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Abstract

Studying strongly turbulent flows is still a major challenge in fluid dynamics. It is

highly desirable to have comparable experiments to obtain a better understanding

of the mechanisms generating turbulence. The von Kármán flow apparatus is one

of those experiments that has been used in various turbulence studies by different

experimental groups over the last two decades. The von Kármán flow apparatus

produces a highly turbulent flow inside a cylinder vessel driven by two counter-

rotating impellers. The studies cover a broad range of physical systems including

incompressible flows, especially water and air, magnetohydrodynamic systems

using liquid metal for understanding the important topic of the dynamo instability,

particle tracking to study Lagrangian type turbulence and recently quantum tur-

bulence in super-fluid helium. Therefore, accompanying numerical studies of the

von Kármán flow that compare quantitatively data with those from experiments

are of high importance for understanding the mechanism producing the char-

acteristic flow patterns. We present a direct numerical simulation (DNS)

version the von Kármán flow, forced by two rotating impellers. The cylinder

geometry and the rotating objects are modelled via a penalization method and

implemented in a massive parallel pseudo-spectral Navier–Stokes solver. From

the wide range of different impellers used in von Kármán water and sodium

experiments we choose a special configuration (TM28), in order to compare

our simulations with the according set of well documented water experiments.
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Though this configuration is different from the one in the final VKS experiment

(TM73), using our method it is quite easy to change the impeller shape to the one

actually used in VKS. The decomposition into poloidal and toroidal components

and the mean velocity field from our simulations are in good agreement with

experimental results. In addition, we analysed the flow structure close to the

impeller blades, a region hardly accessible to experiments. Depending on the

blade geometry different vortex topologies are found. The very promising results

imply that our numerical modelling could also be applied to other physical sys-

tems and configurations driven by the von Kármán flow.

S Online supplementary data available from stacks.iop.org/njp/16/103001/

mmedia

Keywords: von Kármán flow, turbulence, moving boundaries, volume

penalization, pseudospectral method

1. Introduction

In order to make progress in understanding strongly turbulent flows a set of standard

experiments which can be used by different groups for studying different physical questions is

highly desirable. The von Kármán experiment is an important example of such a standard

experiment. It consists of a cylindrical vessel in which a flow is generated by the rotation of two

impellers at the extremities of the vessel [1]. Studying turbulence by means of von Kármán fluid

experiments has a strong tradition in the last two decades. Several teams set up such

experiments with different designs in incompressible flows using water [2, 3] and air [4–7]. This

type of experiments was also one of the first setups used to study Lagrangian statistics of

turbulent flows [8–11], by tracking solid particles or bubbles. Recently, a helium super-fluid

experiment has been built with the classic von Kármán configuration [12] to reach even higher

Reynolds number, and to study the interaction of the super and classic fluid.

In the last decade, in order to gain a better understanding of the underlying processes of

magnetohydrodynamic and dynamo effect, many experimental groups have investigated

experiments using liquid sodium [13–16]. A very successful experiment used the von Kármán

apparatus with sodium liquid (VKS) hosted in Cadarache which was able to reproduce dynamo

action in a turbulent flow [17–22]. Before starting with sodium experiments, prototypes filled

with water were set up. They compared and optimized different impeller designs to seek the

highest kinematic dynamo growth rate [23, 24].

In this paper we focus on the purely hydrodynamic properties of the von Kármán flow

driven by rotating impellers and keep the investigation of the magnetized dynamics for future

work. To this end we perform direct numerical simulations (DNSs) of a von Kármán flow, thus

a three-dimensional impeller-driven turbulent flow in cylindrical geometry. The geometry of

rotating impellers assembled of several basic geometric objects is modelled via an immersed

boundary technique (IBM) and implemented in a massive parallel pseudo-spectral

Navier–Stokes solver. High resolution simulations allow for the development of a turbulent

flow. This method allows the simulation of a free flow inside a confining solid object driven by

rotating impellers, in contrast to previous numerical approaches with prescribed velocity fields
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[23, 25], periodic domains [26–28] or volume forcings [29]. We compare our numerical results

with the mentioned water experiments [30–34] to validate our numerical modelization

approach. The benefit of a numerical investigation is demonstrated by studying the flow

dynamics in the vicinity of impellers, a region not easily accessible experimentally. Our data

reveals the existence of a coherent vortex structure in the frame of reference that co-rotates with

the impellers.

2. Numerical method

2.1. Basic equations

We consider the incompressible Navier–Stokes equation

νΔ
∂

∂
+ = − +� �

t
p

u
u u u( · ) (1)

with the velocity field tu x( , ), pressure p, viscosity ν. The velocity field additionally fulfills the

incompressibility condition =� u· 0. At the boundaries we impose a no-slip condition such

that the velocity of the fluid equals the velocity of the boundary itself =u V| boundary penalized. It is

zero on the fixed outer cylinder and equals the solid rotation velocity on the disks and the blade

structures. The cylindrical wall and the moving impellers are implemented by a penalization

method (see section 2.3).

2.2. The Fourier-spectral scheme

To solve the equation system a standard pseudo-spectral method is applied using the 2 3 rule for

dealiasing and resolutions of 2563 and 5123 grid points. The time derivative on the left-hand

side of the Navier–Stokes equation is discretized via a strongly stable third order Runge–Kutta

method [35]. Incompressible turbulent flows have been intensively studied in a periodic box, a

classical mathematical framework for theories [36] as well as for numerical simulations of

isotropic and homogeneous turbulence [37, 38]. In this geometry the pseudo-spectral numerical

method is the most precise global numerical method for a fixed mesh size and the success of this

method is essentially due to the efficiency of the fast Fourier transform. In the present work, we

use an immersed boundary method to impose no-slip boundary conditions inside the simulation

domain. In this framework we lose the spectral precision near the boundaries, but we are able to

design any geometry of static or moving structure while keeping the usability of a pseudo-

spectral code. The implementation of the penalization boundaries and the moving impellers

doubles the CPU time. The most time-consuming part of this implementation is the

recalculation of the moving boundaries in each step. For future MHD simulations we expect

a factor below 2, as the penalization then consumes less time compared to the solution of the

basic equations. Those methods are sufficiently accurate to reproduce standard benchmarks [39]

and benchmarks depending crucially on the boundary layer solution [40]. The used method will

now be explained in more detail.

2.3. Penalization method

To simulate flows within a solid cylindrical boundary and moving impellers of complex shape,

a penalization method is applied. For points inside the boundaries a ‘pseudo’ forcing term is

3
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added to the right-hand side of the Navier–Stokes equation (1), which adjusts the velocity

exactly to the prescribed value in and on the wall or the impellers. To calculate the force we use

a method that was first introduced in [41, 42]. It is called direct forcing and allows to calculate

the force directly from the Navier–Stokes equation without the necessity of further auxiliary

parameters. To increase the precision of the boundary layers, we used a predictor for the

pressure gradient [43].

As we deal with complex geometries the boundaries of the objects do not coincide with the

rectangular grid. This makes it necessary to interpolate the velocity at the boundary, for which

we take the volume fraction Vb occupied by the solid object into account. Regarding the volume

of each cell Δ Δ Δ=V x y zc , the force is weighted with the factor V Vb c. Practically, this is

performed via a Monte–Carlo method using 50 random points within each cell to calculate the

volume [42]. The details of this penalization method were described and tested in another fluid

context [40].

The solid rotation velocity of the impellers is simply given by the angular velocity Ω and

the distance from the axis r as Ω= ×V rboundary . The angular velocity of the impellers can be

set independently for each impeller.

2.4. Configurations of our numerical experiments

2.4.1. Numerical experiment setup. Our aim is to model a configuration similar to the von

Kármán experiments in which a cylindrical vessel is filled with a liquid. The fluid is driven by

two counter-rotating impellers, one on each side of the vessel. Each impeller consists of a disk

on which several blades are mounted.

We create an embedded cylinder inside the periodic box, using our penalization method,

with a radius Rc = 3.0. Though the periodicity is kept along the z axis to decrease Gibbs

oscillations, the velocity at the end of the cylinder is close to zero due to the symmetry of the

system. The height of the cylinder is π2 , giving an aspect ratio of the whole cylinder volume of

π R2 c. In experimental setups this height varies from 2 up to 3 cylinder radii, thus the aspect

ratio of the cylinder might slightly differ from the value chosen here. The interior of this

cylinder represents ∼71% of the total computing domain.

For one set of simulations we choose a very similar configuration of the curved disk-blades

to the setup called ‘TM28’ [23] with a distance between the disks of R1.8 c, leading to an aspect

ratio of the bulk volume equal to that in the experiment, a radius of the rotating disk of

=R R0.9d c, a height of the eight blades of R0.2 c and a curvature radius of the blades of

=C R0.5 c. The angle of the expelled flow at the end of the blades is given by

α = ≈ ∼( )R C rad degarcsin 2 1.11976 64.15d . For a different set of simulations we choose

a straight blade configuration, which is close to the ‘TM70’ and ‘TM80’ configuration

[24, 31, 33], with eight blades per disk. A difference is that our disk radius is =R R0.9d c

instead of ( =R R0.75TM c70 , =R R0.925TM c80 ). We call this configuration straight configura-

tion. Here, = ±∞C and α = 0.

In the following we analyse these two blade geometries (TM28 curved and straight

blades). The disks are always counter-rotating with the same rotation rate. Depending on the

rotation direction we have two different blade curvatures (called + or −) (see figure 1).

2.4.2. Non-dimensional numbers. We have chosen six simulations to highlight our results. We

vary the viscosity ν controlling the dissipative term, the rotation rate Ω of the impellers, and the
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curvature of the blades. Of course other parameters such as the geometry of the blade, the

number of blades, the difference in the rotation rate of the disks might change the topology of

the flow and the quantitative results.

From our numerical data we compute a set of meaningful non-dimensional numbers (see

table 1). The Reynolds number accessible with DNSs with 5123 grid points is as usual a few orders

of magnitude lower than experimental Reynolds numbers. Nevertheless, at this Reynolds number the

flow is in transition to the developed turbulent state [34], thus only minor variations of global

quantities should be expected for increasing Re. An indicator for this is the fluctuation level

δ = 〈 〉 〈 〉u u2 2 defined in [44], which according to our measurements is similar to that obtained from

the water experiments for synchronized rotating disks and with an annulus deviator configuration in

the ‘TM60’ and ‘TM73’ setup. With asynchronous disk rotations or without annulus, this level of

fluctuation could be higher (above 2.0) [44]. According to [34] the level of fluctuations first increases

and then saturates with the Reynolds number Re, which could explain the fact that the numerical

fluctuation level equals the experimental one even for a low Reynolds number.

The efficiency Ω=E U Rf dmax of the impellers, which measures how much energy is

injected into the fluid, is defined as the maximum velocity of the fluid in the bulk induced by the

impeller motion. The variation of the Ef as a function of the expelled flow angle α for different

experimental configurations is confronted with our numerics in figure 2(b). With a Reynolds

number three orders of magnitude lower than the experiments, we nevertheless have a good

agreement with the experimental efficiency. The efficiency number decreases with the same

slope found in the water experiments. We noticed that our straight blade efficiency is almost

identical with the ‘TM70’ configuration efficiency. For the positive curved blades our numerical

data is closer to the ‘TM60’ configuration (16 blades) than to the ‘TM28’ (8 blades).

The ratio of the root mean square velocity and the maximum velocity of the impellers

(U Vrms max) is pretty close to the ‘TM28’ experiment for our higher rotation rate

simulation ( Ω =1.6 2.4).

Another non-dimensional number is the ratio of the rotation period of the impellers

= =Ω
π

Ω
T f1

2
and the large eddy turn over time Tnl. Our simulations are in the same disk

rotation regime as the experiments (see the last line of table 1) showing that there is a bit more

than two large eddy turn over times during one turn of the impellers.

Figure 1. Simulated impellers with eight curved blades (left) and eight straight blades
(right): a positive curvature, denoted (+), means that the convex side of the blade points
in the turning direction of the impeller, while for a negative value, denoted (–), it is the
concave side. Note that there is a small deviation from the actual experimental setup: the
curved blades end exactly at the radial line of the disk, while in the experiment the
endings of the blades are tangential to this line.
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3. Mean bulk flow structure

3.1. Global flow profiles

While integrating the Navier–Stokes equations, we additionally time averaged the velocity field.

The stream lines and the vector field of the mean flow u are shown in figure 3(a) and

figure 3(b), respectively. These images reproduce the classical images of a S2T2 type flow [45]

of the von Kármán flow. For comparison, a snapshot of the enstrophy (figure 3(c)) shows

interacting vortex filaments in the bulk region which is characteristic to a turbulent flow. The

vorticity is produced and thus very high near the blades. This observation will be analysed in

detail in section 4.

Table 1. Simulation quantities are compared with water experiments results from

[23, 31, 33, 44] and specially the configuration ‘TM28’ (column ‘Exp.’). The cylinder
radius in the simulations is Rc = 3.0, with the simulation box size π2 , the disk radius is

=R R0.9d c. We collected and defined several quantities or non-dimensional numbers: ν

the kinematic viscosity of water or in our simulations, Ω the rotation rate,
=U E t2 ( )rms , Umax is the (spatial) maximum of the (time-averaged) mean velocity

field in the bulk in the range − < <R z R0.8 0.8c c, where z = 0 is the centre of the

cylinder. = ∑
π

∑
L E k k( )

E k

2

( )
is the integral length scale computed with E(K), the

isotropic spectral density of the kinetic energy, and =T L Unl rms is the eddy turn over

time. We used the experimental Reynolds number definition of VKE-VKS experiments
Ω ν=R R Rd cexp . To compare with numerical works, we define another Reynolds

number ν=R U Lnum rms . The efficiency Ω=E U Rf max c of the impellers states how

much energy is injected into the fluid. δ = 〈 〉 〈 〉u u2 2 is the fluctuation level defined in

[44]. We present also the ratios U Vrms max and =Ω
π

Ω
T Tnl

U

L

2 rms
. Our simulations are

during more than ΩT20 (turns of the impellers), which is the duration of the time average

computation. The upper half of the table actually refers to the ‘TM28’ impeller, while
the lower half (Urms, Umax, Tnl, δ, Urms/Vmax, TΩ/Tnl) refers to the ‘TM60+’ impeller for
a general comparison of experimental and simulated impeller-driven von Kármán flows.
The value for L is an estimate based on the cylinder scale Rc as the energy injection
scale.

Exp.

Curved

(+)

Curved

(−) (Straight)

(+)

512

(+)

Ω1.6

(+)

ν 2

Grid size — 2563 2563 2563 5123 5123 5123

ν − −m s10 6 2 1 0.005 0.005 0.005 0.005 0.005 0.0025

Ω −s28.4628 1 1.5 1.5 1.5 1.5 2.4 1.5

Rexp 2.84 105 2430 2430 2430 2430 3888 4860

Rnum 105 316 404 415 308 591 732

Ef 0.64 0.50 0.698 0.635 0.504 0.502 0.504

L 0.1 m 1.6831 1.9011 1.9149 1.6349 1.9277 1.9038

Urms ≈ −m s1 1 0.9397 1.0641 1.0843 0.9429 1.5352 0.9619

Umax 2.268 3.143 2.859 2.268 3.616 2.268

Tnl 0.1 s 1.7911 1.7865 1.7660 1.7339 1.2556 1.9792

δ −1.5 2.2 1.452 1.433 1.487 1.40 1.519 1.519

U Vrms max 0.322 0.232 0.262 0.267 0.232 0.379 0.237

ΩT Tnl 2.207 2.34 2.338 2.3446 2.371 2.0850 2.1164
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3.2. Poloidal and toroidal components

For further analysis of the simulated flows we performed a decomposition into poloidal and

toroidal components of the form

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦Ψ θ Φ θ= + = × + × ×� � �( ) ( )r z r zu u u e e, , , , (2)z ztor pol

with unique potential functions Ψ and Φ and the unit vector in z direction ez. To be precise, in

the periodic box, we normally need to add a component F(z) depending only on z (see [46] and

Figure 2. From different water experiment setups given in data tables (TM7x [24],
TM8x [33], TM60 and TM28 [23]) and from our numerical results, we plot (left) the
ratio of the poloidal and the toroidal mean velocity (Γmean) and (right) the efficiency

Ω=E U Rf cmax of the impellers both versus the flow expulsion angle α at the end of

the blades.

Figure 3. (a) Streamlines and (b) vector field of the time-averaged flow and (c) a
snapshot of the vorticity with TM28-like (+) configuration; disk radius R0.9 c, 8 blades

per disk with height R0.2 c and curvature radius R0.5 c, aspect ratio of cylinder π2 3,

aspect ratio of bulk 1.8, Reynolds number 2430, resolution 2563. (Movies of the time-
evolution of the fields are available in the supplementary data, available from stacks.iop.
org/njp/16/103001/mmedia).
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(course 2, C A Jones) [47]). Although our penalized cylinder is periodic along the z axis there is

no mean flow crossing the box as the gap between the cylinder and the disks is small. We

checked that F is zero (up to the numerical digit precision).

This decomposition has also been performed with the experimental data with the ‘TM28’

impellers, which allows a comparison of experimental and simulated data. Supposing axial

symmetry around the z axis, we can compute the poloidal and toroidal two dimensional fields

Ψ×� r z e[ ( , ) ]z respectively Φ× ×� � r z e[ ( , ) ]z (see figure 4 and compare them to figure 3

of [23]). Visually we have a good agreement, the poloidal flow consists of two large-scale

vortices in the regions <z 0 and >z 0, where the toroidal components respectively point in

opposite directions. Impellers with different curvature (negative curvature and straight blades)

produce the same kind of flow structure. From the images it is difficult to distinguish between

the different blades configurations. We therefore present in table 2 the mean and maximum

velocity of the poloidal/toroidal components, all of them rescaled by their respective maximum

velocity of the impellers Ω=V Rdmax . Those values can be compared to the experimental ones

[23]. Our velocities of the (+) configuration are −10% 20% lower than the experimental data of

‘TM28’. This could be explained by the fact that our efficiency coefficient is lower than the

‘TM28’ configuration (see figure 2 (right)), implying a smaller velocity in the central region of

the vessel. We also compare the ratio of the poloidal and the toroidal velocity versus the

expulsion angle of the blades α with different water experiment results [23, 24, 33]. This ratio

was used to seek the dynamo onset as a control parameter. Like the efficiency the ratio Γmean for

the (+) configuration is closer to the ‘TM60’ than the ‘TM28’ setup (figure 2 (left)). However

we stress that our ratios have also a positive slope. Even if there is not a perfect agreement our

ratios are quite close to the different experimental measurements.

3.3. Impact of viscosity and rotation speed

In order to study the impact of the viscosity and the disk rotation rate on the mean flow structure

we performed additional simulations with curved impeller blades and positive turning direction.

In the first of these runs we increase the resolution to 5123 grid points (run (+) 512 in tables 1

and 2), while all other parameters are unchanged. This simulation can be seen as a convergence

1

0.8

-0.8 -0.6 -0.4 -0.2 0.20 0.4 0.6 0.8

0.6

0.4

0.2

0

r
/R
c

1 1

0.5

0

-0.5

-1

0.8

0.6

0.4

0.2

0

r
/R
c

z/Rc

-0.8 -0.6 -0.4 -0.2 0.20 0.4 0.6 0.8

z/Rc

Figure 4. Projections of the poloidal (left) and toroidal (right) components generated by
impellers with curved blades and positive direction, disk radius R0.9 c, eight blades per

disk with height R0.2 c and curvature radius R0.5 c, aspect ratio of cylinder π2 3, aspect

ratio of bulk 1.8, Reynolds number 2430, resolution 2563.
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test. The velocities for the toroidal and poloidal component are slightly closer to the

experimental values, but the non-dimensional quantities, especially the poloidal-toroidal ratios

Γ, are unchanged, showing that at 2563 grid points, our simulations are already converged.

In the second run (run Ω+( ) 1.6 in tables 1 and 2), the angular velocity of the impellers is

increased by a factor of 1.6, while all other parameters as well as the resolution are unchanged.

The Reynolds number then increases to Re = 3888. The listed values remain almost constant,

only the ratio of the rotation period over the eddy turn over time slightly decreases and the ratio

Γmax increases slightly.

In the last run the viscosity is lowered by factor 2 (run ν+( ) 2 in tables 1 and 2) and the

resolution is increased to 5123 grid points. In this case the Reynolds number increases up to

Re = 4860. Regarding all quantities obtained in the simulations, there is evidently no major

influence of rotation speed and viscosity on the mean flow profile. Only the fluctuation rate δ

slightly increases and the ratio Γmax grows slightly, probably due to locally better pumping of

the impellers.

The mean flow quantities that we present do not change with the rotation rate or the

viscosity. This implies that the corresponding simulations are already in an asymptotic regime,

where the Reynolds number has only little effect on the large-scale structure of the flow. Indeed,

the range of Reynolds number numerically achieved in our work (2500–4800), is at the edge of

the inertial regime of water experimental results ([34] see their figures 5 and 7). In this

experimental campaign, the Reynolds number has been increased progressively by growing the

rotation frequency of the disks, to explore different phases: viscous, transition and inertial

regimes.

Table 2. Quantities from experiments and simulations: the maximum and the mean of

the poloidal and toroidal velocity and the respective ratio Γ = u umax pol,max tor,max and

Γ = u umean pol,mean tor,mean. All the velocities are normalized by the maximum velocity of

the impellers Ω=V Rdmax . A quantification of the poloidal and toroidal components is

done by extracting the maximum and mean values in the bulk, the region
− < <R z R0.8 0.8c c. In addition, the average torque T on the impellers has been

computed for the three simulations with lower resolution and normalized using the
definition of the non-dimensional torque ρ π= −K T R f( (2 ) )p c

5 2 1 [34]. The values for the

TM80 impeller [33] are listed for comparison with the similar straight blade
configuration.

TM28 TM80 (+) (−) (Straight)

(+)

512

(+)

Ω1.6

(+)

ν 2

upol,mean 0.199 0.19 0.174 0.141 0.164 0.184 0.166 0.179

upol,max 0.492 0.425 0.380 0.453 0.443 0.452 0.460

utor,mean 0.281 0.38 0.205 0.228 0.245 0.217 0.202 0.217

utor,max 0.691 0.74 0.535 0.824 0.708 0.538 0.530 0.509

Γmean 0.71 0.49 0.850 0.621 0.670 0.847 0.822 0.825

Γmax 0.71 0.794 0.461 0.640 0.824 0.854 0.904

Kp – 0.111 0.0883 0.1144 0.1215 – – —

9
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Figure 5. Visualization of the velocity field on a top view (left) and the streamlines of
velocity on a transverse view (right), for our three configurations (from top to bottom
(+), (−), (straight)). The velocity is averaged in time, projected on the plane, and
computed in the rotating frame ( Ω= − ×u u r* ). In all images, the colour map
represents the magnitude of the velocity. The transverse view planes are perpendicular
to the red line shown on the top view planes. Not all of the perpendicular planes
associated with the red lines is plotted (only 70% of the red line of the left side). The
position of the blades helps to relate the top and side views. Note that this projection of
the velocity in the considered plane is not solenoidal, thus streamlines could end at the
boundary, where the projected velocity tends to zero. Streamlines of the 3D flow do not
enter in the solid object, but instead slide along the boundary. This behaviour is not
captured by the 2D projection.

10
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4. Local near-blade structures

4.1. Vortex generation behind blades

Besides the general flow structure imposed by the impellers, our main interest lies in the near

blade flow in the frame of reference of the rotating impeller. Here, we present and analyse the

structures obtained in the three different configurations ((+), (−), straight) with n = 256. We

construct the mean flow in the rotating frame of reference by first averaging the flow each time

the blades pass the same positions, which is every eighth of a turning period. As we expect to

find the same mean flow at each blade we also take the spatial average for rotations around °90 .

As the running time of our simulation corresponds to 20 impeller turns we were able to average

over 640 realizations. The mean flow in the rotating frame is obtained from this average by

subtracting a solid rotation Ω= − ×u u r* .

To get clear pictures of the flow we consider two different planes: one parallel to the disk

plane, with a view from the top and the other perpendicular to the disk (the position of the

perpendicular plane is indicated by a red line in the top view (left column of figure 5). In the top

view, we show the velocity projected onto the plane while its amplitude is represented by a

colour map. This perspective shows how the flow is sucked in from above to the centre, moving

between the blades and how it is finally expelled from the disk outwards. Just by looking at the

left column of figure 5, we can easily distinguish between the different configurations, specially

the (+) and the (−), where the expelled flow in the rotating frame has the same rotational

direction as the disk rotation. The horizontal component represents the major part of the

magnitude of the full velocity along the blade. There is clearly an acceleration from the centre to

the expulsion area. The highest velocity is generally found along the pushing blade. A small

sucking area is located just behind at the end of the blade.

In the perpendicular plane we decide to visualize the velocity by streamlines to highlight

the topology of perpendicular flows. Note that the projected velocity is not solenoidal, thus

streamlines may have an end point. In all three simulations, (right column of figure 5) the

streamline plots show vortex rolls emerging directly behind the moving blade, as vortices are

ripped off at the bladeʼs edge. Those vortices appear to take most of the space between the

blades. Clearly, the negative configuration (−) has a different topology than the two others. This

observation agrees with the horizontal velocity in the top views. The cut along the red line

allows the visualization of the mean flow vortex at different radii for different cells. In the

positive configuration (+), it can be deduced that a cone vortex is produced along the pushing

blade in each inter-blade cell. Those vortices are also present in the straight configuration which

is, however, less clear for the negative configuration −( ).

5. Discussions and perspectives

5.1. Numerical and experimental comparisons

By means of DNSs using a penalization technique we are able to reproduce the large-scale

structure of experimental von Kármán flows produced by moving impellers. Our good

agreement with the experimental results could be explained by the fact that the mean flow

geometry and other global quantities are converging rapidly even at low Reynolds number.
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The natural next step could be to seek the small scale properties of the von Kármán flow,

like the studies on filaments [3, 48], effect of large scales on small scales [7] or the energy

injection [49, 50]. Of course, direct numerical studies with confined flows in the full von

Kármán geometry remain a challenge asking for a big increase of spatial resolution. Our

modelization using the penalization could be easily used to explore different experimental

setups—at least for the large-scale properties.

5.2. Vortex and dynamos

We found a characteristic outwards spiralling vortex between the blades. Note that the influence

of the vortex generated around the blades is suspected to have a strong impact on the dynamo

effect [51]. Some numerical results assuming a dynamo mechanism concentrated around the

disk-blade structure [52, 53] have found that the magnetic mode has a dipole structure

according to the experimental results. The geometry of the experimental magnetic mode cannot

be explained by a mean flow dynamo only. Recent numerical studies using FLUENT

( ϵ−k )-RANS simulations [54] computed the α-tensor produced by the vortex dynamics,

showed a switch between α2 and α Ω− dynamo types.

Despite these vortex dynamics without soft iron impellers the dynamo threshold was not

achieved. The material of the impellers plays a crucial role for the efficiency of the dynamo

action [55–57]. The material properties of sodium make in situ diagnostics very difficult. DNSs

provide a unique tool to assess spatially and temporally resolved variables. The presented

numerical approach in combination with a correct treatment of the magnetic properties of the

solid impellers should provide a handle to address the problem of the interaction of the

conducting fluid and the ferromagnetic impellers. We could also check the different dynamo

onset predictions or measurements of the different configurations produced by the variation of

the blade geometries or material properties [57].

5.3. Spectra and long-term dynamics

Given the temporally resolved velocity fields, probability density functions and power spectra

of the toroidal velocity in the bulk (r = 0.9, z = 0) and near the impellers (r = 0.9, z = 0.65) can

be computed (see figure 6). PDFs of the velocity at both positions are already almost Gaussian.

The mean value increases with z, while the standard deviation decreases, reflecting the toroidal

velocity profile generated by the impeller pumping. The power spectral density in the bulk

shows a −5 3 slope over a range from f1 imp to f10 imp with fimp the impeller rotation frequency.

This is in accordance with power spectra measured in the TM60 experimental configuration

[34]. The power spectrum near the impeller is dominated by impeller time scales, especially a

sharp peak at =f f8 a due to the geometry with 8 blades. A comparison of small frequencies in

the spectrum respectively long-term dynamics with experimental observations would require

longer simulations.

Long simulations are also required to gain sufficient statistics for calculations of the global

angular momentum of the fluid, defined in [58], which characterizes the flow symmetry. At

sufficiently high Reynolds numbers the statistical properties of this quantity change radically,

which can be seen as a phase transition of the flow. The necessary Reynolds numbers for this

process are not accessible for DNSs, thus only the response of the angular momentum to forcing

asymmetries at small Reynolds numbers can be analysed and compared to experimental results

in future work.
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Figure 6. Temporal signal of toroidal velocity utor(t) at r = 0.9, z = 0 (top row) and at
r = 0.9, z = 0.65 (middle row) for the +( ) run at Re = 2430 and the related PDFs
(averaged over 4 points with equal r and z). PDFs are almost Gaussian with a shift of the
mean to larger values and decreased standard deviation for increasing z due to the
pumping of the impellers. Power spectra for the toroidal velocity at z = 0 (middle of the
bulk) (bottom left) and at z = 0.65 (near the impeller) (bottom right) have been
computed using Gabor transforms with a window width of Timp. While the spectrum in
the bulk appears to have a slope −5 3, the spectrum near the impeller is dominated by
impeller time scales.
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In addition, when the water experiments are running during a long time, the von Kármán

mean flow can change to different topology solutions, breaking symmetries [32, 34, 59]. In the

experiment, the typical time scale to record this multi-stability is around 105–106 hydrodynamic

large eddy turnover times. In our present simulations, we are completely out of reach to record

such dynamics: we computed 20 disk turns, which represent around 45 eddy turnover times

only. It would thus be very interesting to perform long numerical runs with small spatial

resolutions to reach and study the long time physical behaviours or to improve statistical data.

Instead of catching long-term dynamics, it could be easier to seek the symmetry breaking

produced by a difference of the rotation speed of the two impellers [32], which generates

hysteresis cycles. By implementing a constant torque forcing, the disappearance of the

hysteresis cycle could be checked, since the two branches of the torque are connected in this

case [60].

Acknowledgment

We acknowledge fruitful discussions with Nicolas Plihon, Arnaud Chiffaudel. Parts of this

research were supported by Research Unit FOR 1048, project B2, and the French Agence

Nationale de la Recherche under grant ANR-11-BLAN-045, projet SiCoMHD. Access to the

IBM BlueGene/P computer JUGENE at the FZ Jülich was made available through the project

HBO36. Computer time was also provided by GENCI in the IDRIS facilities and the

Mesocentre SIGAMM machine, hosted by the Observatoire de la Côte dʼAzur.

References

[1] von Kármán T 1921 Uber laminare und turbulente reibung Z. Angew. Math. Mech. 1 233

[2] Dijkstra D and van Heijst G J F 1983 The flow between two finite rotating disks enclosed by a cylinder

J. Fluid Mech. 128 123–54

[3] Douady S, Couder Y and Brachet M E 1991 Direct observation of the intermittency of intense vorticity

filaments in turbulence Phys. Rev. Lett. 67 983–6

[4] Fauve S, Laroche C and Castaing B 1993 Pressure fluctuations in swirling turbulent flows J. Phys. II 3 271–8

[5] Labbé R and Pinton J-F 1994 Correction to Taylor hypothesis in swirling flows J. Phys. II (France) 4 1461–8

[6] Abry P, Fauve S, Flandrin P and Laroche C 1994 Analysis of pressure fluctuations in swirling turbulent flows

J. Phys. II 4 725–33

[7] Labbé R, Pinton J-F and Fauve S 1996 Study of the von Kármán flow between coaxial corotating disks Phys.

Fluids 8 914–22

[8] Mordant N, Metz P, Michel O and Pinton J-F 2001 Measurement of Lagrangian velocity in fully developed

turbulence Phys. Rev. Lett. 87 214501

[9] Mordant N, Delour J, Léveque E, Arnéodo A and Pinton J-F 2002 Long time correlations in Lagrangian

dynamics: a key to intermittency in turbulence Phys. Rev. Lett. 89 254502

[10] la Porta A, Voth G A, Moisy F and Bodenschatz E 2000 Using cavitation to measure statistics of low-

pressure events in large-Reynolds-number turbulence Phys. Fluids 12 1485–96

[11] la Porta A, Voth G A, Crawford A M, Alexander J and Bodenschatz E 2001 Fluid particle accelerations in

fully developed turbulence Nature 409 1017–9

[12] Saint-Michel B et al 2013 Probing quantum and classical turbulence analogy through global bifurcations in a

von Karman liquid helium experiment submitted

[13] Gailitis A et al 2000 Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility Phys.

Rev. Lett. 84 4365

14

New J. Phys. 16 (2014) 103001 S Kreuzahler et al



[14] Gailitis A et al 2001 Magnetic field saturation in the Riga dynamo experiment Phys. Rev. Lett. 86 3024

[15] Müller U and Stieglitz R 2000 Can the Earthʼs magnetic field be simulated in the laboratory?

Naturwissenschaften 87 381

[16] Stieglitz R and Müller U 2001 Experimental demonstration of a homogeneous two-scale dynamo Phys.

Fluids 13 561

[17] Monchaux R et al 2007 Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium

Phys. Rev. Lett. 98 044502

[18] Berhanu M et al 2007 Magnetic field reversals in an experimental turbulent dynamo Europhys. Lett. 77 59001

[19] Monchaux R et al 2009 The von Kármán sodium experiment: turbulent dynamical dynamos Phys. Fluids 21

035108

[20] Berhanu M et al 2009 Bistability between a stationary and an oscillatory dynamo in a turbulent flow of liquid

sodium J. Fluid Mech. 641 217–26

[21] Berhanu M et al 2010 Dynamo regimes and transitions in the VKS experiment Eur. Phys. J. B 77 459–68

[22] Gallet B et al 2012 Experimental observation of spatially localized dynamo magnetic fields Phys. Rev. Lett.

108 144501

[23] Marié L, Burguete J, Daviaud F and Léorat J 2003 Numerical study of homogeneous dynamo based on

experimental von Kármán type flows Eur. Phys. J. B—Condens. Matter Complex Syst. 33 469–85

[24] Ravelet F, Chiffaudel A, Daviaud F and Léorat J 2005 Toward an experimental von Kármán dynamo:

numerical studies for an optimized design Phys. Fluids 17 117104

[25] Marié L, Normand C and Daviaud F 2006 Galerkin analysis of kinematic dynamos in the von Kármán type

geometry Phys. Fluids 18 469–85

[26] Laval J-P, J-P, Blaineau P, Leprovost N, Dubrulle B and Daviaud F 2006 Influence of turbulence on the

dynamo threshold Phys. Rev. Lett. 96 204503

[27] Dubrulle B, Blaineau P, Lopes Mafra O, Daviaud F, Laval J-P and Dolganov R 2007 Bifurcations and

dynamo action in a Taylor–Green flow New J. Phys. 9 308

[28] Ponty Y, Laval J-P, Dubrulle B and Pinton J-F 2007 Subcritical dynamo bifurcation in the Taylor–Green-

flow Phys. Rev. Lett. 99 224501

[29] Reuter K, Jenko F and Forest C 2011 Turbulent magnetohydrodynamic dynamo action in spherical bounded

von Kármán flow at small magnetic Prandtl numbers New J. Phys. 13 073019

[30] Marié L September 2003 Transport de moment cinétique et de champ magnétique par un écoulement

tourbillonnaire turbulent: influence de la rotation Thesis Université Paris-Diderot—Paris VII

[31] Marié L and Daviaud F 2004 Experimental measurement of the scale-by-scale momentum transport budget in

a turbulent shear flow Phys. Fluids 16 457

[32] Ravelet F, Marié L, Chiffaudel A and Daviaud F 2004 Multistability and memory effect in a highly turbulent

flow: experimental evidence for a global bifurcation Phys. Rev. Lett. 93 164501

[33] Ravelet F September 2005 Bifurcations globales hydrodynamiques et magnetohydrodynamiques dans un

ecoulement de von Karman turbulent Thesis Ecole Polytechnique X

[34] Ravelet F, Chiffaudel A and Daviaud F 2008 Supercritical transition to turbulence in an inertially driven von

Kármán closed flow J. Fluid Mech. 601 339–64

[35] Shu C-W and Osher S 1988 Efficient implementation of essentially non-oscillatory shock-capturing schemes

J. Comput. Phys. 77 439ff

[36] Frisch U 1996 Turbulence: The Legacy of A N Kolmogorov (Cambridge: Cambridge University Press)

[37] Orszag S A and Patterson J S Jr 1972 Numerical simulation of three-dimensional homogeneous isotropic

turbulence Phys. Rev. Lett. 28 76–79

[38] Vincent A and Meneguzzi M 1991 The spatial structure and the statistical propierties of homegeneous

turbulence J. Fluid Mech. 225 1–25

[39] Minguez M, Pasquetti R and Serre E 2008 High-order large-eddy simulation of flow over the Ahmed body

car model Phys. Fluids 20 095101

15

New J. Phys. 16 (2014) 103001 S Kreuzahler et al



[40] Homann H, Bec J and Grauer R 2013 Effect of turbulent fluctuations on the drag and lift forces on a towed

sphere and its boundary layer J. Fluid Mech. 721 155–79

[41] Mohd-Yusof J 1997 Combined immersed boundary/b-spline methods for simulations of flow in complex

geometries Center for Turbulence Research Annual Research Briefs pp 317–27

[42] Fadlun E A, Verzicco R, Orlandi P and Mohd-Yusof J 2000 Combined immersed-boundary finite-difference

methods for three-dimensional complex flow simulations J. Comput. Phys. 161 35ff

[43] Brown D L, Cortez R and Minion M L 2001 Accurate projection methods for the incompressible

Navier–Stokes equations J. Comput. Phys. 168 464–99

[44] Cortet P-P, Diribarne P, Monchaux R, Chiffaudel A, Daviaud F and Dubrulle B 2009 Normalized kinetic

energy as a hydrodynamical global quantity for inhomogeneous anisotropic turbulence Phys. Fluids 21

025104

[45] Dudley M L and James R W 1989 Time-dependent kinematic dynamos with stationary flows Proc. R. Soc. A

425 407–29

[46] Schmitt B J and von Wahl W 1992 Decomposition of solenoidal fields into poloidal fields, toroidal fields and

the mean flow. Applications to the Boussinesq equations Lect. Notes Math. 1530 291

[47] Cardin P and Cugliandolo L F 2008 Dynamos, Volume Session LXXXVIII, 2007 of Les Houches—Ecole d’Ete

de Physique Theorique (Amsterdam: Elsevier)

[48] Cadot O, Douady S and Couder Y 1995 Characterization of the low pressure filaments in a three-dimensional

turbulent shear flow Phys. Fluids 7 630–46

[49] Mordant N, Pinton J-F and Chillà F 1997 Characterization of turbulence in a closed flow J. Phys. II 7

1729–42

[50] Labbé R, Pinton J-F and Fauve S 1996 Power fluctuations in turbulent swirling flows J. Phys. II 6 12

[51] Petrelis F, Mordant N and Fauve S 2007 On the magnetic fields generated by experimental dynamos

Geophys. Astrophys. Fluid Dyn. 101 289–323

[52] Laguerre R, Nore C, Ribeiro A, Léorat J, Guermond J-L and Plunian F 2008 Impact of impellers on the

axisymmetric magnetic mode in the VKS2 dynamo experiment Phys. Rev. Lett. 101 104501

[53] Giesecke A, Stefani F and Gerbeth G 2010 Role of soft-iron impellers on the mode selection in the von

Kármán-sodium dynamo experiment Phys. Rev. Lett. 104 044503

[54] Ravelet F, Dubrulle B, Daviaud F and Ratié P-A 2012 Kinematic α tensors and dynamo mechanisms in a von

Kármán swirling flow Phys. Rev. Lett. 109 024503

[55] Verhille G, Plihon N, Bourgoin M, Odier P and Pinton J-F 2010 Induction in a von Kármán flow driven by

ferromagnetic impellers New J. Phys. 12 033006

[56] Giesecke A, Nore C, Stefani F, Gerbeth G, Léorat J, Herreman W, Luddens F and Guermond J-L 2012

Influence of high-permeability discs in an axisymmetric model of the Cadarache dynamo experiment New

J. Phys. 14 053005

[57] Miralles S, Bonnefoy N, Bourgoin M, Odier P, Pinton J-F, Plihon N, Verhille G, Boisson J, Daviaud F and

Dubrulle B 2013 Dynamo threshold detection in the von Kármán sodium experiment Phys. Rev. E 88

013002

[58] Cortet P-P, Herbert E, Chiffaudel A, Daviaud F, Dubrulle B and Padilla V 2011 Susceptibility divergence,

phase transition and multistability of a highly turbulent closed flow J. Stat. Mech.: Theory Exp. 2011

P07012

[59] de la Torre A and Burguete J 2007 Slow dynamics in a turbulent von Kármán swirling flow Phys. Rev. Lett.

99 054101

[60] Saint-Michel B, Dubrulle B, Marié L, Ravelet F and Daviaud F 2013 Evidence for forcing-dependent steady

states in a turbulent swirling flow Phys. Rev. Lett. 111 234502

16

New J. Phys. 16 (2014) 103001 S Kreuzahler et al


