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Abstract

Dynamo action of a time periodic flow with frequency Ω, depending on two space vari-
ables, introduced by Galloway & Proctor (1992) is considered when the underlying dynamical
system is nearly integrable. Competition between fast and slow dynamos is obtained accord-
ing to the value of Ω. Fast dynamos produce magnetic sheets located in the chaotic regions
near the separatrices of the integrable flow. Slow dynamos lead to magnetic eddies which
elongate with increasing magnetic Reynolds number Rm and tend to circumscribe elliptic
stagnation points. Sheets and eddies may coexist at moderate Rm. A heuristic argument
based on the Melnikov method is used to characterize the frequencies which maximize the
efficiency of fast dynamos.

1 Introduction

A simple smooth chaotic flow often used as a candidate for fast dynamos is the “ABC flow”
u = (A sin z+C cos y,B sin x+A cos z,C sin y+B cos x), where A, B, C are non-zero coefficients.
This flow only involves one wavenumber, which considerably reduces the number of operations
when the induction equation for the magnetic field

∂tb = ∇× (u × b) + η∆b (1)

is solved numerically in Fourier space (Arnold & Korkina 1983, Galloway & Frisch 1986). The
dynamo problem is however three-dimensional, which limits the Reynolds number to moderate
values.

Examples of flows that seem well-suited to probe the large magnetic Reynolds number limit
on present-day computers were recently introduced by Galloway & Proctor (1992) who used the
fact that flows depending on only two space variables can be chaotic if they are time-dependent.
We concentrate here on their “circularly polarized” model (CP)
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u = (A sin(z + sin Ωt) + C cos(y + cos Ωt), A cos(z + sinΩt), C sin(y + cos Ωt))(2)

These flows which display large chaotic regions, can be viewed as a modification of the
integrable ABC flow corresponding to B = 0, by the introduction of a time periodic phase. For
this velocity, magnetic field modes with wavevectors having the same component k1 in the x-
direction, evolve independently. Consequently, k1 can be fixed and the magnetic field computed
with a two-dimensional code. For convenience, the (y, z)-periodicity of the magnetic field is
taken as that of the flow. There is no periodicity in the x-direction and k1 can be chosen
arbitrarily (but non-zero). For k1 = 0.57, together with A = C =

√

3/2 and Ω = 1, convincing
evidence of fast dynamo was obtained, the magnetic growth rate remaining essentially constant
for magnetic Reynolds number 102 ≤ Rm ≤ 104. We consider here a similar flow, but in a regime
where it is nearly integrable. This is obtained by introducing a small parameter ǫ in front of the
oscillatory phase of the velocity.

2 The dynamical system

The fluid trajectories, to be understood mod 2π, obey

ẏ = A cos(z + ǫ sin Ωt) , ż = C sin(y + ǫ cos Ωt) (3)

together with ẋ = A sin(z + ǫ sin Ωt) + C cos(y + ǫ cos Ωt). By dividing (3) by C and rescaling
time, it is easily seen that, in addition to the perturbation amplitude ǫ, this dynamical system
depends on only two parameters, the reduced frequency ω = Ω/C and the ratio a = A/C. We
concentrate here on the case a = 1 for which the unperturbed system has heteroclinic orbits.
For convenience, results will be presented in terms of ω.

For ǫ = 0, system (3) admits two elliptic stagnation points (0, π/2), (π , 3π/2), and two
hyperbolic ones (0 , 3π/2) , (π , π/2). For ǫ 6= 0, the points of zero velocity rotate with angular
velocity Ω on circle of radius ǫ, centered at the stagnation points of the unperturbed problem.
Useful insight on the system is provided by Poincaré sections in time (stroboscopic views) at t =
n2π/Ω with n ∈ N . The size of the chaotic zones is as expected monotonically decreasing with
ǫ, yet exhibits a non trivial dependency with ω. Figure 1 shows the section in the (x, y)-plane,
for ǫ = 0.1, and various ω. The observable chaotic regions are localized along the heteroclinic
connections of the unperturbed system, whereas for ǫ = 1 they cover a large fraction of the
domain.
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Figure 1: Time Poincaré sections for flow (3), with a = 1, ǫ = 0.1.
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3 Dynamo action

The induction equation (1) has been integrated with the above velocity field in the case A = C =
1 and ǫ = 0.1. The wavenumber k1 in the x-direction was taken equal to 0.57, as in Galloway
& Proctor (1992). The magnetic Reynolds number Rm = 1/η was pushed up to 104 and the
reduced frequency ω varied from 0 to 3. We observe that as soon as the magnetic Reynolds
number exceeds a few units, after a transient, the magnetic energy

∫

b
2dx grows exponentially

in time with a growth rate 2λ. In Figure 2, λ is plotted versus Rm for various ω. For some
values, e.g. ω =0.8, λ tends to saturate at a finite value as Rm increases, indicating a fast
dynamo. In contrast for ω = 0.2, the growth rate decreases monotonically for Rm > 10, at
least up to Rm = 5000. The question arises whether this decay continues for arbitrarily large
Reynolds number corresponding to a slow dynamo. It is however not precluded that for any
finite non-zero ω, a (weak) fast dynamo emerges at large enough Reynolds number. Note that
at sufficiently low Reynolds number λ is not sensitive to ω since growth rates corresponding
to different ω fall on the same curve λ versus Rm. The separation from this common curve
occurs at different Reynolds numbers for different frequencies, with a minimum for ω ≈ 0.8. We
interpret this behaviour as resulting from a competition between slow and fast dynamos. Note
that for ω = 0.8, λ seems to saturate at a value close to 0.15, only a factor of two below the
value obtained for this frequency with ǫ = 1.

Figure 2: Dynamo growth rate λ versus the magnetic Reynolds number Rm.Curves are labelled
by the corresponding value of ω.
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The geometry of the magnetic structures are significantly different for fast and slow dynamos.
Figure 3 shows the contours of the magnetic field amplitude in the (y, z)-plane for various ω
at Rm = 2000. At ω =0.8, for which the dynamo appears to be fast, the magnetic structures
consist essentially of magnetic layers located in the chaotic regions, near the separatrices of the

unperturbed system. As Rm is increased, the thickness of the layers decreases, possibly like R
−1/2

m

as suggested by a dominant balance argument between stretching and dissipation. Furthermore,
the transverse structure of the layer becomes richer with the formation of secondary maxima,
and is reminiscent of the structure of the tangled unstable manifold of (3).

Figure 3: Contours of magnetic field intensity at Rm = 2000. Dashed lines refer to levels smaller
than half the maximum.
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For ω = 0.2, for which the dynamo appears to be slow, the magnetic field concentrates
in “magnetic eddies”, located in non-chaotic regions, close to the resonance bands of system
(3). As Rm is increased, the magnetic eddies, which are rather isotropic at moderate Reynolds
numbers, become more elongated and tend to circumscribe the elliptic points. It is noticeable
that magnetic eddies, like the resonance bands of (3), appear only in the neighbourhood of zero
velocity points rotating in the same direction as the flow particles.

4 Dynamo and chaos: how are they Connected?

We already observed that the dynamo growth rate is sensitive to the velocity frequency. Figure
4 shows this dependency for Rm = 1000 and Rm = 2000. The central peak, associated with a
fast dynamo is maximum at ω ≃ 0.8 and tends to a fixed form as Rm is increased. In contrast,
the level of the wings decreases in this limit, as expected for a slow dynamo. The question arises
how this behaviour is related to the underlying dynamical system.

Figure 4: Dynamo growth rate λ versus the reduced frequency ω for ǫ = 0.1, at Rm = 1000 and
Rm = 2000.
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A standard characterization of a dynamical system is provided by Lyapunov exponents,
because of the analogy between separation of infinitesimally close fluid particles and stretching of
the magnetic field at zero magnetic diffusivity. Figure 5(a) shows the largest Lyapunov exponent
L versus ω for the trajectories shown in Figure 1. The correlation between this graph and the
dynamo growth rate at large magnetic Reynolds number appears to be weak. This confirms
that, in the presence of magnetic diffusion, the rate of stretching alone cannot prescribe the
efficiency of the dynamo action. Massive cancellation can indeed take place between magnetic
field elements stretched in directions which vary strongly from place to place.

One may suspect that the geometry of chaotic zones of the flow and in particular their extent
may affect the efficiency of the fast dynamo action. It was suggested by Leonard et al. (1987)
and Ottino (1989) that the “extent of chaos” may be estimate using the Melnikov method.
This method is a perturbative calculation of the distance between stable and unstable manifolds
resulting from perturbation of homoclinic or heteroclinic trajectories. It is classically used to
test the existence of transverse homoclinic orbits which imply the presence of Smale horseshoes
and their attendent chaotic dynamics (Guckenheimer & Holmes 1983; Ottino 1989).

Figure 5: (a) Variation with the reduced frequency ω of the maximum Lyapunov exponent L
and (b) of the function F given in (7) for ǫ = 0.1.

By the change of variables u = z−π/2+ ǫ sin ωτ , v = y + ǫ cos ωτ and τ = Ct, and for a = 1,
(3) becomes

u̇ = sin v + ǫω cos ωτ ; v̇ = − sin u − ǫω sin ωτ . (4)

This is the standard form for the implementation of Melnikov method. To leading order in
ǫ, the distance d(τ0) between the manifolds is proportional to ǫ and to the “Melnikov function”.
For each of the unperturbed heteroclinic solution (uj

0
, vj

0
), where j = 1, 2, 3, 4, this function reads
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M j(τ0) = −ω

∫

∞

−∞

sin vj
0

sin(ω(τ + τ0)) dτ + ω

∫

∞

−∞

sin uj
0
cos(ω(τ + τ0)) dτ . (5)

After some algebra, we get

M j(τ0) = F (ω) (Sj
1
sin ωτ0 + Sj

2
cos ωτ0) , (6)

where (S1, S2) = (−1, 1), (−1,−1), (1,−1), (1, 1) for j = 1, 2, 3, 4 respectively. Furthermore

F (ω) = ωπ sech(
πω

2
) . (7)

Quoting Ottino (1989), “we expect that an extreme in F (ω) should maximize the extent
of chaos”. This function is plotted in Figure 5(b). We observe that the range of frequencies
ω leading to the largest dynamo growth rates (Figure 4) is located around the maximum of
F (ω). We checked that for sufficiently small ǫ (typically ǫ < 0.5), this behaviour is essentially
independent of ǫ.

The Melnikov method has here been used as an heuristic tool to measure the width of
the chaotic zones. Further investigations are required to decide whether the location of the
maximum dynamo growth rate is indeed correlated with the location of the maximum of the
Melnikov function (as found here) or if it is mostly a coincidence. As the next step, we plan to
examine the case a 6= 1, where heteroclinic connections of the unperturbed problem are replaced
by homoclinic orbits.

Computations were performed on the CRAY-YMP of the Institut Mediteranéen de Tech-
nologie (Marseille).
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