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Today, w'e' are use-d'to-th‘e_ 'idea-Qf |
observable galaxies being-the tip of i "
the iceberg’ within huge dark halos _ o
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We also know about the merging CDM hierarchy. Semi-analytic models work
with merger trees, either from expensive N-body simulations, or inexpensive
Press-Schechter codes.

Public data release of the EAGLE galaxy
and halo catalogues
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1.00

CDM simulation

In the Millenium movie, we
see how dark halos grow with

cosmic time.

This schematic tracks merging
DM blobs with time. The
galaxy (red) is growing up the
middle.

Redshift (z)

In fact, this plot was not
made from an N-body
simulation.

It was made purely through
running a random number s
generator and using the Press-
Schechter theory.
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We ran the Press-Schechter code from
Parkinson et al (2008) roughly 2000
times at each of z = 20, 15, 12, 10, ... 1

Here we show the mean trend and 1o
spread about the mean.

Virial mass within a virial radius is just
the domain over which collapsing stuff

has virialized = stabilized.

2016 Annual Reviews of
Astronomy & Astrophysics
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NFW is an important step. The expectation was that halos were
self-similiar on all scales. This created an industry of rotation
curve’ fitting in galaxies, e.g. minimum vs. maximum discs.

VAN ALBADA ET AL.
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Kalnajs 1983: the substantial wiggles argue for baryons being important



So we know a great deal about CDM evolution across the full
self-similar hierarchy, assuming it’s not fuzzy or decaying.

That does not mean we know much about galaxy formation
& evolution.

DM drives structure formation, but baryons introduce
orders of magnitude more complexity, which we must truly
understand to get to galaxies (and stars!).



In the near field, we have long known i
that baryons dominate at the centre — . . T
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Figure 17
Fraction of baryonic mass within radius  including the stellar and cold gas mass from the dynamical models
shown in Figure 16 and the additional mass in hot gas predicted by Tepper-Garcia et al. (2015) with an

assumed uncertainty of 35% (Section 6.2).




How dynamically dominant are the baryons?

This is an important factor for how discs evolve in cosmic time.
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Another crucial factor is the gas fraction.
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So when did galaxy discs first emerge ?

When did baryon discs first dominate over dark matter ?
How ancient is this signature ?



Annu. Rev. Astron. Astrophy. 2014 1056-8700/97/0610-00

Just nine years ago, we thought that most
The Evolution of Galaxy discs appeared after z ~ 1, and simulators

Structure over Cosmic Time made sure that this was the case!
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But there is a case for earlier discs, both from
observations and a select few simulations.
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ALMA Reveals Potential Evidence for Spiral Arms, Bars, and Rings in High-redshift
Submillimeter Galaxies

J. A. Hodge' @, 1. Smail®>> ®, F. Walter*®, E. da Cunha’ ®, A. M. Swinbank>>®, M. Rybak' @, B. Venemans*®,
W. N. Brandt6’7’8®, G. Calistro Riveral, S.C. Chapmang, Chian-Chou Chenm@, P. Coxll, H. Dannerbauerlz’B@, R. Decarli“@,
T. R. Greve>'®!7@® K. K. Knudsen'®®, K. M. Menten'® @, E. Schinnerer’ @, J. M. Simpson2°®, P. van der Werf' @,
J. L. Wardlow?!, and A. Weiss'®®
2016, 2019

These authors targetted z=1-5 sub-mm sources, i.e. massive galaxies
with high star formation rates. These were found to be disc-like, and
subsequently well-ordered rotators, even with the blobby appearance.

Table 1
Galaxy Properties
Source ID* z - log(M /M) log(SFR/M,, yr ™) Tguse/K°
ALESS 3.1 3.374 CO (4-3) 11.304942 2.8123% 3613
ALESS 9.1 4.867 CO (5-4) 11.897913 3.16499 5143
ALESS 15.1 2.67 Zphot 11.76132 2.44+013 334]
ALESS 17.1 1.539 Ha, CO (2-1) 11015038 2294092 288
ALESS 76.1 3.389 [O ] 11.0815% 2564011 37440
ALESS 112.1 2315 Lya 11.3643% 2,403 3143

Some ALMA “discs’ are now claimed up to z ~ 9 (Inoue et al 2023).




Disc formation and the origin of clumpy galaxies at high redshift

Oscar Agertz,'* Romain Teyssier'-? and Ben Moore!

Lnstitute for Theoretical Physics, University of Ziirich, CH-8057 Ziirich, Switzerland 2009) 20 1 1
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This beautiful work showing cool flows (in blue) was the first to run
hand panels) at z ~ 2.7 illustrating the fragmentation process and the for- AMR hyd rOdynamiCS toz~O0. They prediCtEd z ~ 3 discs.

mation of large clumps of mass ~107-10° Mp.

Figure 3. Density projection of the stars (left-hand panels) and gas (right-



VINTERGATAN 1IV: Cosmic phases of star formation in Milky Way-like

galaxies

Alvaro Segovia Otero “,* Florent Renaud “ and Oscar Agertz © 2022

Department of Astronomy and Theoretical Physics, Lund Observatory, Box 43, SE-221 00 Lund, Sweden

In view of ALMA discs, their follow-up papers argue for gas discs
with ordered rotation, moderate gas dispersion, by z~6. See also

the latest FIRE paper by Gurvich et al (2022).
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So what are we learning ?

Early discs exist and may even be widespread.

Baryons got in early and maybe even dominated the centres
of massive forming galaxies from the start.

What does JWST have to say ?
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HST imaging surveys got this wrong! — the Universe likes to

make discs, and got started at early times.

fraction

EPOCHS team targetting CEERS and SMACS fields
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Ferreira et al 2022: what | like about this paper is one of the key authors is Chris Conselice
who was responsible for the HST measurements. Bravo - this is good science !

Peculiars |




EARLY JWST GALAXY STRUCTURE
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Dominant discs are very responsive to
internal or external perturbations.

This is an important factor in how discs evolve in cosmic time. Bars,
spiral arms, etc. are a direct consequence.

ALMA & IFS kinematics are challenging. We can look for stellar or gas
bars to argue for baryon domination independent of kinematics.

Here we focus on internally triggered bars (smaller parameter space) but we believe the same result
holds true for merger-triggered bars.
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Rotation Curves in z ~ 1-2 Star-forming Disks: Evidence for Cored Dark Matter
Distributions
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This was the motivation for our recent paper. We make strong predictions based on
Price et al (2021) about bars being common out to z ~ 5, depending on the disc
formation epoch. It could be earlier still.

THE ASTROPHYSICAL JOURNAL, 947:80 (15pp), 2023 April 20 https: / /doi.org/10.3847/1538-4357 /acc469
© 2023. The Author(s). Published by the American Astronomical Society.
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The Rapid Onset of Stellar Bars in the Baryon-dominated Centers of Disk Galaxies
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Abstract

Recent observations of high-redshift galactic disks (z =~ 1-3) show a strong negative trend in the dark-matter (DM)
fraction fp with increasing baryon surface density. For this to be true, the inner baryons must dominate over DM
in early massive galaxies, as observed in the Milky Way today. If disks are dominant at early times, we show that
stellar bars form promptly within these disks, leading to a high bar fraction. New James Webb Space Telescope
observations provide the best evidence for mature stellar bars in this redshift range. The disk mass fraction fy;q
within Ry = 2.2 Rg;s is the dominant factor determining how rapidly a bar forms. Using 3D hydro simulations of
halo-bulge-disk galaxies, we confirm the “Fujii relation” for the exponential dependence of the bar formation time
Tear @8 @ function of fy;q. For f3q > 0.3, the bar formation time declines exponentially fast with increasing fg;g.
Instead of Fujii’s arbitrary threshold for when a bar appears, for the first time, we exploit the exponential growth
timescale associated with the positive feedback cycle as the bar emerges from the underlying disk. A modified,
mass-dependent trend is observed for halos relevant to systems at cosmic noon (10.5 < log Mp,, < 12), where the
bar onset is slower for higher-mass halos at a fixed fy;q. If baryons dominate over DM within R = R;, we predict
that a high fraction of bars will be found in high-redshift disks long before z = 1.
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Swing amplification is an exponentially positive feedback loop (Goldreich & DLB 1965; Julian & Toomre 1966)
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We fit an exponential to
A, (t) for the first time.
This is more physical
than an arbitrary value.

When we plot exponential bar formation time vs. disc mass fraction, we recover the Fuijii relation,
but with a secondary dependence on halo mass and gas fraction.



To date, we find turbulent gas with f,,.=10-20% has low impact.

We need to investigate f ., > 50%
in detail where the effects of
massive clouds and turbulence

may be stronger, but just how ?
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So are there bars beyond z~1 ?

Absolutely, and they are spectacular in rest-frame K band.



First Look at z > 1 Bars in the Rest-Frame Near-Infrared with JWST Early CEERS Imaging
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Table 1. Barred Galaxies at z > 1 in the Rest-Frame NIR from JWST

6 barred discs found
across 4 x 2.2’ CEERS
fields. More to come,
mostly at lower SFR.
Rest frame IR crucial.

Galaxy Name Zspec €bar Gbar  Gbar 10g(M,/Mg)
(") (kpc)
(1) (2) B @) 6 (6)

M@ yr_

SFR

KELSTEIN ET AL.

1

(7)

EGS-30836 1.116 (DEEP2 DR4) 0.53 0.51 4.28 10.80
EGS-24154 1.174 (DEEP2 DR4) 0.52 0.42 3.57 11.05
EGS-12823 1.217 (3D-HST) 0.48 0.38 3.26 10.63
EGS-26831 1.543 (MOSDEF) 0.49 0.42 3.65 10.40
EGS-23205 2.136 (3D-HST) 0.50 0.35 2.95 11.29
EGS-24268 2.312 (MOSDEF) 041 0.35 2091 10.16

48.430
45.395
21.230
74.290
295.023
112.808

Except for elevated SFR, much like MW’s baryon mass and bar size today.
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So what about those high SF rates, indicating
high gas fractions, high levels of turbulence?

Historically, it’s not at all clear if these help or hinder bar
formation, spiral arms, etc.
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The physics may *

be different in - -
high accretion, & % | .
high dispersion | .
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& & 0
30kpc

At high gas fraction, disc evolution unfolds differently with
cooling ISM (C1) vs. stabilized ISM (S1) — Bournaud+ 2018.

We suspect that high disc mass fraction is important, but high
gas mass fraction is equally or more important ?



Milky Way surrogate

AGAMA/N-body, RAMSES/AMR,
star formation, turbulence.

10-20% gas fraction, SFR = 1.5-3 Mg /yr
energy injection reaches dynamical

equilm. with turbulent pressure support.
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We fully anticipate )
metal-enriched young
blue bars, and gas bars
at the highest redshifts.
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S
ron / ; Abstract
I/ / be mp//e St hls 1-redshift galactic disks (z =~ 1-3) show a strong negative trend in the dark-matter (DM)

g baryon surface density. For this to be true, the inner baryons must dominate over DM

o
t he Se P u dte q ] 15 observed in the Milky Way today. If disks are dominant at early times, we show that

within these disks, leading to a high bar fraction. New James Webb Space Telescope

a
S bars / S b/ue est evidence for mature stellar bars in this redshift range. The disk mass fraction fj;q

dominant factor determining how rapidly a bar forms. Using 3D hydro simulations of
e confirm the “Fujii relation” for the exponential dependence of the bar formation time
or fyisx > 0.3, the bar formation time declines exponentially fast with increasing fi;sk.

threshold for when a bar appears, for the first time, we exploit the exponential growth
/ he positive feedback cycle as the bar emerges from the underlying disk. A modified,

served for halos relevant to systems at cosmic noon (10.5 < log My,, < 12), where the
_ 5 1er-mass halos at a fixed fjs. If baryons dominate over DM within R ~ R,, we predict
— Zdisk= . will be found in high-redshift disks long before z = 1.

Zgisk="1

We expect that 50% of disc galaxies will

have bars before z = 1, if the Price sample

is representative. A significant fraction of

6 8 these will have young, blue bars. Some
may even have ALMA gas bars!

Zgisk=9
- BB



A. EFSTATHIOU, LAKE & NEGROPONTE CRITERION

Efstathiou et al. (1982) derived a simple criterion for bar instability based on a disc’s mass My, scale length Ry and
maximum rotation velocity V,.x, such that for

g = Vmax/(GMd/Rd)O'5 (Al)
then the disc is bar unstable when € < 1.1 and stable otherwise. They arrived at the formula from 2D stellar disc
simulations held within a rigid halo. Subsequently, Christodoulou et al. (1995) derived a similar relation for purely
gas discs. Athanassoula (2008) has exposed shortcomings in the use of the ELN relation. We note, however, that the
ELN criterion is still popular among cosmological N-body simulators, regardless of these shortcomings (e.g. Izquierdo-
Villalba et al. 2022).

In Fig. 5, the ELN parameter is presented for all of our models. A comparison with Fig. 4 shows that there are
a number of models that do form a bar in our numerical experiments that would be considered stable based on the
ELN criterion (diagonally shaded region). Thus we concur with Athanassoula (2008) in that the latter is not a reliable
estimator of a disc’s stability against bar formation.

In view of the definitions of f; and €, we expect an inversely proportional relation between these «

JBH et al (2023)
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simplest and at the same time most general relation is a power law € o< (f4)”, with a < 0. We have fit X X Low mass
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PUNCHLINE

You don’t need to believe in disc kinematics to infer
baryon domination at high redshift — look for the bars.

The full 10-field galaxy survey from the JWST teams
will be announced in July, but nobody is talking |



