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Spectral modeling of magnetohydrodynamic turbulent flows
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We present a dynamical spectral model for large-eddy simulation of the incompressible magnetohydrody-
namic (MHD) equations based on the eddy damped quasinormal Markovian approximation. This model ex-
tends classical spectral large-eddy simulations for the Navier-Stokes equations to incorporate general (non-
Kolmogorovian) spectra as well as eddy noise. We derive the model for MHD flows and show that the
introduction of an eddy damping time for the dynamics of spectral tensors, in the absence of equipartition
between the velocity and magnetic fields, leads to better agreement with direct numerical simulations, an

important point for dynamo computations.
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I. INTRODUCTION

Magnetic fields permeate the universe. For example, elec-
tric fields and ionospheric currents play a dynamic role in the
evolution of the atmosphere above 100 km, and the input of
energy from the magnetosphere during magnetic storms can
affect the thermosphere and ionosphere on global scales. If
kinetic effects—such as the Hall current, ambipolar drift, or
anisotropic pressure tensor—may be prevalent at small
scales, the large scales can be described by means of the
magnetohydrodynamic (MHD) approximation.

MHD turbulence shares many similarities with Navier-
Stokes turbulence: recall the Batchelor analogy between vor-
ticity and induction, both undergoing stretching through ve-
locity gradients [see Eq. (6)]. On that basis, one can
conjecture that the energy spectrum in MHD will be of the
Kolmogorov type, as in fact observed in numerical simula-
tions of decaying flows ([1] and references therein), as well
as in the solar wind [2]. However, Iroshinkov and Kraichnan
(TIK) hypothesized that the slowing down of nonlinear trans-
fer by Alfvén waves would alter the energy spectrum behav-
ior [3], predicting a spectrum ~k™>2, as recently observed in
numerical simulations [4—6] and in solar wind observations
[7]. The Lagrangian renormalized approximation also pro-
vides spectra compatible with the IK phenomenology [8].
These one-dimensional spectra are based on the assumption
of homogeneity and isotropy, but the presence of a strong
quasiuniform magnetic field B, at large scale leads to an
anisotropic dynamics. One can evaluate exactly the reduced
dynamics in that case [9], using weak turbulence theory; the
emerging energy spectrum scales as kf, where k| refers to
wave vectors perpendicular to the By, direction (the isotro-
pization of such a spectrum being compatible with the IK
spectrum); a weak turbulence spectrum was in fact deduced
from an analysis of Galileo spacecraft data collected in the
Jovian magnetosphere [10]. Such a spectrum was also ob-
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served in a large numerical simulation of the MHD equations
in three dimensions in the absence of forcing, at a magnetic
Taylor Reynolds number of ~1700, at scales smaller than
the magnetic Taylor scale [6].

Both the terrestrial and Jovian magnetospheric plasmas,
as well as the solar wind, the solar atmosphere, or the inter-
stellar medium (ISM) are highly turbulent conducting com-
pressible flows sustaining magneto-acoustic wave propaga-
tion; a better understanding of their dynamics, leading, for
example, to coronal mass ejection from the sun, or to star
formation in the ISM, requires adequate tools to model them.
Furthermore, there is currently a surge of interest in achiev-
ing experimental dynamos (the growth of a seed magnetic
field through fluid motions; see [11]). In liquid metals, in the
fluid core of the Earth [12-14], as well as in the solar con-
vection zone, the magnetic Prandtl number P,, (the ratio of
viscosity to magnetic resistivity) is very small (107> or less);
hence, the dynamo instability occurs within a turbulent flow.
To tackle this problem from a numerical standpoint, one can
resort to modeling the kinetic turbulent fluctuations only,
leaving the induction equation unchanged [15,16]. However,
this approach cannot be applied when the magnetic field in-
tensity is of the order of, or larger than, the velocity, the
interactions between these two fields being sizable. The main
difficulty when attempting to model these interactions comes
from the fact that the energy transfer between the small-scale
flow and the large-scale flow can be important, such interac-
tions being measurably nonlocal [17-19]. Until now, only a
few models for MHD turbulence have been studied (see, e.g.,
[20] for a model in physical space, and the recent review in
[21] for models in spectral space), when compared to the
fluid case, where modeling is a very active field of research,
e.g., in the engineering community.

In this context, the present paper aims at developing a
spectral large-eddy simulation (LES) model, following the
work of Chollet and Lesieur [22] for the Navier-Stokes equa-
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tions, and making use of existing two-point closures for
MHD flows (see, e.g., [23] for a review). The basic MHD
equations are given in the next section. The closure formu-
lation of the eddy damped quasinormal approximation
(EDQNM) for MHD turbulence is recalled in Sec. III (with a
related technical part given in the Appendix). Numerical tests
of a first model (LES MHD 1) are performed and lead us to
reexamine the eddy damping time used in the original clo-
sure [24,25]. Triad relaxation times are thus introduced in
Sec. IV and a second model (LES MHD 1I) is derived. Sec-
tion V describes the numerical setup we use to study freely
decaying flows and test the two MHD models. The case of
random flows at two different magnetic Prandtl numbers is
treated, respectively, in Secs. VI (with Py=1) and VIII
(Py;=0.1), while the case of deterministic initial conditions,
namely, the so-called three-dimensional Orszag-Tang flow, at
Py=1, is analyzed in Sec. VIII. Finally, Sec. IX is the con-
clusion.

II. MAGNETOHYDRODYNAMIC EQUATIONS

The MHD equations describe the time evolution of a con-
ducting fluid, with velocity v(x,7) and magnetic field B(x,?)
coupled through the Lorentz force jXB, with j=V XB.
These equations derive from Maxwell’s equations, assuming
subrelativistic velocities; hence the displacement current is
neglected [26,27]. Considering the Fourier transform of the
velocity and the magnetic field at wave vector Kk,

V(k,t)=f f f v(x,1)e *¥dx, (1)

B(k,?) = f k f ’ f ’ B(x,1)e " %dx, (2)

the MHD equations can be written in terms of the velocity
and magnetic Fourier coefficients

(aﬁt + vk2>v(k,t) =t"(k,1), (3)

(% + nkz)b(k,t) = t"(k,1), (4)

together with the incompressibility conditions k-v=0 and
k-b=0 (indicating the lack of magnetic monopoles in the
classical approximation), _and assuming a constant unit den-
sity po=1. Here, b=B/+ up, is the Alfvén velocity, with
the permeability; # is the magnetic diffusivity, v is the kine-
matic viscosity, and t"(k,7) and t¥(k,) are bilinear opera-
tors for the kinetic and magnetic energy transfers, written as

1ok, 1) == iPg(K)k, > va(P.0)v,(q.1)

p+q=k

+iPs(Kk, 2 ba(p.0)b(q.1), (5)
p+q=k
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2 (k,1) =~ i85k, 2 bg(p,0)v,(q.1)
p+q=k

— 8,5k, 2 ba(@,0)v,(p.1), (6)
p+q=k

where P,5(K)=0,5—k.kp/k* is a projector that allows us to
take the pressure term of the velocity equation into account
via a Poisson formulation. The magnetic Prandtl number is
defined as P,;=v/ 7. Finally, note that the total energy E;
=0.5(v?>+b?), the cross correlation (or cross helicity) be-
tween the kinetic and magnetic fluctuations, H-=(v-b), and
the magnetic helicity (A-b) (with b=V X A) are invariants
of the three-dimensional MHD equations in the ideal case,
i.e., in the absence of viscous and resistive dissipation (v
=0=7).

III. SPECTRAL MODELING
A. The original EDQNM closure for MHD

The large-eddy simulation model derived in [28] for
Navier-Stokes flows (paper I hereafter) is now extended to
the MHD equations in its nonhelical version (LES-P, where
“P” stands for “partial phase”), i.e., intrinsic variations of the
helicity spectra are not taken into account. In a first step, a
spectral filtering of the equations is realized; this operation
consists in truncating all velocity and magnetic components
at wave vectors k such that |k|=k>k,, where k, is a so-
called cutoff wave number. Since the scales associated with
k. are presumably much larger than the actual dissipative
small scales in a high-Reynolds-number flow, one needs to
model the transfer between the large (resolved) scales and
the small (subgrid, unresolved) scales of the flow. In order to
approximate these transfer terms, the behavior of the energy
spectra after the cutoff wave number has to be estimated. We
therefore define an intermediate range, lying between k. and
3k., where both kinetic and magnetic energy spectra are as-
sumed to present a power-law behavior followed by an ex-
ponential decrease:

EV(k,1) = EXk™ ™%, k, <k < 3k, (7)

EM(k,1) = EMiot e %%, k, <k < 3k,. (8)

The coefficients a;™, 8™, and Ej" are computed at each
time step, through a mean-square fit of the resolved kinetic
and magnetic energy spectra. In a second step, one can write
the following modeled MHD equations:

[0, + (v(k|k.,0) + VA*) Jv o(k, 1) = 22" (K, 1), 9)

{0, + [kl ) + pkPTb (k1) = 2= (k,),  (10)

where the < symbol indicates that the nonlinear transfers are
integrated over a truncated domain defined such as p+q=k
with |p|=p, |q|=¢<k.. The v(k|k.,t) and 5(k|k.,t) quanti-
ties, which are, respectively, called the eddy viscosity and the
magnetic eddy diffusivity, are expressed as
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Sy (k,p,q,1) + Sy (k,p,q.t
V(kac,t)=—ff>0kpq[ 2(k.p.q.1) + S4(k.p.q )]dpd%
A

2K2EY(k,1)
(11)
(S5 (k,p,q.1) + Sy (k,p,q,0)]
klk..t)=— 0 dp d
7( | o) JfA> kpq ZkZEM(k,t) p aq
(12)

(see paper I for more details). Here, the S{’fy (k,p,q,t) terms
(see the Appendix), correspond to absorption terms [linear in
the energy spectra EV'M(k,f)] in the EDQNM nonlinear
transfers, leading in particular to turbulent eddy diffusivities
(see, e.g., [24,25] for the MHD case). A~ is the integration
domain over (k,p,q) triangles, such that p and/or g are
larger than k., and both p and ¢ are smaller than 3k..
Finally, to take into account effects from the emission
(eddy noise) terms involved in the EDQNM nonlinear trans-
fers [i.e., SH” (k,p,q,1)], we use a reconstruction field pro-
cedure which also enables us to partly rebuild the phase re-
lationships between the three spectral components of each
velocity and magnetic fields, as explained in paper I [28].

B. First numerical tests

We first implemented our numerical MHD LES model
(LES MHD 1) using the initial EDQNM equations derived by
Pouquet et al. [25] (see also [24] for the nonhelical case). In
this formulation, the triad relaxation time @, given in the
Appendix is based on three characteristic times: a (com-
bined) dissipation time 7;, defined as

7y (k) = (v+ K2, (13)

a nonlinear time 7¢ expressed as

k 12
TEI(k)=7\(f qz[Ev(q)+EM(61)]dq> ; (14)

0

and an Alfvén time 74, which reads

2 1/2 k 1/2
T;‘(k)=(5) k( fo EM(q)dq> . (15)

This corresponds to a straightforward generalization of
the fluid EDQNM closure to the case of MHD flows (see, for
example, [23]), with two new times, specifically the Alfvén
time built on large-scale magnetic energy and the diffusion
time built on magnetic resistivity; both times are incorpo-
rated in a phenomenological manner. A comparison of a
simulation using this LES MHD I model (run II in Table I),
against a direct numerical simulation (DNS) (run I in Table I)
is shown in Fig. 1 for random initial conditions (see the next
section for a description of the chosen numerical procedure).
One can see that both kinetic and magnetic energy spectra
are overestimated by the model at scales close to the cutoff,
which is indicative of an inadequate modeled energy transfer
at these scales. When evaluating the different eddy damping
times (13)—(15) from numerical data, one observes that the
Alfvén time is almost one order of magnitude shorter than all
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TABLE 1. Parameters of the simulations. Initial conditions (IC)
resolution N3, kinematic viscosity v, and magnetic Prandtl number
Py=v/ 7, with  the magnetic diffusivity. All random flows have
negligible correlation between the velocity and the magnetic field,
whereas for the Orszag-Tang (OT) vortex, the normalized correla-
tion is close to 0.4 at r=0.

IC N3 v Py
I DNS Random 2567 2x1073 1
I LES MHD I Random 643 2% 1073 1
11 LES MHD II  Random 643 2% 1073 1
I\ DNS Random  256° 8X10™* 0.1
\Y LES MHD II  Random 643 8X107* 0.1
VI LES MHD I Random 643 g§x10™ 0.1
VII DNS oT 256 2x1073 1
VIII LES MHD II oT 643 2% 1073 1

other times, including the diffusion time at the smallest re-
solved scales (see [29]); this leads to an insufficient damping
at scales close to the cutoff. This is in part due to the preva-
lence of the magnetic energy at large scale, and, in that
sense, it could be linked to the particular flow under study.

—DNS
+ LESMHD |
107
X
~— -4
> 10
107
0 1
10 10
(@) k
—DNS
+ LESMHD |
1074}
X
Z 10"
10}
0 1
10 10
(b) k

FIG. 1. Kinetic (top) and magnetic (bottom) energy spectra for
data sets I (256> DNS, solid line), and II (64° LES MHD I, plus
signs). Successive times (=1, 3, 5, and 10) are plotted within each
graph, from upper to lower curves. Note the overshoot of the LES
spectra close to the cutoff wave number.
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Hence, parametric analyses for several different flows should
be performed in the future in order to fine-tune this MHD
model. However, the discrepancy displayed in Fig. 1 could
also be linked to the particular eddy damping time chosen in
[25]. We are thus led to closely examine the energy transfer
dynamics within the EDQNM closure framework.

IV. RELAXATION TIMES FOR EDQNM

We now analyze the precise structure of the equations
leading to the MHD EDQNM closure in order to find new
relaxation times. In [25], the eddy damping term is built on
phenomenological grounds; namely, by arguing the case for
considering the necessity to introduce the Alfvén time scale
in the damping coefficient, actually without referring to the
set of cumulant expansion equations. This one change, from
the usual hydrodynamic EDQNM closure, leads to energy
spectra that differ from the Kolmogorov type, with a k=32
law in the absence of correlations between the velocity and
magnetic field, and with an Ei(k)~k"”t spectrum in the
correlated case [1], with m*+m~=3. Here, E* (k) are the en-
ergy spectra of the z*=v = b Elsiisser variables.

However, when examining the hierarchy of higher-order
moment equations, in the uncorrelated case for the sake of
simplicity, a more complex structure emerges, which may
help to model the MHD dynamics more accurately and thus
find a numerical behavior closer to the DNS results shown in
Fig. 1. In fact, four different groups of terms are involved in
the closure equations. The first group corresponds to the pure
fluid case and it can be symbolically written as

(gt S+ pPe q2>)<uuu> ~ k(). (16)

This leads, as usual, to two characteristic times 7'L‘§V=[v(k2
+p2+q2)]_1 and TNL=(ku)_1.
The schematic expression for the second group is

(% + vk + p(p* + qz))<uuu> = k(uuuu) + k{(bbuu).

(17)

Hence, two new times can be extracted under the hypothesis
of strict linear relaxation of fourth-order cumulants in terms
of triple correlations, a hypothesis at the root of the EDQNM
closure (as well as the assumption of zero velocity-magnetic
field correlations, i.e., full mirror symmetry, as stated be-
fore). In the simplest case, this leads to the introduction of a
dissipative time 737 =[vk*+ 7(p*+¢*)]', and of a modified
Alfvén time 7,=u(kbb)~!. Note that the Alfvén time intro-
duced in the preceding section, in agreement with the formu-
lation of [25], is of a purely phenomenological nature,
whereas the methodology adopted here is to examine more
closely the structure of the equations involving all moments
up to fourth order.
The third group type in closure terms reads
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3
(5 + (9k* + pp* + vq2)>(bbu> = k(bbbb) + k{bbuu),

(18)

and finally, the fourth group is of the form
d
(5 + (9l + vp? + 77q2)><bbu> = k(bbbb) + k{bbuu).

(19)

Similarly, characteristic dissipative times can be deduced
from these two last groups: 7 =(nk*+ np*+vg*)~" and
7V =(mk?+ vp?+ ng?) .

A careful examination of the cumulant equations thus
leads us to consider several new characteristic times, distin-
guishing between magnetic and kinetic energy transfers, as
well as between the different quantities entering these trans-
fers.

Since the EDQNM equations describe the temporal evo-
lution of the isotropic kinetic and magnetic energy spectra,
the characteristic times involved (i.e., the times used in the
closure) cannot be functions of the flow velocity or magnetic
fields, but they have to depend on their respective energies.
By means of dimensional analysis, Pouquet et al. [25] pro-
posed the following expression for the nonlinear turnover
time:

k 12
(k) =7\< f quV(q)dq) : (20)
0

where the constant A is determined by relation (A7) (see the
Appendix). A similar analysis for the modified Alfvén time
Ty=u(kbb)'=u/b(kb)™" allows us to approximate the b/u

quantity:
k 12
f EM(g)dq

. 21)

k
f E"(q)dq
0
and the kb quantity
k 12
kb = ( f quM(q)dq> , (22)
0

to finally obtain the following expression for the modified
Alfvén time:

k 172
f EM(g)dq .
0

k
f E"(g)dq 0

0

1/2
k) =C, q*EM (q)dq) ,

(23)

where the constant C, is estimated to be approximately 0.8
according to several fits done in comparing with direct nu-
merical simulations. One can notice that this new time incor-
porates the lack of equipartition between kinetic and mag-
netic energies but reverts to the traditional Alfvén time for
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equipartition. This phenomenon of a discrepancy between
the average amplitudes of the velocity and the magnetic field
is often observed, e.g., in the solar wind. It should alter the
flow dynamics, as, for example, in the early (kinematic)
phase of the dynamo problem. Also note that the way the
dissipation coefficients are now taken into account may well
affect the results as well when the magnetic Prandtl number
substantially differs from unity, except possibly when both
the kinetic and magnetic Reynolds numbers are very large,
since in that case one expects the renormalized transport co-
efficients to be close in value [30].

Having defined all the above characteristic times, we can
derive triad relaxation times; this allows us to implement a
second LES spectral model for MHD flows (LES MHD 1I)
which we now test against several direct numerical simula-
tions.

V. NUMERICAL SETUP

In order to assess the ability of the model to reproduce the
physics involved in MHD periodic flows, we performed di-
rect numerical simulations of the three-dimensional MHD
equations, in a 2m)? periodic box, at a resolution of 256°
grid points, together with computations using our LES MHD
models, but now at 643 grid points. This comparative study is
based on three different simulations of freely decaying flows.
To test our model in a simple configuration, we first simu-
lated a flow with P,,=1, taking random initial conditions and
no correlation between the velocity and the magnetic fields
(run I for the DNS, run II for the LES MHD I model, and run
III for the LES MHD II model, in Table I). The initial kinetic
and magnetic energy spectra are chosen to be proportional to
J2e"2k0° | with k=2, and with E"(r=0)=EM(1=0)=2.

Since the eddy damping times we derived allow for a
clear distinction between the kinematic viscosity and the
magnetic diffusivity, we then ran the same flow at a different
magnetic Prandtl number, namely, Py=0.1 (run IV DNS,
and run V LES MHD II in Table I). We recall that, in [25],
the EDQNM closure is derived in the case of identically zero
cross correlation between the velocity and magnetic field
(both globally and mode by mode), but including the effect
of kinetic and magnetic helicities (see [1,33] for the nonhe-
lical case in the presence of cross correlation). However, in
many flows, the cross correlation may not be neglected. Fur-
thermore, it can be locally strong (in particular in the vicinity
of vorticity and current sheets) even when its global value is
close to zero [31,32]. We thus performed as well a simulation
at Py,=1 for which the velocity and the magnetic field are
significantly correlated, in order to see how our model may
adapt to such a situation. We chose the so-called three-
dimensional Orszag-Tang flow for which initially H¢/ET
=0.4 (see Sec. VIII) (run VI DNS and run VII LES MHD II
in Table I).

From all these simulations, we studied global flow quan-
tities such as the total, kinetic, and magnetic energies, as well
as kinetic, magnetic, and cross helicities. We also analyzed
the spectral behavior of these quantities.

VI. RANDOM FLOW AT P,=1

We first investigate the model behavior for a flow with
random initial conditions, presenting no cross correlation,
and at a magnetic Prandtl number of unity.
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FIG. 2. Linear-log plots of the relative difference with DNS
energy spectra for the velocity (top) and the magnetic field (bottom)
at time ¢=1, for runs II and III, compared to the DNS, run I. Note
that the large error in LES MHD I at large k, as already noted in
Fig. 1, is substantially diminished in the current model.

A. Intercomparison of models

In this section, we compare the relative efficiency of the
two models, namely, the model that involves the eddy damp-
ing times stemming from [25] (LES MHD I), and the model
where the eddy damping times are now included (LES MHD
II). In Fig. 2, we plot the relative difference between the
kinetic and magnetic energy spectra computed from both
LES models and those computed from the DNS data. The
instantaneous spectra are chosen at time ¢=1, close to the
time of maximum dissipation.

As already observed in Fig. 1, both kinetic and magnetic
spectra predicted by the LES MHD I model exhibit a strong
difference from the DNS spectra at small scales (between k
=20-25 and k=31). This effect, due to the underestimation
of the energy transfer from large to small scales, is well
cured by the LES MHD II model. One can also notice that at
large scales (between k=0 and k=15), where the effect of
the modeling is weaker than at small scales, the LES model
taking the eddy damping times into account also provides a
closer estimation of the spectra than the initial model. Nev-
ertheless, at intermediate scales (k=15 and k=20-25), the
LES MHD I model seems to be more accurate than the LES
MHD II model, but in fact this behavior is simply due to the
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25 . , : : :
—DNSs: EV(t)

2 ---LES MHD II: EY() |
—DNSs: EMt)

1.5 == =LES MHD II: EMt) |

E(t)

0 2 4 6 8 10 12
time

FIG. 3. Temporal evolution of the kinetic and magnetic energies
for runs I (256 DNS) and III (64> LES MHD II).

fact that LES MHD I and DNS spectra cross at a wave num-
ber located inside these ranges. Although we do not show it
in this paper, we realized the same analysis at different times
in the simulation, and we always obtained similar results. We
therefore mainly focus our study on the LES MHD II model
for the remainder of the paper.

B. Global quantities

We now study the temporal evolution of the global ki-
netic, EV(¢), and magnetic, EM(t), energies for runs I and III,
as shown in Fig. 3. One can observe that the modeled kinetic
and magnetic energies both closely follow the DNS evolu-
tion, although at moderate times [between t=1 and 5 for
EM(t) and between t=1 and 3 for E"(¢)], the model slightly
underestimates them.

Since our field re construction procedure uses the flow
(kinetic and magnetic) helicities (even though the model it-
self does not take into account at this stage the helical con-
tributions to evaluate the transport coefficients), we plot in
Fig. 4 the time evolution of both kinetic and magnetic helici-
ties, respectively, H"(f) and H"(¢). Even though both mod-
eled kinetic and magnetic helicities do not exactly match the

0.2t
0.1
ol

-0.1

£ -0z

0.3} /7 |—DNs:HY(h

-0.4} == =LES MHD II: HV(t) |
05 U\ —DNSs: HM(t)
-0.6f ---LES MHD I1: HM) 1
e T

time

FIG. 4. Time evolution of the kinetic and magnetic helicities for
runs I (256 DNS) and III (64> LES MHD II).
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—DNS
+ LES MHD 11 |4

10° 10’
Kk

FIG. 5. Total energy spectra ET(k)=E™(k)+E"(k), at time =1,
3, 5, and 10, from top to bottom, for runs I (2563 DNS solid line)
and 11T (64° LES MHD II plus signs).

DNS results at each time, they remain close and reproduce
the main DNS temporal fluctuations. The LES MHD I model
provides similar results (not shown).

We do not present here the temporal evolution of the cross
helicity HE(¢), since it is negligible when compared to the
total magnetic and kinetic energy. Indeed, this correlation,
initially equal to zero, reaches a maximum value of 0.081 for
the DNS run, and of 0.069 for the LES MHD II run, to finish,
respectively, at values of 0.051 and 0.056.

We now investigate the spectral behavior of our LES
model by comparing the DNS and LES MHD 1I kinetic and
magnetic energy spectra at various times. Figure 5 shows the
total (kinetic plus magnetic) energy spectra ET(k)=EM (k)
+EY(k) at times t=1, 3, 5, and 10 obtained from DNS and
LES MHD II computations. At any wave number and at any
time, our LES MHD II model reproduces more correctly the
DNS spectra than does the LES MHD I model (see Fig. 1). It
is clear that the spectral overestimations at small scales ob-
tained with this latter model is cured by the new formulation
of the eddy damping rates.

VII. RANDOM FLOW AT P,;=0.1

Since the eddy damping times involved in our LES MHD
IT model allow for a more refined differentiation between the
dynamical effects of the magnetic diffusivity and kinematic
viscosity, we simulated a flow at a magnetic Prandtl number
less than unity, namely, P;,=0.1. In order to highlight the
efficiency of the damping times in reproducing the flow dy-
namics, we compared both LES MHD I and II data against
DNS results. For these simulations, we kept the initial con-
ditions identical to those of the previous section. A first com-
parison between the time evolution of the kinetic and mag-
netic energies computed from a DNS and LES MHD II data
is plotted in Fig. 6.

One can observe that the model nearly reproduces the
exact temporal evolution of both kinetic and magnetic ener-
gies. The evolution of the kinetic and magnetic helicities (not
shown) is also well reproduced by the model. Once again,
the cross helicity remains weak throughout the simulations.
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FIG. 6. Total kinetic and magnetic energy temporal evolutions,

for runs IV (256° DNS), and V (64° LES MHD II) at a magnetic
Prandtl number of 0.1.

Initially equal to zero, it reaches a maximum value of 0.056
for the DNS, 0.057 for the LES MHD 1, and 0.057 for the
LES MHD II runs, before it ends with final values of 0.044
(DNS), 0.046 (LES MHD 1), and 0.045 (LES MHD II).

In Fig. 7 the total (kinetic plus magnetic) energy spectra
evolution are shown at times =1, 3, 5, and 10, obtained
from DNS, LES MHD I, and LES MHD I data.

Although at small wave numbers, both LES models cor-
rectly reproduce the DNS spectra, strong differences appear
among these various spectra at large wave numbers. Indeed,
the LES MHD II results slightly underestimate this range of
DNS spectra, whereas the LES MHD I highly overestimates
it.

VIII. DETERMINISTIC ORSZAG-TANG FLOW AT Py=1

For a majority of flows, the cross correlation between the
velocity and the magnetic fields (or cross helicity) is non-
negligible, leading to a slowing down of the dynamics and to

—DNS
0
104 o LESMHD |
f + LESMHD II
10°F 3
- a2
2107
'-I.IJ
107}
107
-5
10 :
10° 10’

k

FIG. 7. Total energy spectra, at times t=1, 3, 5, and 10, from top
to bottom, for runs IV (256° DNS, solid line), V (64> LES MHD I,
plus signs), and VI (643 LES MHD 1, triangles) at P,,=0.1.
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FIG. 8. Kinetic and magnetic energy evolution, for runs VII
(256 DNS, solid line), and VIIT (64° LES MHD 11, dashed line)
with nonzero velocity-magnetic field correlation.

an energy spectra dependence on the amount of the flow
correlation [34]. Tt has also been observed that local patches
of either aligned or antialigned velocity-magnetic field con-
figurations can be found both in the solar wind and in nu-
merical simulations [31,32]. We therefore decided to evalu-
ate the ability of our model to simulate flows with strong
cross helicity by examining the evolution of the so-called
three-dimensional Orszag-Tang flow [with x, y, and z the
unit vectors in the (x,y,z) directions]:

v(z=0) = -2 sin(y)x + 2 sin(x)y,

b(z=0) =[-2 sin(2y) + sin(z) ]x + [2 sin(x) + sin(z) ]y
+[2 sin(x) + sin(y) ]z (24)

with an initial global correlation HC(t=0)=1.63, to be com-
pared with the total kinetic and magnetic energy E"(1=0)
=EM(t=0)=2.

A. Global norms

The kinetic energy obtained from the LES MHD II data
fits with great accuracy the DNS kinetic energy (see Fig. 8).
However, the magnetic energy, which is well reproduced up
to =2, measurably departs from the DNS data after this
time.

The global cross helicities, computed from either DNS or
LES MHD II data, are quite close (see Fig. 9), demonstrating
that, although the model does not explicitly take this quantity
into account, it still maintains a reliable evolution for it.
However, the well-known temporal growth of the normalized
cross-correlation  coefficient  p(1)=HC(t)/[EV(t)+EM(t)]
shown in Fig. 10 is not represented as accurately as either E7
or HC. This could be tentatively attributed to the fact that
turbulent transport coefficients based on the velocity-
magnetic field correlation itself would emerge from a com-
plete model (as derived in [1]; see also [33]), the effect of
which might be to dampen the correlation growth over time.
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FIG. 9. Global velocity-magnetic field cross helicity, for runs
VII (256° DNS, solid line), and VIII (64° LES MHD II, dashed
line).

Note that this discrepancy likely emerges from the less ac-
curate representation of the magnetic energy itself, as dis-
played in Fig. 8.

B. Spectral features

We investigate finally the spectral behavior of our model
for the particular Orszag-Tang flow under study. We, respec-
tively, plot in Figs. 11 and 12 the kinetic and magnetic spec-
tra of both DNS and LES MHD II data, at times =1, 3, 5,
and 10.

Strong similarities are observed between the modeled and
the DNS spectra, although small differences appear at large
scales. There may be some fluctuations in the spectra that
could be erased by a temporal averaging in the case of sta-
tionary flows in the presence of a forcing term; on the other
hand, these discrepancies did not appear in the uncorrelated
cases of the preceding sections, showing again that the
amount of cross helicity is an essential factor in understand-
ing the detailed dynamics of MHD flows; the improvement

0.8l|—DNs .
---LES MHD I .

"0 2 4 6 8 10 12
time
FIG. 10. Correlation coefficient p(), for runs VII (256° DNS,
solid line), and VIII (64> LES MHD II, dashed line).
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FIG. 11. Kinetic energy spectra, at times t=1 (top), 3, 5, and 10
(bottom), for data VII (2563 DNS, solid line) and VIII (64> LES
MHD 11, plus signs).

needed in the modeling effort in such a case is left for future
work.

In order to evaluate the effect of the model on the cross
helicity, scale by scale, we represent in Fig. 13 its associated
spectra at times =3 and 10 (only two times are shown for a
readable plot). At the large scales which are the most ener-
getic, the model correctly reproduces, at both times, the
spectra obtained from the DNS data. However, close to the
cutoff wave number, the model strongly underestimates the
cross helicity. This phenomenon, as stated before, is linked to
the eddy viscosity and eddy diffusivity, which dissipate the
kinetic and magnetic resolved scales, as well as the cross
correlation at these scales. The reconstruction procedure al-
lows energy and helicity (when taken into account) to be
reinjected at these scales, but not the cross correlation, since
transport coefficients and time scales associated with cross
helicity have been left out in the present work, for simplicity.

IX. CONCLUSION

In this paper, we carry out two complementary studies.
We first develop a large-eddy simulation spectral model for
MHD turbulent flows using the EDQNM equations and

0

10

DNS
+ LES MHD Il

10
=
=
=
w 107

10

10° 10’
k

FIG. 12. Magnetic energy spectra for the same runs and times as
in Fig. 11.
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FIG. 13. Cross helicity spectra at t=3 (top) and 10 (bottom), for
runs VII (256° DNS, solid line), and VIII (64> LES MHD 11, plus
signs).

transport coefficients derived in [25], but in the nonhelical
case. We then show that not all relevant time scales appear-
ing in the cumulant expansions of the primitive MHD equa-
tions are taken into account in the phenomenological formu-
lation of [25]. Indeed, one can derive several new eddy
damping times for the EDQNM equations, and document
how, by using them, one can considerably improve the treat-
ment of the magnetic and kinetic energy transfers in the LES
approach taken in this paper, as shown on three specific ex-
amples, at magnetic Prandtl numbers equal to 1 and 0.1, and
in the presence or absence of velocity-magnetic field corre-
lations.

Several extensions of this work are possible. One is to
incorporate the effect of either cross helicity [33] or kinetic
and magnetic helicities [25] in the evaluation of the eddy
viscosities and eddy noise derived here. The fact that the
modeling algorithm we propose does not depend on a speci-
fied inertial index may also be of some help in the case of
high velocity-magnetic field correlations when different
spectra emerge at high values of the (normalized) HS cross
helicity [34].

The issue of energy spectra in MHD turbulence, still
much debated today, may be another possible application of
the model presented in this paper. One issue that will be
worth checking in this context is to what extent the model
does follow the exact laws that can be derived in MHD (un-
der the hypotheses of isotropy, homogeneity, incompressibil-
ity, stationnarity, and high Reynolds number) and that stem
from energy and cross-helicity conservation [35] (as well as
for the other quadratic invariant of the ideal case, e.g., mag-
netic helicity [36] in the three-dimensional case).

Furthermore, with such a model, many astrophysical and
geophysical flows can be studied, and perhaps more impor-
tantly a large range of physical parameters, in particular the
magnetic Prandtl number, can be examined. Among such
problems, the generation of magnetic fields at either low or
high magnetic Prandtl number is of prime importance, in
particular in the former case in view of a set of laboratory
experiments designed to study the dynamo instability in lig-
uid metals [37].
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APPENDIX: EDQNM CLOSURE

For completeness, we recall here the EDQNM closure
equations for magnetic and kinetic energies without helicity.
The nonhelical EDQNM equations were first derived in [24]
but we follow here the notation used in [25], which gives the
following closure in the absence of helicity:

(9, + 2vk2)E" (k1) = TV (k.1), (A1)
(8, + 2 k2 EM(k,1) = T (k. 1), (A2)

where the nonlinear transfer terms for the kinetic and mag-

netic energy, respectively, 7"(k,) and 7" (k, 1), are expressed
as

TV(k,1) = f L (OpgS"Y + OtV ™)dp dg,  (A3)
k

o= [ [ s o ap g a0
k

Here A, is the integration domain over p and ¢, such that
(k,p,q) form a triangle. In the formulation derived in Pou-
quet et al. [25], the @’s, called triad relaxation times, are
unique and read

1 — e #wd

0kpq(t) — HVV — 0VM= HMV_ M _ ,

kpq kpq kpq = “kpq — i (A5)
Pq

with g, = s+ pp,+ 1, Where the s are called eddy damp-
ing rates and read

k
W= +>\<fo q*(Ey + Eff)dq)

2 k 1/2
+ \/;k(f E’q”dq) +(v+ k. (A6)
0

The constant N\ can be expressed as a function of the Kol-
mogorov constant C; appearing in front of the kinetic energy
spectrum such that

12

A=0.218C;2, (A7)

following [22].

The only difference between this classical EDQNM clo-
sure for MHD and the new formulation we develop here
resides in the introduction of triad relaxation times; they read

1 - e~Hipd!

—e Pq

kaq(t) = XY > (AS)
kpq

with Mfg;: ,u,fy+ ,uify+ ,u,jy and with XY standing for VV,
VM, MV, or MM and with
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w" = T + [y (0], (A9)
M =[P OT + [ (O] + 70T, (A10)
=[O + [ (O] + [RWT, (A1D)
M =T + [ (0T + [F0], (A12)

where the different characteristic times are defined in Sec.
IV.

The SV, SYM SMV and SMM terms can be further ex-
panded as

k
SV = p—qbkl,q[szV(q,t)EV(p,t) _ PPEY(q.0E" (k,1)]

=58V(k,p.q.1) + Sy (k.p.q.1), (A13)

k
M = Ijqckpq[szM(q,r)EM(p,r) - p*EM(q,0)E"(k,1)]

+S8Y(k,p,q,0) + Sy (k,p,q,1), (A14)

PHYSICAL REVIEW E 78, 026310 (2008)

k
SMV = p—qhkpq[szM(p,t)Ev(q,t) — PPEY(q.0EM(k,1)]

:Sjlu(k,p,q,t)+S]2W(k,p,q,t), (A15)

K K2
SMM — —ckpq<—2EV(p,t)EM(q,t) - EM(q,t)EM(k,t)>
pPq p

+ ¥ (k,p,q,1) + Sk, p,q.1). (A16)

In Eqs. (A14) and (A16) the geometric coefficients by,,,,
and /y,,, are defined as

Ckpg>

bipg =Pk (xy + 20, Cipg=pk'2(1-y?),

Mipg=2(1=y7),

where x, y, and z are the cosines of the interior angles oppo-
site to k, p, and q. This completes the description of the
EDQNM closure for MHD as developed in [24,25]. The he-
lical case, dealt with in [28] for a pure (neutral) fluid and in
[25] from the EDQNM standpoint, will be studied in a forth-
coming presentation.
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