a very small region of
parameter space and the results that can be obtained are not that helpful
(see Le Dizes et al. [14]).

A more fruitful approach is to study fully developed finite amplitude
states. Unlike the marginal small amplitude solutions which are localised
in the neighbourhood of some latitude 8y, the finite amplitude waves exist
over the extended range 0p < 6 < Op. These travelling wave solutions
depend locally on the single variable £ (see (5)) and have amplitude and
wavelength 27 /k (real) which vary with latitude 6. They merge smoothly
with the linear WKBJ solutions at #p. On the other hand, the simple wave
structure just described is lost at 6, where the frontal structure depends
on both (6 — #F)/c and ¢ explicitly.

In fact the role of the front may be thought of in terms of a wave
transition problem. The arrival of the finite amplitude wave at the front
leads to linear transmitted and reflected waves. The linear transmitted
waves provide the key to the existence of the front itself. According to both
(6) and (9), there are four roots for k leading to four distinct WKBJ type
solutions. Only those which decay towards the pole are acceptable and the
others that grow have to be rejected. This is only achieved when two of the



roots coincide, which is equivalent to the vanishing of the complex group
velocity
wr =10. (11)

The importance of this frontal condition was identified by Dee and Langer
[15] and is now known as the Dee-Langer condition. The double root feature
means that the two corresponding WKBJ solutions are disentangled in a
thicker transition layer ahead of the front (see Meunier et al. [5], Bassom
et al. [13], Bassom and Soward [16] and also Pier et al. [17]).

To determine the finite amplitude solution, the Dee-Langer condition
is applied to the linear dispersion relation. For given R, and D, this leads
to explicit values of real w and 6p but complex k(6r), when they exist. In
one sense the value of the frequency w is the key to the solution as well
as being the focal point of physical applications (see e.g. Riidiger and Arlt
[18]). Once it is determined, the remaining characteristics follow.

For given R, the minimum value Dy, at which frontal solutions exist
is of interest. For R, = 0, it coincides with the critical value; Dpin = D,
but for R, > 0, the frontal solutions are subcritical; Dpin < D.. From
a mathematical point of view this subcriticality is traced to the complex
value of #.. The fact that 8. moves further from the real axis signals the
stabilising influence of phase mixing on the linear solution; the nonlinear
frontal solution relaxes the phase mixing constraint because the Dee-Langer
condition is not concerned with w g.

4. Nonlinear Numerical Results

We integrated the governing equations (1) as an initial problem from an
arbitrary seed field. The numerical solutions were computed until the tran-
sients had died away leaving a periodic solution. The numerical method
used a pseudo—spectral tau—collocation method with the Chebyshev poly-
nomials. The time stepping is performed with a Crank—Nicholson method
for the diffusion terms, and the Adams—Bashford method for the remaining
terms. All the selected results reported here are for the case

e =7/600, (12)

which was employed in the original R, = 0 calculations of Meunier et al. [5].
This value is certainly far smaller than is appropriate for solar applications
for which ¢ is about 1/3. We adopt the small value 7/600 to emphasise the
asymmetry of the solutions and the frontal structure.

For the case R, = 0, the asymptotics predicts the values D, = 8.71,
w. &= 1.73, and Dyin = D., wpin = we. In figure 1 we display the numeri-
cally computed amplitude of B at some fixed time for D = 9.0. The e — 0
analytic theory, predicts that w = w. and 20p /7 = 0.58. Our numerical
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Figure 1. The case R, =0, D =9.0.
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Figure 2. The case Ry, = 1.0, D = 9.0.

results, which are comparable to those reported by Meunier et al. [5], de-
termine w = 1.747, while the analytic value of 8 is consistent with figure 1.
The front width is seen to be about two wavelengths as illustrated also by
Tobias et al. [19]. This is a robust feature which is not particularly sensitive
to the value of D. On the other hand, the latitudinal range broadens and
the amplitude of the magnetic field increases with D.

For the case R, = 1, the asymptotics predicts the values D. = 7.26,
we &= 1.44, and Dy = 6.98, wnin ~ 1.35. In figure 2, we again plot the
numerically integrated B, and it illustrates essentially the same features as
figure 1. The realised frequency w = 1.25 is close to the analytic predic-
tion w = 1.148, while the front location is visably close to the analytical
prediction 26y /7 = 0.777.

The case R, = 1.4 illustrated in figure 3 is particularly interesting
because the basic state has bifurcated to the steady a?-state. The defect
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Figure 8. The case Ry, = 1.4, D = 9.0.

visible at the pole is due to the application of zero boundary conditions
there. It may be removed by application of more physically realistic bound-
ary conditions but does not affect the results elsewhere. The front is clearly
visible riding on the steady state solution. Applying the Dee-Langer con-
dition to formula (9) appropriate to that finite amplitude state determines
w = 1.381, 20 /7 = 0.5778. The numerical results yield w = 1.446, which
together the visibly estimated value of 8y provide a healthy agreement
between the theory and numerics.

Preliminary numerical calculations at higher values of D for various
values of R, suggest that the solution bifurcates and introduces second
frequencies; further bifurcations lead on to chaos. An interesting feature
is that for given R, and D, the different frequencies might dominate at
different latitudes. Nevertheless, the dominant frequency at the front was
always found to be that predicted by our use of the Dee-Langer criterion.
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