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Chaos and Structures in Rotating Convection at Finite Prandtl Number
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It is shown, using a generalized Swift-Hohenberg equation, that a small rotation inhibits the spiral
chaos which develops in Rayleigh-Bénard convection at moderate Prandtl number. This is due to the
gliding and gradual annihilation of dislocations. For rigid top and bottom boundary conditions, a slow
rotation first breaks the chiral symmetry and if sufficient leads to an unfolding of the spirals. This
effect is maximum near the critical rotation for the onset of the Kippers-Lortz instability, and, when
the horizontal geometry is periodic, straight rolls may even reform. With free-slip boundaries, these
structures are subject to a small-angle instability, which leads to the formation of large coherent targets
embedded in a turbulence background. [S0031-9007(97)03542-4]

PACS numbers: 47.52.+j, 47.20.Lz, 47.27.Te, 47.54.+r

Thermal convection in a Boussinesq fluid with high set of equations for the leading vertical velocity mdéle
Prandtl numbeP, rotating around a vertical axis is known and the (horizontal) mean flow potentidl. In the case
to develop spatiotemporal chaos, when the Taylor numbesf no-slip boundaries, the mean flow equation together
T, = 72 is larger than a critical value [1]. This dynamics with the linear part of the equation for the convective
results from the Kiippers-Lortz (KL) instability [2,3] which mode is exactly derived by projection of the mean flow
destabilizes straight parallel rolls as soon as the Rayleighn the vertical mode sirz (0 <z < 1) and of the
numberR exceeds the convection thresh&d Itleadsto vertical velocity on the first eigenmode of the fourth
the formation of patches of straight rolls penetrating eachlerivative operator with appropriate boundary conditions
other in a chaotic way: rolls disappear and are replaced bjf0]. The nonlinear couplings arising in the equation
other rolls tilted by an anglék; close to 58. for W are selected among those present in the free-slip

At moderate Prandtl number (assumig> 0.67 to  case, with coefficients adjusted in such a way that the
avoid overstability), the KL instability survives, but the correct boundary of the zigzag instability in the absence of
angle k. associated with the most unstable mode derotation, and the right critical rotation and most unstable
creases with the Prandtl number, both for rigid [4,5] andanglefx. for the KL instability be reproduced. Denoting
free-slip top and bottom boundaries [6]. In the latter casdy e the normalized distance from threshold, the system
(often used in the context of astro- and geophysical flows);eads
the usual perturbation method used to analyze the KL in-
stability near convection threshold leads to a divergence 700,W =[e — (A + 1?IW — N(W,¥), (1)
in the small angle limit [5]. This reflects the existence of
an additional and stronger instability present in a small-[9; — P(v + A)JAY = (VAW X VW) - 2
angle boundary layer [6]. This “small-angle instability” + ag[(AW)? + VW - VAW]
develops whatever the value of the rotation rate and can + arAW?) 2
be viewed as the continuation of the skewed-varicose in- 7 ’
stability which destabilizes critical rolls near onset in the,, . — w2 2
absence of rotation [7]. At small enough Prandtl numbe?NIth M= W=+ VW]
(below P = 5), the KL and the small-angle instabilities NW, W)= MW + a,VW - VM
cannot be separated as a result of the decreagg;0énd ’ R R
the enhancement of the unstable small-angle range when + ay(VW X VM) - 2a3(VW X V) - 2
P is reduced. + asWAVY + asVW - VAV .

Whereas for infinite Prandtl number, the KL dynamics
can be qualitatively reproduced by a set of three amplitudén the case of free-slip boundaries,= «7; = 0. More-
equations [8], the description of the dynamics at moderatever, in the absence of rotation, the coefficiemisa,, as,
Prandtl numbers, wher@x is significantly smaller than andeag vanish, and the model generalizes the equations ob-
60° (kL = 38.4°for P = 0.8), requires Swift-Hohenberg tained by Manneville [11] by the inclusion of an additional
type equations reproducing the correct variation of the KLcoupling. For rigid boundariesys, = a5 = 0. Further-
instability with the Prandtl number. Such a model wasmore, the friction coefficient is found to bev = #2/4>
recently derived by a perturbation expansion near thresholfWhereq. denotes the critical wave number) and thus de-
[9]. Inthe case of free-slip top and bottom boundaries, itcreases as the rotation rate is increased. Note the presence
is obtained by a simplification of a systematically derivedof the additional terma; A(W?2) in the mean flow equation,

and
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originating from the vertical Reynolds stress. Arelated al-  Ny\2&y u
though less elaborated model was independently presented
in [12].

Because of the small-angle instability arising at mod-
erate Prandtl number when free-slip boundary conditions
are prescribed, the nonlinear dynamics developing in this
case is expected to be significantly different from that ob-
tained with rigid boundaries, and the two situations are to
be discussed separately.

In the simpler case of no-slip boundaries, simulations
were performed both in a periodic geometry and in a cylin-
drical box, a configuration best suited for comparison with
laboratory experiments. In the periodic case, we used a
standard Fourier pseudospectral method with resolutions
of 1282 or 2567 collocation points, according to the aspect
ratio I which measures the number of rolls in the convec-
tion cell. In the presence of lateral boundaries, compact ~) x
finite differences were used in the radial direction and a m@%
Fourier decomposition performed for the angular variable, &
with a resolution 0b1 X 240 grid points for about 6 rolls (b)
within the box. To avoid the constraint of very small time
steps, the unnecessary high resolution near the center of tR&G. 1. Convective pattern (left) and mean flow (right) fil-
box was reduced by retaining a number of nonzero anguldgred by the conditiofi¥’| > sup|¥|/3 for rigid boundary con-
Fourier modes decreasing with the distance to the centef!tions: P = 12, € = 0.7, and 7 = 10 (a) or 7 = —~10 (b)

. . . . showing positive and negative vortices according to &ign
A random noise with a spectrum localized in an annulus
centered around the critical wave number was used as ini-
tial conditions. spatiotemporal chaotic dynamics governed by the propa-

We first report on the case of a periodic geometry. Ingation of dislocation arrays separating randomly oriented
the absence of rotation, for a moderate value of the Prandtpll patches [Fig. 2(d)] whose size decreases axereases
number ¢ = 1.2) and a large enough value of the stress[23—25].
parameterd = 0.7), the now well documented spiral tur-  In order to quantitatively characterize the relaminariza-
bulence state [13—19] develops. The mean flow, resultingjon effect of a moderate rotation, we have considered the
from roll curvature gradients, consists mostly in large-
scale circulation between the structures. Vanishing exactly
for perfect targets, it is small in the center of the spirals
that it advects in clockwise or anticlockwise rotating mo-
tions, depending on the sign of the dislocation imprisoned
in the center of the structure.

As seen in Fig. 1, with a small rotation, spirals rotating
in the direction of the external rotation are progressively
selected, as in the laboratory experiments [20]. This effect
is due to the formation of vorticity patches in the center
of targets and spirals, whose sign is that of the rotation, as
can be seen from the mean flow equation.

As the Rossby number is increased, the spirals grow in
size while their number is reduced [Figs. 2(a) and 2(b)].
Near a critical valuer., the pattern evolves to almost
straight rolls swept by gliding dislocations [Fig. 2(c)]
which gradually annihilate by collisions (see also [21]).
An analysis of the defect dynamics in the infinite Prandtl
number limitis presented in [22]. The ratip/ 7k (where
7kL denotes the critical rotation for the onset of the ﬁ
Kilppers-Lortz instability) grows as the Prandtl number de-
creases. lts value is close to unity for Prandtl numbers ex- (c)
ceeding a few umts and approacl?e‘mf’ - 0:8,' When FIG. 2. Convective pattern for rigid boundary conditions at
the rotation rate is larger than, the KL instability is suf-  p — 12, ¢ = 0.7, and rotation rates = 0 (a), 7 = 10 (b),
ficient to destabilize the structure and leads to the usual = 40 (c), andr = 56 (d), to be compared tox; = 29.6.
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FIG. 3. Variation of the correlation length with 7 /7, for
different values of the Prandtl number.

correlation length?, defined as the time average f=
(k2) — (k)*) /2, where (u) stands for [ u|W(k)[>d*k/
[ |W (k)|>d?k, and wheré¥ denotes the horizontal Fourier FIG. 4. Convective pattern in cylindrical geometry f8r=
transform of the convective mode. Figure 3 displays thé-8, € = 0.7, and 7 =0 (a), 7 = 18 (b), 7 =40 (c), and
variation of  with 7/7g; for different values of the 7~ 60 (d).

Prandtl number. The relaminarization effect at small

Prandtl number is clearly visible as a sharp maximum O?)erformed at a very large aspect ratio [14]. In both situa-

the correlation length. This effect is also visible in experi-,[ions the tar A ; .
o , get formation is initiated by a defect instabil-
mental results reported in Flg. 4 of Ref. [2_6], although theity, leading to “roll bulging, pinching and bridging” [28].
%his suggests that the strength of the mean flow (which
is weaker with rigid than with no-slip boundaries) can in

§5ct be enhanced by increasing the aspect ratio of the con-

(@

occurs nearg . for Prandtl numbers larger than unity, but
is associated to faster rotations when the Prandtl numb

is reduced. This indicates that rotation and mean flow agli .~ \ith a small rotation{ = 10), targets of moderate

in opposite directions. size [Fig. 5(b)], associated to patches of positive vorticit
In a cylindrical geometry, the dislocations cannot anni- [Fig. 5(b)], P P y

hilate each other as efficiently as in the periodic case. As
a result, although the patterns obtained for intermediate
values of the rotation rate [Fig. 4(b)] still present a higher
degree of correlation than in the absence of rotation, they
do not reduce to straight rolls. A noticeable feature is
also that the patterns globally rotate (even when the rota-
tion rate is smaller thamx, = 23.6 for P = 0.8), under
the effect of dislocations generated on the boundary, an
effect already noticed in laboratory experiments [27]. For
T > 7L, the rolls tend to break under the effect of shear
layers developed by the mean flow [Figs. 4(c) and 4(d)].

In the case of free-slip boundary conditions, the above
dynamics is affected by the presence of the small-angle
instability which is accurately reproduced when the three
terms involving ¥V in N (W, V) are retained. In the
weakly nonlinear regime, the effect of this instability is
to gradually rotate the convective rolls through reconnec-
tions of dislocations produced by the shearing motion of
the mean flow.

In the fully nonlinear regime at moderate Prandtl number
(e = 0.5, P = 2), the dynamics is significantly different
from that obtained with rigid boundaries. Inthe absence of (c)
rotation, targets and spirals still form [Fig. 5(a)] but their FIG. 5. Convective pattern for free-slip boundary conditions
coherence time is much shorter. The evolution is strikat p = 2, € = 0.5, with rotation ratesr = 0 (a), 7 = 10 (b),
ingly similar to that observed in laboratory experimentsandr = 20 taken at two different times (c),(d).
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0.9 0463 and by the European Cooperative Network ERBC
' P =50 HRXCT930410. Numerical simulations were performed
- 038 on the CRAY-C98 of IDRIS, Palaiseau.
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