THE ASTROPHYSICAL JOURNAL, 626:853—863, 2005 June 20
© 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A.

DYNAMO REGIMES WITH A NONHELICAL FORCING
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ABSTRACT

A three-dimensional numerical computation of magnetohydrodynamic dynamo behavior is described. The dynamo
is mechanically forced with a driving term of the Taylor-Green type. The magnetic field development is followed from
negligibly small levels to saturated values that occur at magnetic energies comparable to the kinetic energies. Although
there is locally a nonzero helicity density, there is no overall integrated helicity in the system. Persistent oscillations are
observed in the saturated state for not-too-large mechanical Reynolds numbers, oscillations in which the kinetic and
magnetic energies vary out of phase but with no reversal of the magnetic field. The flow pattern exhibits considerable
geometrical structure in this regime. As the Reynolds number is increased, the oscillations disappear and the energies
become more nearly stationary, but retain some unsystematically fluctuating turbulent time dependence. The regular
geometrical structure of the fields gives way to a more spatially disordered distribution. The injection and dissipation
scales are identified, and the different components of energy transfer in Fourier space are analyzed, particularly in the
context of clarifying the role played by different flow scales in the amplification of the magnetic field. We observe that
small and large scales interact and contribute to the dynamo process.

Subject headings: magnetic fields — MHD
Online material: color figures

1. INTRODUCTION

Evidence of the existence of magnetic fields is known in many
astronomical objects. These fields are believed to be generated
and sustained by a dynamo process (e.g., Moffatt 1978), and
often these objects are characterized by the presence of large-
scale flows (such as rotation) and turbulent fluctuations. These
two ingredients are known to be often associated with magneto-
hydrodynamic dynamos. In recent years, significant advances
have been made either studying large-scale flow dynamos in the
kinematic approximation or using direct numerical simulations
to study turbulent amplification of magnetic fields in simplified
geometries.

In a previous paper (Ponty et al. 2005), a study of the self-
generation of magnetic fields in a turbulent conducting fluid
was reported. The study was computational and dealt mainly
with the effects of lowering the magnetic Prandtl number P,
of the fluid (ratio of kinematic viscosity to magnetic diffusivity).
The velocity field was externally excited by a forcing term on the
right-hand side of the equation of motion whose geometry was
that of what has come to be called the Taylor-Green vortex
(Taylor & Green 1937; Morf et al. 1980; Pelz et al. 1985; Nore
etal. 1997; Marié et al. 2003; Bourgoin et al. 2004). The regime
of operation was one of kinetic Reynolds number >1 (so that
the fluid motions were turbulent), and the emphasis was on how
large the magnetic Reynolds numbers had to be for the infini-
tesimal magnetic fields to be amplified and grow to macroscopic
values.

Here, we want to describe and stress another aspect of the
Taylor-Green dynamo. In particular, we have found computation-
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ally that it has an oscillatory regime, for not too large a Reynolds
number, in which energy is passed back and forth regularly be-
tween the mechanical motions and the magnetic excitations in a
way we believe to be new. Out of the velocity field emerges a
geometrically regular, time-averaged pattern involving coherent
magnetic and mechanical oscillations.

As the Reynolds number is increased, the resulting flow has a
well-defined large-scale pattern and nonhelical turbulent fluctua-
tions. In this case, the oscillations disappear, and the magnetic
field grows at scales both larger and smaller than the integral scale
of the flow. After the nonlinear saturation of the dynamo, veloc-
ity field fluctuations are partially suppressed, and a magnetic field
with a spatial pattern reminiscent of the low Reynolds number
case can be identified. This complex evolution of the magnetic
field can be understood by studying the role played by the energy
transfer in Fourier space.

In § 2, we describe the numerical experiments and outline a
typical time history of the development of an oscillatory dy-
namo. We then go on to show how, by increasing the Reynolds
number, the oscillatory behavior can be suppressed. In § 3, we
make use of color displays of the field quantities to demonstrate
the cycle of the oscillation and to reveal the intriguing and com-
plex varying three-dimensional pattern that characterizes it. The
pattern, although regular, is difficult to see through completely
in physical terms. Finally, § 4 suggests some precedents, pro-
vides a partial explanation, and considers other similar situations
in which such coherence may or may not be expected to emerge
out of turbulent disorder.

2. THE COMPUTATION

The Taylor-Green vortex is a flow with an initial periodic
velocity field

sin(kox) cos(koy) cos(koz)

vrg(ko) = (1)

—cos(kox) sin(koy) cos(koz)
0
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and was originally introduced as an initial condition that, al-
though highly symmetric, would lead to the rapid development
of small spatial scales (Taylor & Green 1937). We introduce it
here on the right-hand side of the magnetohydrodynamic (MHD)
equation on motion for the velocity field v:

%H.W — VP 4jxB - Vxw+ Forg,  (2)

where B is the magnetic field, advanced by

%—I:Jrv-VB:B-Vv—anj. (3)

Equations (2) and (3) are to be solved pseudospectrally. The
current density is j = V x B (we use the common dimensionless
Alfvénic units), F is a forcing amplitude, and ky = 2(27/L),
where L = 27 is chosen as the basic periodicity length in all three
directions. In the incompressible case, Vv =0 and VB =
0; v~ ! and n~! are (dimensionless) mechanical and magnetic
Reynolds numbers, since we take as characteristic velocity and
length Uy = 1 and Ly = 1 leading to an eddy turnover time of
order unity; and P is the dimensionless pressure, normalized by
the (uniform) mass density.

The strategy is to turn on a nonzero force F att = 0 and allow
the code to run for a time as a purely Navier-Stokes code, with
the B andj fields set at zero. The initial velocity field is given by

F
vy = ——V v, (4)
124

and the amplitude of F is set to obtain an initial unitary rms
velocity. As the system evolves, more modes are excited and the
dissipation increases. To maintain the kinetic energy at the same
level, the amplitude of the force is controlled during the hy-
drodynamic simulation to compensate the dissipation. At each
time ¢, the energy injection rate,

e=F(f) / vevG d X, (5)
and the enstrophy,
1 2 3
QZE (Vxwv) d’x, (6)

are computed, and the amplitude of the external force needed
to overcome dissipation is computed as

o 200F (1) . 0
€

The response of the velocity field to the change in the external
force has a certain delay, and to avoid spurious fluctuations the
average value (F*) of this quantity is computed for both the last
nine time steps and the averaged error in the energy balance
E = (2v8) — €). Finally, the amplitude of the external force at
time ¢ + At is updated as

F(t+ Af) = 0.9F" + (0.1(F*) + 0.016)/9.  (8)

Once a stationary state is reached, the last computed amplitude
of the force can be used to restart the simulation with constant
force instead of constant energy. In this case, the energy fluc-
tuates around its original value, and the rms velocity averaged
in time is unity. This value of the rms velocity and the integral
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length scale L, of the resulting flow are used to defined the
Reynolds numbers in the following sections. For a different
scheme to compensate the dissipation, see e.g., Archontis et al.
(2003).

Once the stationary kinetic state is reached, the magnetic
field is seeded with randomly chosen Fourier coefficients and
allowed to amplify. All the MHD simulations are done with
constant force, and the amplitude F is obtained as previously
discussed. The initial magnetic field is nonhelical, with the mag-
netic energy smaller than the kinetic energy at all wavenumbers,
and a spectrum satisfying a k> power law at large scales and an
exponential decay at small scales. A previous paper has described
the “kinematic dynamo” regime, in which the magnetic excita-
tions, while growing, are too small to affect the velocity field yet
(Ponty et al. 2005). In particular, a threshold curve for magnetic
field amplification was constructed in the plane whose axes are a
magnetic Prandtl number, Py, = v/n, and a magnetic Reynolds
number. As P;,! increases, there is a sharp rise in the dynamo
threshold, followed by a plateau. Here, the purpose is to follow
the evolution of B out of the kinematic regime and observe what-
ever saturation mechanisms may set in.

3. COMPUTATIONAL RESULTS

Table 1 summarizes the parameters of the four runs we have
carried out. Runs A and A’ have relatively low mechanical and
magnetic Reynolds numbers (~40, based on the integral length
scale and the rms velocity), while runs B and B’ have mechan-
ical Reynolds numbers of Ry = 675. The magnetic Reynolds
numbers R, for runs A and A’ are 33.7 and 37.8, respectively,
while those for B and B’ were 240.2 and 270, respectively. These
values of Ry, were in all cases above the previously determined
thresholds (Ponty et al. 2005) for magnetic field growth (see
Fig. 1). Note that R, for runs A and B is 6% above the threshold,
while runs A’ and B’ are 20% above the threshold. We chose
ko = 2 in all cases, so that the kinetic energy spectrum peaks
at k = kov/3 ~ 3. As previously mentioned, the amplitude of
the external force was constant during the MHD simulation, and
given by F = 0.926 in runs A and A’, and F = 0.37 in runs B
and B'.

The definitions of the Taylor microscale 4 and the integral scale
L;,, in Table 1 are based on the kinetic energy spectrum Ey (k),

Lin =27 / K=V Ey (k) dk / / Ey (k) dk, (9)

x:27r[/EV(k)dk//k2EV(k)dk} 1/2. (10)

Note that the usual turbulent relationships between these two
quantities based on the mechanical Reynolds number do not
hold, since the energy spectra of runs A and A’ do not display an
inertial range.

3.1. Low Reynolds Numbers and Close to the Threshold

The behavior at saturation is very different for the high and
low Reynolds numbers. The histories of the energies for runs A
and B (both 6% above threshold) are displayed in Figure 2. The
upper two curves are the kinetic energies of these runs, a solid
line for run A and a dotted line for run B. The lower two curves
are the magnetic energies, with the same conventions. The or-
igin of time is chosen from the moment when the seed magnetic
fields are introduced.

It is clear that saturation is achieved unsystematically for the
high Ry run B, with the resulting magnetic energy being smaller
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TABLE 1
SIMULATIONS

Run v n Ry Ry R,® Py Lint ¢ N¢ A°®
5% 1072 6x 1072 40.5 33.7 31.7 0.83 2.02 1.69 643 6
2x1073 5.62x1073 675 240.2 226.4 0.35 1.35 0.6 256° 6
5%1072 5.35x 1072 40.5 37.8 31.7 0.93 2.02 1.69 64° 20
2x1073 5%x1073 675 270 226.4 0.4 1.35 0.6 2563 20

Note.—The Reynolds numbers Ry and R, are based on the integral length scale L.

# Critical Reynolds number obtained for the given Ry.

° The magnetic Prandtl number is Py = v/n.

¢ Taylor scale.

4 Spatial grid resolution used in the simulation.

¢ Gives the percentage above threshold in R, for each simulation.

than the kinetic energy and both being in a statistically steady
state. The solid lines associated with the lower Reynolds num-
ber run A, however, show a systematic, sharp oscillation in both
energies, with the maxima of one almost coinciding with the
minima of the other. This is clearly a significantly different be-
havior from the high Ry case, and is only partially understood.
Such out-of-phase oscillations have already been observed in the
nonlinear regime in constrained geometries, for example, by using
a quasi-geostrophic model for strongly rotating flows (Schaeffer
2004) or a 2.5-dimensional formulation for the Ekman layer in-
stability (Ponty et al. 2001).

In the two simulations presented in Figure 2, R;,is 6% larger
than RS, and the growth rates during the kinematic regime are
similar. While 7 is 1 order of magnitude smaller in run B than
in run A, the nonlinear saturation in both runs takes place at
approximately the same time. In both runs the integral eddy
turnover time is approximately the same. This contrasts with dy-
namos in flows with net helicity, in which the nonlinear satura-
tion was shown to occur in a magnetic diffusion time (Brandenburg
2001) (the diffusion time based on the integral lengthscale of the
flow is of the order of 60 for run A and 360 for run B). Note that
although the flow generated by the Taylor-Green force is locally
helical, the net helicity of the flow in the entire domain is zero.

The forcing term generating the flow from equations (2)
and (3) is initially entirely in the horizontal (x, y) directions. It
is essentially a vortical flow whose phase oscillates with in-
creasing z. The velocity field in equation (2) is not, however,
a steady state, and vertical (z) components develop quickly,

100

P P
100 1000
Ry
Fic. 1.—Critical magnetic Reynolds R}, for dynamo action (solid line) in-
ferred from direct numerical simulations (crosses), as a function of Ry (Ponty
et al. 2005). The position of the runs discussed in Table 1 are indicated by sym-
bols: run A (diamond), A’ (triangle), B (square), and B’ (asterisk).

leading to an approximately meridional flow to be added to
the toroidal one in each cell. A total streamline will resemble
the shape of a wire wrapped around the outside of a doughnut,
diagonally, which enters the hole of the doughnut at the bottom
and emerges at the top. This flow shares similarities with the
Cadarache and Wisconsin sodium experiments, and it has mo-
tivated several numerical studies of dynamo action at Py, = 1.
For a detailed description of the flow, we refer the reader to
Nore et al. (1997) and Mari¢ et al. (2003).

The amplification process for the magnetic field is difficult to
visualize in this geometry. Field lines seem to be sucked into the
hole of the doughnut and stretched and twisted in the process.
The resulting amplified magnetic flux is then deposited and
piled up in the horizontal planes between the cells. This flux, in
turn, is the source of the field lines, which are further sucked
into the holes in the doughnut and amplified. In the kinematic
regime, but in a different geometry (including boundary con-
ditions), the amplification of a magnetic field by a similar flow
was also discussed in Marié et al. (2003) and Bourgoin et al.
(2004).

Throughout the process, the rate of doing work by the mag-
netic field on the velocity field originates in the Lorentz force
contribution, —(j x B)-v. This energy input into the magnetic
field is ohmically dissipated by the 77 /2 integral. As the magnetic
field grows, the fluid must work harder mechanically, because
j and B are increasing. Since F'is constant, eventually a limit is
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Fic. 2.—Time history of kinetic (upper curves) and magnetic energy (lower
curves) for run A at low Reynolds (solid lines) and B at high Reynolds (dotted
lines), both 6% above threshold. [See the electronic edition of the Journal for a
color version of this figure.]
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Fic. 3.—Fourier spectrum of —( j;a?)k + v for different times, for run A, for
one oscillation.

reached at which » can no longer transfer energy to B at its
previous rate and slows down. At that point, the magnetic en-
ergy begins to be transferred in the reverse sense, so that v
grows again as j and B become weaker. The cyclic nature of the
process ensues.

It is revealing to decompose (jxB)-v spectrally and plot
the Fourier spectrum of —(jxB), * v} as a function of k, where
the asterisk denotes a complex conjugate and the real part is to
be assumed, as shown in Figure 3 for run A. The peak near k =
3 shows that this is the region where the mechanical work is
being done to create the magnetic energy. The curve is plotted at
four times during a complete oscillation, including ¢ = 344,
when the magnetic energy is at its maximum during the cycle,
and ¢t = 360, when the magnetic energy is at its minimum.

There is considerable structure to the flow for these low
Reynolds number cases, anchored by the driving term in equa-
tion (2). Figure 4 shows instantaneous plots of the velocity field
components along a vertical cut at x = 37/8 and y = /4, as
functions of z for run A. This cut corresponds to a line in the
z-direction displaced (in the x-y plane) out of the center line of
the vortices imposed by the external Taylor-Green force (corre-
sponding to x = y = n/4). Plotted in Figure 4a is (v2 + vf)”2
versus z, and in Figure 4b, v, versus z. In both curves, four dif-
ferent times are shown. In this cut, v, corresponds to the ampli-
tude of the toroidal flow associated with the vortices imposed
by the forcing, while (v2 + v2)"/? can be associated with the me-
ridional flow previously defined. Note the mirror symmetries sat-
isfied by the flow. As the oscillations evolve, not only is the
amplitude of the flow changed, but the position of the maxima
are also slightly displaced. The flow geometry is clarified in more
detail in Figure 5.

Figures Sa and 5b exhibit cross-sectional plots of the velocity
field in the plane z = 0 at two different times for run A. The
arrows show the directions of v,-v,, and the colors indicate the
values of v,, positive (light) or negative (dark), at the same
locations. Note the 16 vortices imposed by the external Taylor-
Green forcing with k) = 2. The amplitude of these vortices is
modulated in z, and at /2 the same structure is obtained in the
flow but with the vortices rotating in the opposite direction.
Most of the stretching of the magnetic field takes place in these
cells. Between these structures, at z = /4, stagnation points are
present where the magnetic field piles up, as will be shown.

Figures 5c¢ and 5d display similar plots at the plane y = 7/4,
with vy, v; indicated by the arrows, and v, by color. The regions
of alternating color correspond to the cross section of the vor-
tices imposed by the Taylor-Green forcing. The meridional flow
can also be identified in these cross sections. However, note that
this flow during the cycle is modified by the magnetic field in a
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Fic. 4—(a) (U% +vf)1’/2 and (b) v, as a function of z at x = 37/8 and
y = 7/4, and at different times for run A, for one oscillation.

more dramatic way than the toroidal flow. As shown in Figures 3
and 4, the Lorentz force mostly opposes the velocity field at
large scales. The final effect of the magnetic field on the flow
seems to be to suppress small-scale fluctuations, leaving a well-
ordered pattern. This effect is more dramatic at large Ry, as
shown in § 3.2.

Figures 6a and 65 show the magnetic field in the planez = 0
at the same times with the same conventions (By, B, are arrows,
B, is indicated by color), again for run A. The stretching of mag-
netic field lines by the toroidal flow can be observed in these
sections. Figures 6¢ and 64 show the magnetic field in the plane
y = m/4 at the same times, and with the same plotting conven-
tions. Note in dark and light colors the horizontal bars where
most of the magnetic energy is concentrated. These regions corre-
spond to stagnation planes of the external Taylor-Green forcing.

Finally, Figure 7 shows the magnetic field in the plane z =
m/4 at different times for run A. This is a plane between rows of
basic cells and is a candidate where the amplified flux “piles
up” as previously indicated. It is apparent that the dynamical
variation is much less in this plane during the cycle. Also in
Figure 7 note the presence of locally “dipolar” structures (light
and dark regions) centered in each of the Taylor-Green cells.
These structures correspond to the almost uniform (and mostly
concentrated in the x-y plane) magnetic field being sucked into
the hole of the doughnut given by the Taylor-Green force.

A more detailed picture of the dynamics of the forced Taylor-
Green dynamo at low Reynolds numbers has eluded us, but it is
imaginable that in less complex flows a more comprehensive
understanding of the low R}, nonhelical dynamo may be possible.
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Fig. 5.—Upper panels: Cross-sectional plots of the velocity field in the plane z = 0 at (@) t = 352 and (b) ¢t = 368, for run A. The arrows show the directions of
vy, vy, and the colors indicate the values of v., positive (light) or negative (dark). Lower panels: Cross-sectional plots of the velocity field in the plane y = 7/4 at
(¢)t =352 and (d) t = 368 (v, v- is indicated by the arrows, and v, by the color). [See the electronic edition of the Journal for a color version of this figure.]

3.2. High Reynolds Numbers and Farther from the Threshold

Runs B and B’ involve higher Reynolds numbers and behave
rather differently from runs A and A’. Figure 8 contrasts the
time histories of the kinetic energies and magnetic energies for
run A’ (solid lines) and run B’ (dashed lines), both 20% above
threshold. The upper curves are kinetic energies and the lower
curves are magnetic energies. It is clear that runs B and B’
saturate at a level of near equipartition and do not exhibit the
oscillatory behavior seen in the lower Reynolds number runs.
Run A’ retains a vestige of the periodic behavior, seen most
clearly in the magnetic energy curve, which is quasi periodic or
close to “chaotic.” Note the overshooting of the magnetic en-
ergy for run B’ near ¢t ~ 150, linked to the large drop in kinetic

energy. Note also the similar growth rates (as for runs A and B),
although the magnetic diffusivities differ again by almost an
order of magnitude.

During the exponential period of the magnetic energy
growth, it is of interest to note that the various Fourier modes
all appear to be growing at the same rate in run B’ (the same
effect is observed in run B). This can be seen by separating the
Fourier space into “‘shells” of modes of the same width Ak.
The time histories of these shells are plotted in Figure 9. In the
inset, all the shells have been normalized to have the same
amplitudes per k~-mode at # = 4, to show that the exponentiation
rates up to about # = 30 are the same or nearly so. This behavior
is characteristic of small-scale dynamos (Kazantsev 1967;
Brandenburg 2001). Note that after # = 30 the shell with £k = 2
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Fic. 6.—Upper panels: Cross-sectional plots of the magnetic field in the plane z = 0 at (@) ¢ = 352 and (b) t = 368, for run A. Lower panels: Cross-sectional plots
of the magnetic field in the plane y = 7/4 at (¢) t = 352 and (d) ¢ = 368. Same conventions as in Fig. 5. [See the electronic edition of the Journal for a color version

of this figure.]

seems to start growing faster than the small-scale modes. Shortly
after this time, the small scales saturate and the large-scale mag-
netic field keeps growing exponentially up to # = 150.

Although here and in the following discussion we consider
quantities averaged over angle in Fourier space to discuss the
statistical evolution of kinetic and magnetic energy at different
scales, it should be noted that a mean flow appears superimposed
upon the turbulent fluctuations, as a result of the nonrandom
external forcing. This mean flow should not be expected to be iso-
tropic or homogeneous, as is usually assumed for Kolmogorov’s
turbulence.

The total kinetic energy spectra (thick lines) and magnetic
energy spectra (thin lines) for run B’ are shown in Figure 10.
Only two kinetic spectra are shown, at times t = 11.4 and ¢t =

181.8. At early times, the magnetic energy spectrum peaks at
small scales (k =~ 9), and the spectrum at large scales seems to sat-
isfy a k%2 power law, as already observed for the Taylor-Green
flow (Ponty et al. 2005), and for other flows as well (Haugen
et al. 2004). The magnetic energy increases from¢ = 11.4tot =
181.8 and eventually dominates the kinetic energy at the longest
wavelength.

The appearance of these quasi-DC components of the magnetic
field seems to have a profound effect on the short-wavelength
kinetic spectral components, depressing them by an order of mag-
nitude, as is also visible from the thick dashed line in Figure 10.
The most straightforward interpretation is in terms of what is
sometimes called the Alfvén effect. The idea is that in incom-
pressible MHD, any nearly spatially uniform, slowly varying
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Fic. 7.—Cross-sectional plots of the magnetic field in the plane z = 7/4 at (a) t = 352 and (b) t = 368, for run A. Same conventions as in Fig. 5. [See the

electronic edition of the Journal for a color version of this figure.]

magnetic field forces the small-scale excitations to behave like
Alfvén waves. In an Alfvén wave, the energy is generally equi-
partitioned between magnetic field and velocity field, and any
mechanism that damps one will damp the other. Since n > v
when Py, < 1, the Kolmogorov “inner scale” can be defined
entirely in terms of energy dissipation rate and 7, regardless of
how much smaller the viscosity is.

This was already observed in closure computations of MHD
turbulence at low Py, by Léorat et al. (1981). Although in our
simulations the magnetic Prandtl number is not small enough to
ensure a large-scale separation between the different dissipative
scales, to the best of our knowledge this is the first time this
effect predicted by closures has been observed in a direct nu-
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Fic. 8. —Time history of kinetic (upper curves) and magnetic energy (lower
curves) for run A’ at low Reynolds number (solid lines) and B’ at high Reynolds
number (dotted lines), both 20% above threshold. The arrows on the top of the
figure represent the times at which the transfer terms displayed in Fig. 11 are
evaluated. [See the electronic edition of the Journal for a color version of this
Sigure.]

merical simulation. In a previous work (Ponty et al. 2005), the
behavior of the dynamo threshold using Taylor-Green forcing
from Py; = 1 down to 1072 was studied using direct numeri-
cal simulations and two independent models of MHD turbu-
lence. Ata mechanical Reynolds number of 675 and P;,! = 2.98,
the threshold curve for dynamo action is observed to level off,
and an asymptotic regime is reached where the critical magnetic
Reynolds number required to have dynamo instability turns out
to be independent of P,. Simulations B and B are in the vicinity
of this asymptotic regime, corresponding to low values of the
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Fic. 9.—B? integrated over different shells in Fourier space as a function of
time, for run B and k = 1 (dotted line), k = 2 (solid line),and k = 9,10, 11, and
12 (dashed lines). The inset shows the evolution at early times, with all the shells
normalized to have the same amplitude. The arrows are at the same times as in
Fig. 8.
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Fic. 10.—Kinetic (thick lines) and magnetic energy spectra (thin lines) as a
function of time for run B’. Kinetic spectra are only shown at # = 11.4 and
t = 181.8; note in the latter case, the strong diminution of the kinetic energy
spectrum at small scales and its similarity to the magnetic spectrum there. [See
the electronic edition of the Journal for a color version of this figure.]

magnetic Prandtl number. For a different external forcing (see,
e.g., Schekochihin et al. [2004] and Haugen et al. [2004] for the
implications of a purely random and nonhelical force), the as-
ymptotic behavior as a function of P,, can differ.

Note that with high Reynolds numbers, in the pure hydro-
dynamic case, excitations will go farther out in k£ space. But
once a large-scale magnetic field is present, if small scales be-
have like an approximately equipartitioned Alfvén wave, the
larger transport coefficient will drain both the v and B fields (re-
sistivity in this case). One could jump to the conclusion that for
v/n < 1, the dynamo process will behave as if Py, were of O(1)
at all times (see Yousef et al. [2003] for different simulations
supporting this conclusion). We warn that this is certainly in-
appropriate in the formation, or kinematic phase, when the mag-
netic field is small but amplifying, and there is no quasi-DC
magnetic field to enforce the necessary approximate equipar-
tition at small scales. This warning can also apply in more com-
plex systems, such as during the reversals of the Earth’s dynamo.

The central role played by the —v+(jxB) term by which
energy is extracted from the velocity field can be clarified by
plotting the transfer functions 7(k) for the magnetic field and
velocity field as functions of & at different times.

The energy transfer function

T(k) = Ty (k) + Tu(k) (11)

represents the transfer of energy in k-space and is obtained by
dotting the Fourier transform of the nonlinear terms in the
momentum equation (2) and in the induction equation (3) by the
Fourier transform of v and B, respectively. It also satisfies

0:/0 T(k') dk', (12)

because of energy conservation by the nonlinear terms; one
can also define

(k) = /Ok T(K') dk', (13)
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where I1(k) is the energy flux in Fourier space. In equation (11),
Ty (k) is the transfer of kinetic energy

Ty (k) = /f;k- [, + (ixB) | a0 (9)

where the hat denotes Fourier transform, the asterisk com-
plex conjugate, and d€2; denotes integration over angle in Fourier
space. In this equation and the following, it is assumed that the
complex conjugate of the integral is added to obtain a real transfer
function.

The transfer of magnetic energy is given by

Ty (k) = /Bk-Vx(vé?B):ko, (15)

and we can also define the transfer of energy due to the Lorentz
force,

Ty (k) = /f;k- (j/x\B>Zko. (16)

Note that this latter term is part of 7y (k); it gives an estimation of
the alignment between the velocity field and the Lorentz force at
each Fourier shell (as shown previously in Fig. 3). This term
also represents energy that is transferred from the kinetic res-
ervoir to the magnetic reservoir [in the steady state, the integral
over all k of T;(k) is equal to the magnetic energy dissipation
rate, as follows from eq. (3)].

Figure 11 shows the transfer functions 7(k; ¢ = 0), which
corresponds to the total energy transfer in the hydrodynamic
simulation, since the magnetic seed has just been introduced;
T(k), which is the total energy transfer; Ty (k); Ty, (k); and — T (k),
as functions of k for four different times for run B’. A gap in one
of the spectra indicates (since the plotting is logarithmic) that it
has changed sign. It is apparent that the dominant transfer is
always in the vicinity of the forcing band, although it is quite
spread over all wavenumbers in the inertial range at all times. It is
also apparent that at the later times, most of the transfer is mag-
netic transfer, in which, of course, the velocity field must partic-
ipate (see eq. [15]).

During the kinematic regime (Fig. 11a), the kinetic energy
transfer 7} (k) is almost equal to the total transfer. Note that
—Ty(k) is approximately constant between k ~ 3 and k ~ 12;
all these modes in the magnetic energy grow with the same
growth rate (see Fig. 9). The negative sign of 7 (k) shows that
energy is being extracted from the velocity field; in physical
space the electromagnetic force associated with the currents
induced by the motion of the fluid opposes the change in the
field in order to ensure the conservation of energy, as follows
from Lenz’s law. On the other hand, the amplified magnetic
field is getting its energy from the velocity field. Note that then
—T; (k) can be used as a signature of the scale at which the mag-
netic field extracts energy from the velocity field [compare this
result with the low Ry case, where — 7 (k) peaks at k = 3 both in
the kinematic regime and in the nonlinear stage]. As its coun-
terpart, the transfer of magnetic energy 7),(k) represents both the
scales at which magnetic field is being created by stretching and
the nonlinear transfer of magnetic energy to smaller scales. The
T, (k) is peaked at wavenumbers larger than T),(k); the magnetic
field extracts energy from the flow at all scales between k ~ 3
and k =~ 12, and this energy turns into magnetic energy at smaller
scales. Note that this is in agreement with theoretical arguments
(Verma 2004) and closures (Pouquet et al. 1976) suggesting that
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Fic. 11.—Transfer of energy in Fourier space in run B, at (a) ¢ = 13.5 in the kinematic regime (see Fig. 9), (b) t = 73.5 at the end of the kinematic regime,
(c) t = 148.5 at the time of rapid growth of the £ = 2 shell, and (d) # = 300. In all the figures, the total transfer at ¢ = 0 (thick solid line) is shown as a reference
(which corresponds to the B = 0 case); dotted, dashed, and solid lines represent transfer as indicated in (c). Since 77 is negative at most k, —7} is shown. [See the

electronic edition of the Journal for a color version of this figure.]

in nonhelical MHD turbulence dominated by kinetic energy, the
transfer from v to B can take place nonlocally from large wave-
numbers to smaller wavenumbers.

As time evolves and the magnetic small scales saturate, a
peak in — Ty (k) grows at k = 3 (Fig. 11b). At the same time, the
transfer of kinetic energy T (k) at small scales is quenched
(compared with Fig. 11a, it has diminished in amplitude by al-
most 1 order of magnitude). This time corresponds to the time at
which a large-scale (k = 2) magnetic field starts to grow (see
Figs. 9 and 10). In the saturated regime (Figs. 11c and 11d)
T, (k) is negative at large scales and peaks strongly at £ = 3 at
late times. A substantial fraction of the injected mechanical
energy is seen to be extracted by the magnetic field in the injec-
tion band (k = 3). As previously mentioned, T),(k) represents
energy extracted from the kinetic reservoir, which will be finally
injected into the magnetic reservoir (not necessarily at the same
scales). Note that T),(k) peaks at £ = 2. This magnetic energy is
then carried to small scales by the magnetic field [Ty, (k) > Ty (k)
up to the diffusion scale in the steady state; Figs. 11¢ and 11d].
A counterpart of this dynamic was observed in Haugen et al.
(2004), in which it was noted by examination of global quantities
that most of the energy injected in the saturated regime of the
dynamo is dissipated by the magnetic field. Similarly, in run B
we find that (vw?) /(nj?) ~ 0.4 att = 300. This is associated with
the drop in the kinetic energy spectrum at late times (Fig. 10). Note
also that the transfer functions T (k) and Ty, (k) drop together at
small scales.

In summary, during the kinematic regime the magnetic
field is amplified in a broad region of k-space, while in the
nonlinear phase most of the amplification takes place at large
scales. This contrasts with the low R and Py, =~ 1 case, where
the magnetic energy grows at large scales (kK = 2) from the
beginning of the kinematic dynamo phase, the small scales
being undeveloped.

Finally, we may ask if anything remains visible of any pattern
enforced by the forcing function Fvrg in the higher Reynolds
number runs. Figure 12 suggests that the answer is yes. This
figure is a plot for run B’ of a cross section (y = 7/4) in which
the magnetic field strength is exhibited: arrows denote com-
ponents in the plane and colors denote components normal to
the plane. The left panel is at t = 70, and the right panel is at
t = 300. The two horizontal bands are associated with the stag-
nation planes of the Taylor-Green forcing.

While at# = 70 the magnetic field is mostly at small scales, at
¢t = 300 a pattern reminiscent of the low Ry case (Fig. 6d), albeit
more turbulent, can be clearly seen. This is the result of the
suppression of small scales by the magnetic field. While in the
kinematic regime the magnetic field grows under a broad kinetic
energy spectrum, when the large-scale magnetic field starts
to grow, the small-scale velocity field fluctuations are quenched
(Figs. 10 and 11), and the large-scale pattern reappears. This
“cleanup” effect was also observed in Brandenburg et al. (2001),
but there both the large-scale pattern in the flow and the turbulent
fluctuations at small scale were imposed, while here the turbulent
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FiG. 12.—Cross-sectional plots of the magnetic field in the plane y = 7/4, at (a) t = 70 and (b) t = 300 (B, B; is indicated by the arrows, and B, by the color) for

run B'. [See the electronic edition of the Journal for a color version of this figure.]

fluctuations are the result of the large-scale external force and
high values of Ry.

4. DISCUSSION AND SUMMARY

The oscillatory behavior exemplified in Figure 2 is not
without precedent. It is common for a pulsation to occur in a
faucet when the pressure drop is such as to cause the flow of the
water to be close to a speed near the threshold of the transition to
turbulence. The developing turbulence acts as an eddy viscosity
to reduce the Reynolds number back into the laminar regime.
As the turbulence then subsides, the flow accelerates until the
flow speed is again in the unstable regime, and the cycle repeats.
A few years ago (Shan & Montgomery 1993a, 1993b), a sim-
ilarly quasi-periodic behavior was observed in an MHD prob-
lem, which might be considered an opposite limit of the dynamo
problem. A quiescent, periodic circular cylinder of magnetofluid
was supported by an external axial magnetic field and carried an
axial current driven by an applied axial voltage. By increasing
the axial current, it was possible to cross a stability boundary for
the onset of mechanical motion. The unstable modes were heli-
cal, with regard to the behavior of v and B. The resulting —vx B
axial electromotive force opposed the sense of the applied elec-
tric field and constituted an effective increase in the resistance of
the column. When the disturbances grew large enough, the total
axial current was reduced back below the stability threshold,
causing the magnetofluid to relaminarize itself. A cyclic oscil-
lation in magnetic and kinetic energy resulted, with the larger en-
ergy being magnetic, which in many ways resembles qualitatively
the oscillations exhibited in Figure 2, except that the magnetic
energy remained larger: a sort of “inverse dynamo” problem.

In the high Reynolds case (runs B and B’), part of this dynamic
persists. The initial kinetic energy spectrum is broader, and ve-
locity field fluctuations are larger. The large-scale flow is still
present but is modified by the turbulent fluctuations. In the ki-
nematic regime, the magnetic field grows at all wavenumbers with
the same growth rate, and the magnetic energy spectrum is peaked
at scales smaller than the integral length scale of the flow. After the
nonlinear saturation of the small-scale magnetic field, the field
grows at scales larger than the integral scale of the flow. There are

no recognizable common features between the magnetic field in
the kinematic regime and the magnetic structures observed in the
low Reynolds number case. However, in the steady state of the
dynamo, the large-scale magnetic field forces small-scale exci-
tations to be equipartitioned between magnetic and velocity fields,
and both fields are damped at almost the same scale. As a result,
velocity fluctuations are strongly suppressed, and at late times
similar structures can be recognized in the magnetic field in both
the low and high Reynolds simulations.

By examination of nonlinear transfer functions in Fourier space,
interactions at large and small scales between kinetic and magnetic
energy were found. During the kinematic regime, the magnetic
field extracts energy from the velocity field at intermediate scales,
and this energy is tumed into magnetic energy at smaller scales.
After the saturation and quenching of the small scales, a substantial
fraction of the kinetic energy is still extracted from the forcing band,
and the magnetic field grows at large scales. In the saturated regime,
the magnetic and kinetic energy transfer functions drop at the same
scale, although the magnetic transfer is larger than the kinetic one.

It is clear that there are many distinct dynamo behaviors,
depending upon the parameters and the nature and scale of the
mechanical forcing. It should not be inferred that the oscillatory
behavior shown in Figure 2 is more generic than it is. Different
regimes can appear as the forcing amplitude is varied, for ex-
ample, or as the timing of the seed magnetic field’s introduction
is varied. The dynamics can acquire different qualitative fea-
tures as these features are changed. It can be expected that, once
turbulent computations in geometries other than rectangular
periodic ones are undertaken, still further variety may occur.
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