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Back-ground: How common are large moons around   
rocky or icy exoplanets?

n Earth’s Moon  à control Earth’s climate à one possible factor of habitability?  
Ø control Earth’s obliquity and spin period evolution; mix deep ocean water

n Standard Moon formation model: giant impact model
Ø Final phase of rocky planet accretion is “giant impacts” :  energetic collisions between 

protoplanets formed by “oligarchic growth” (Kokubo & Ida 1998)
Ø In many cases, a “large” moon is formed as a by-product such as Earth’s Moon?

MMoon~ 0.01 MEarthn Other planets in Solar system?
Ø Venus: retrograde impact à planet spin & moon: retrograde

à the moon falls onto the planet by tidal orbital evolution (Atobe & Ida 1997)
Ø Mercury & Mars: left-over protoplanets that avoided giant impacts? (Hansen 2009)
Ø Uranus: tiled by 98 degree ß giant impact

à Large exo-moons: common around exoplanets?
But, transit timing/duration variation observation (e.g., HEK): no detection



Back-ground: Mysteries of Uranian moon system
n Earth:

Ø impact by protoplanet with ~ 0.1 Mplanet (consistent with oligarchic growth model)   
à ~ 0.02 Mplanet debris disk (e.g., Canup & Asphaug 2001, Nature)
à ~ 0.01 Mplanet single moon (Ida, Canup & Stewart 1997, Nature)

succeeded to reproduce Earth’s Moon
(except the identical isotope ratios)

n Uranus: 
Ø spin axis is tilted by 98 degrees ß giant impact: likely
Ø 17 hour spin period à ~ 0.1 Mplanet impact 

à ~ O(0.01) Mplanet debris disk à ~ 0.01 Mplanet single moon?
NO: four small major moons ~ 10-4 – 10-5 Mplanet

à moons were formed in a different way?



Back-ground: Mysteries of Uranian moon system

ESO

n Uranus
Ø both spin axis & moons’ orbits: tilted by 98 degrees

n moon accretion in CircumPlanetary gas Disk? (Szulágyi et al. 2018)
Ø ~10 wt.% gas envelope à moons: accreted in the CPD ?

à moons’ orbital plane ~ planetary orbital plane

Ø How to tilt the spin axis and moons’ orbits?
ü A giant impact (instantaneously)

hard to incline the moon orbital planes afterwards
ü Spin-orbit resonance (secular) 

(Boue & Laskar 2010, Rogoszinski & Hamilton 2020) 
hard to incline by > 90 degrees



ESO
Ø Morbidelli et al. (2012) 

-- clever, complicated, multi-step hybrid model
1. Protomoons form in a CPD
2. Giant impact tilts the spin

- Protomoon orbits are not inclined 
3.   Nodal precession of protomoon orbits 

along tilted spin axisà thick torus
4.  Collisional damping 
à Debris orbits: align the tilted planetary equator

5.  Re-accreted moons – Retrograde!
à Multiple giant impacts??

Back-ground: Mysteries of Uranian moon system



ESO

n A single-impact model: accretion of moos from an impact debris disk?
Ø The giant impact onto slowly spinning Uranus: naturally forms the tilted spin 

and a similarly inclined prograde satellite system.

Much more simple 

Back-ground: Mysteries of Uranian moon system



Problems in the single impact model

n impact: constrained by the current spin period 
Ø oblique, M ~ 0.1 MU (consistent with oligarchic growth model)

n Disks predicted by giant impact simulated by SPH
Slattery et al. (1992), Kegerreis et al. (2018), 
Kurosaki et al. (2019), Reinhardt et al. (2020)
Ø 10 x more compact (~2rU), 100 x heavier disk (~10-2MU)

than the current moon systems
ü Tidal orbital expansion afterward: not effective  Dermott et al. (1988)

Ø almost no rock component: 
ü rocks : central part as a core ß oblique impact
à inconsistent with current moons (half rock + half ice) !

The single impact model: inconsistent?
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Formation of Uranian moons 
by a giant impact



Conclusion in advance
Giant impact -- debris disk: too massive (x100), too compact (x10), too low rock/ice
n Debris disk: water vapor ＋ H/He gas

Ø vaporized: low vaporization temperature of H2O, high impact velocity to Uranus
Ø substantial viscous disk evolution until re-condensation of H2O
• only 1% of initial Mdisk,vapor remains
• size spreading by x10                                    ~ the current satellites

n Σice ∝ r 3/2 ß viscous heating: inefficient in outer region 
Ø In situ moon accretion ß low density of  H/He gas
à larger moons in outer region                             ~ the current satellites

n rock/ice ratio: enhanced（ß high condensation temperature of silicates）



Reproduction of the current satellites

current Uranian moons
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N-body simulation starting from the predicted Sice



We performed 1D diffusion calc.           
with constant a & viscous heating             
(T ∝Σdisk1/3 r -1/2)
Ø ice condensation: 

ü T ~ 240K
à thresholdΣdisk∝ r 3/2 

à Σice ∝ r 3/2 

indep. of the initial disk
ü outside-in manner

Final moon mass is determined by
disk evolution until condensation, 
not by initial disk mass. 
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異なる
初期円盤質量

rmax

Md,imp : initial debris disk mass

2 rU – viscous spreading à 20 rU
ßà current satellites a < 22.8 rU

initial disk

numerical
analytical

disk evolution

Ice condensation

g03 = (water vapor fraction)/0.3

x 10 expansion   weak dependence on initial disk

-- condensed ice surface density

-- ice distribution extent ß initial M,L of the impact-generated disk

condensation

: initial disk radius

intersection of envelope of Sdisk and 
ice condensation Sice



氷凝縮

10-2MU – viscous diffusion à10-4MU
ßà current moons Mtot ~ 10-4MU

x 1/100

-- total mass of condensed ice

-- in situ moon accretion

Md,imp: initial debris disk mass, 
rd,imp : initial debris disk radius

-35/32

initial vapor

Ice condensation



current satellites
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N-body simulation starting from the predicted Sice

t type I mig > tdiff
à in situ satellitesimal accretion

Reproduction of the current satellites



Enhancement of 
rock/ice ratio

n silicates
Ø higher condensation T
à earlier condensation than ice

Ø do not grow (less sticky)
à viscous spreading with gas  

à after ice condensation, 
stick to the icy particles in outer region

à Σsilicate /Σice [condense]
>> Σsilicate /Σice [initial]

potentially explains Σsilicate/Σice~ O(1)
of the current moons, produced from
ice-rich body impact

rmax
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disk evolution

silicate 
condensation

Ice 

Ice 
condensation
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Summary of Ida et al.(2020)

ice condensation
~ 250K

immediate 
rock condensation
~ 1500-2000K

~ 0.1Mp

disk diffusion 
(expansion, depletion)
& cooling

vapor disk

same until here

Earth

~10-４Mp

~10-２Mp
Uranus

accretion

~10-４Mp

~ 0.1Mp

solid/melt disk

~10-２Mp

~10-２Mp

accretion

This process has 
been dismissed
But, huge effect
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Evaporation controls 
icy moon formation

Rocky planets also evaporate
for Mp > 5-6 Mearth !
--> No large moon



SPH impact simulation

n latent heat
Ø rock(silicate) : ~ 1 x 107 J/kg
Ø water ice:  ~ 2 x 106 J/kg

n SPH
Ø N = 50K or 100K
Ø rocky/icy planets: M-ANEOS + SESAME



n latent heat
Ø rock(silicate) : ~ 1 x 107 J/kg
Ø water ice:  ~ 2 x 106 J/kg

n VFM ~ 1  à would not have large moons
Ø rock : >~ 5-6 Mearth
Ø ice :  >~ 1 MEarth

Results: Vapor Mass Fraction



n latent heat
Ø rock(silicate) : ~ 1 x 107 J/kg
Ø water ice:  ~ 2 x 106 J/kg

n impact energy : 
~ 6 x 107 (M/MEarth)2/3 (r/rEarth)1/3 J/kg

heating energy : 
~ 3 x 106 (e /0.05) (M/MEarth)2/3 (r/rEarth)1/3 J/kg

n Exomoons : should be searched around 
Ø rock planets: <~ 5-6 MEarth
Ø icy planets :  <~ 1 MEarth

efficiency factor
↑ determined by SPH impact simulations

Results: Vapor Mass Fraction



Summary

n Uranian moons formation by an giant impact
Ø disk evolution until ice condensation 

controls the moon mass & orbit configuration
à The big difference between Earth’s Moon & Uranian moons is explained

[fractionally similar impactor mass, but 100 times different moon mass] 

n Exomoons formed by giant impacts
Ø “totally vaporized or not” is the most important
Ø survey should target

Ø rock planets: <~ 5-6 MEarth
Ø icy planets :  <~ 1 MEarth


