









#### STRONG LENSING: Illuminating galaxies clusters and the structures behind them

Guillaume MAHLER Durham University











Main collaborators: Mathilde Jauzac, David Lagattuta, Keren Sharon, Johan Richard, Mike Gladders, Jane Rigby

Observatoire de la cote d'Azur

Sept 20th 2022

# **Strong lensing is rising !**



# Strong lensing is a tool



# Strong lensing is a tool



When a light source is aligned with a mass and the observed, the path of light is apparently disturbed and the image of the source is transformed

3 majors transformations :





Mass increase



Mass increase



#### Redshift increase



### Different mass distribution



# Inverting the problem

ParametricFree-formHybrid





11





Select the cluster members



Find the lensing constraints



Select the cluster members Find the lensing constraints Add Dark matter halos





#### And know what do you do with that ?



# Cluster physics and substructures



#### Lensed universe

# The dark matter distribution

Mahler et al. 2018

#### Sensitive to the outskirts masses





#### Buffalo program





#### SMACS J0723.3-7327



#### SMACS J0723.3-7327

#### 6 lensing models

### 3 pre-JWST

2 models as part of the publicrelease of RELICS:1 Lenstool1 GLAFIC

1 LTM models in Golubchik+2022

### 3 post-JWST

3 models:

Mahler et al 2022 - Lenstool

Pascale et al. 2022 - Parametric

Caminha et al 2022 - Lenstool









#### The complexe structure of the Intra-Cluster Light



Montes & Trujillo 2022

#### We harmonised the labelling

Mahler et al. 2022b Pascale et al. 2022 Caminha et al. 2022



We harmonised the labelling

### And what about more than one cluster?

### And what about more than one cluster?







Fox, Mahler et al. 2022

#### We are looking at:

- Flatness of the profile
- The area magnified >3



#### Fox, Mahler et al. 2022

Fox, Mahler et al. 2022



#### බ ຄ O Lenstool GRAV\_ENS • HFF HEF GRAVLENS ⊳ 0 Lenstool ٠ ⊳ II II RELICS Δ LTM GRALE RELICS GRALE 企 • LTN ŵ Δ 10 10 GLAFIC SGAS SGAS A<sup>0.5</sup><sub>|µ|≥3</sub> [arcmin<sup>2</sup>] (z<sub>s</sub> A<sup>0.5</sup> |µ|≥3 [arcmin²] (z<sub>s</sub> GLAFIC 8 3 6 6 4 4 2 2 0 20 250 300 15 50 200 100 150 10 $M_{SL}(200 \text{kpc}) [10^{12} \text{M}_{\odot}]$ M<sub>500</sub> [10<sup>14</sup>M<sub>9</sub>] 12 12 6 $A_{|\mu| \ge 3}^{0.5}$ [arcmin<sup>2</sup>] ( $z_s = 9$ ) Lenstool 16 0 $A^{0.5}_{|\mu| \ge 3}$ [arcmin<sup>2</sup>] ( $z_s =$ -0.4 LTM Δ 10 10 GLAFIC GRAVLENS 12 ь M500 [1014M 0.6 8 8 S50-200 GRALE ÷ 6 0.8 6 4 4 2 1.2 0 a -1.4-1.0-1.2-0.8 -0.6 -0.4 -0.2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 S<sub>50-200</sub> Cluster Redshift

#### Fox, Mahler et al. 2022

Can this challenge CDM?

### But "good" lenses are not compact

Fox, Mahler et al. 2022



\*Good here mean the size of the  $\mu$ >3 magnified area at z=9 is large

### Cluster members and supermassive black holes



Found 1000s of wandering SMBH in >10^14 Msol halos Ricarte et Can we see them? Maybe with lensing....

Ricarte et al. 2021

34









### Simulation and wanderers





# Behind the lens



# Behind the lens

#### .....Magnifying the universe

Cluster PSZ1 G311.65–18.48 - The sunburst arc



Sharon, Mahler et al. 2019



# Behind the lens

#### .....Magnifying the universe

B = 1 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C = 2 C =



Sharon, Mahler et al. 2019



Rivera-Thorsen et al. 2019 Science

### At high-redshifts lensing win





Drawn from Mason et al 2015, shown in Mahler et al. 2019

# Luminosity function



De la Vieuville et al. 2019

# Future generations of telescopes



20,000 deg2

15,000 deg2



Giant arcs in clusters (Boldrin et al 2015) 1300 arcs wit L/w >10 8000 arcs with L/w > 5

Galaxy-galaxy lensing (Collett 2015) • 140,000 lenses in the wide survey

Galaxy-galaxy lensing (Collett 2015) • 140,000 lenses in the wide survey

#### Take away message:

#### Take away message:

### Lensing is awesome!!!



<u>Take away messages:</u>

- Inner core slope correlates with magnification power
- Futur (non)detection of wandering SMBHs in clusters
- Increased resolution, do the science of tomorrow, today
- Observed the faint end of the population, unreachable otherwise

